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ABSTRACT. Complex functions are investigated which are solutions of an elliptic

system of partial differential equations associated with a real parameter function.

The functions associated with a particualr parameter function g on a domain D

form a Beltrami algebra denoted by the pair (D,g) and a function theory is

developed in this algebra. A strong conformality property holds for all functions in

a (D,g) algebra. For g _-- ]z] r the algebra (D,r) is that of the analytic

func ions.
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1. INTRODUCTION.

The idea of defining classes of functions which are generalizations of the

analytic functions by means of systems of first order partial differential equations

goes back at least to a paper of Picard in 1891 [I]. The solutions of that system

were of the type later called "pseudo-analytic functions of the second kind" by Bets

[2] where for f u+iv

ux a vx + b Vy (1.1)

-Uy b vx a Vy
where a, b, c and d are appropriate real-valued functions. The relationship of

solutions of the elliptic system

ux a vx + b Vy
(1.2)

-Uy c vx
+ aVy

where a, b, c and d are real valued and bc-a 2 to those of system (l.l) is

well developed in papers by Caldwell, [3, 4]

Two current research areas related to the early investigations of elliptic
vste.s are the theory of us[conforma| mappings nd function theoretic methods in

partial differential equations. Works from the latter point of view which have
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extensive references are Vekua, [5] and Gilbert and Buchanan, [6]. Ahlfors

discusses, in his introduction to [7], analytic theory generalizations and rationale

concerning quasiconformal mappings in particular. Examples from the algebras of

functions which we consider are found in very different areas of investigation,

indicating the possibility of an interesting and useful function theory. (e.g.,

Concerning quasiconformal mappings see [], p. 71; topological analysis, [9] and

[10], p. lqg- elliptic systems of partial differential equations, [5], p. 131.

The ftnctions considered are solutions of a Beltrami differential eot, ation with

complex dilar.tion at each point z dependent on a real parameter function g A

generalized derivative f’ is defined Necessary and .ufficient conditions for

existence of f’ include the Beltrami efluation which reduces to the Cauchv-Riemann

euations for analytic Both re f and im f satisfy the same second order

partial differentia equation with analytic atecedent the Laplace efl,ation.

Although the available enerlization of the Laplace eo,ation and its applications

are of intresv i nv elliptic system, the parallel is not always so direct. (e.g.,

In the system o [1] a different generalized system holds for each of re im f.)

For functions in aebr (n,g) a generalized conforma]itv holds which is

invarint in the algebra, that is, for given z and two fixed arcs the angle between

the ime arcs is the same for all functions in the algebra. The eneralized line

integral gf shares in modified form much of the theory of the ordinary complex

line integral. Amon some applications in the last section is a function continuous

on the finite complex plane, in a (D,g) algebra on -{(0,0)} g-quas icon forma on

bounded sets, and which maps , onto a fixed open disk.

2. NOTATION AND DEFINITIONS.

Complex valued f,nctions of one complex variable z re iO +iy are denoted

f and re [m v If[ O and ar f q Partial derivatives are

denoted bv subscriuts. Standard definitions used are"

iO (i/r)fo)fz e- fr

f eiO(fr + (i/r)fo) (9_.I)

J Ifzl 2 IfEI 2

The complex plane is denoted , and a domain D . is an open connected set

Cn(and, later in the paper, is required to be simply connected). The classes [C

comprise the functions with continuous partial derivatives of n Jail] orders.

Usage is enerally consistent with [I] and [lq] as concerns classical analysis;

[8], [7] and []4] as concerns ouasiconformal functions- and [15] as concerns

functional analysis.

The derivative f’ defined here is the limit o a generalized difference

quotient involving the parameter function which reduces to the difference

quotient for analytic functions. For C’ in a domain, existence of the limit
of this Reneral[zed d[fference ouotient is shown in [16] to be necessary and

sufficient for our defin[n condition (2.2 below).

DEFINITION I. A parameter function g in the following discussion is a real

valued positive function of zl r for z e D such that g’ dg/dr exists and

is continuous on D
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DEFINTTrON ?. The ordered pair (P,) reDr,’sents the set of complex valued

h,meomorphisms C2(D) satisfying,

(l+(g/r)) e fz
For such functions the eneralized derivative is defined

e-f r

(2.2)

(2.)

A function is called g-analytic at a point z when there is a parameter function g

so (2.2) holds on some domain containinR z f’ is called the -derivative.

The Beltrami eauation (2.27 is equivalent to a Reneralized Cauchy-Riemann

condition. When stated in rectangular coordinates in the form (1.27 the functions
2 2 3

x
2 2 22 3

a, b, c are" a xy( -r )/mr b r +y )/mr

(y2 2 3
c r2+x 2 )/r For computational convenience we state that condition as a

system in polar form

or

(ira f)0 (re f)r
(re f)0 - (ira f)r

(7.4)

f0 i fr
rEF1VlTON 3. I,et f be complex valued and continuous on (pieceise)

dfferenttable arc y on which r # 0 A eneralized lne integral deoendent on

oarameter function [s defined by"

(03/g)(ucosO-vsin0)dr- (vosO+usin0)dO
(2.5)

Y Y if(oo/t,.)(vcosO+usinO)dr + (ucosO-vsinO)dO

where ,= exJdr/R
The roperties of the lemma follow from the definitions n a straiRht-

forward manner.

LEMHA 1.

a) When f (D,) J (/r) fr 12
h) The constant functions are in each set (D,tz) and are the only functions

f’-=O for a constant functionin (D’I)n(D’2) l 2
c) f. f (D,) and f’ ---0 then is constant. Also, is

constant if either re im f el or ar f is identicallv constant

d) If f (D,.) and c is a comolex number, then cf (O,)

e) If h (D,z) then the sum, uroduct and reciorocals are in (D,) (1/f

for f # O) and the eneralized derivatives are"

f’ + h’f+h)
(fh)’ f’h + h’f (?.6)

(1/f)g -f/(f)P
f) If f h (D,) such that f’ E h’ on D then f-h is a constant

function on D

) If nonconstant (D,) and h e (D,r) then hof (D,)
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h) (D,) is an algebra over (The, multiplicative unit is f

For . E r (D,) is the set of f,nct ons analyt ic on D and (2.3) and

(2.5) are, respectively, the usual derivative and line integral. The reouirement

Definition that the function be posit[w, is equivalent to reeu[rin that the

Jacobians for functions (P,) be non-negative and hence that the functions be

sense oreservine. Thi is c,nsistent wth practice in the larer ouasconformal

,:]a nlthoh, s rh,,r, mnV f these reultq hold for sense reversin functions.

Oth,,r condirion or e n the definitions mav be weakened in some

"nnlicntionq. See [171, [1 for enref] discussion of topological and

tasic,nf,,rml prop,,rtes of Belrnmi svqtem.

g. kAPP ( pRooRrq

Functi,)ns ,,hich are qolttions of the ge]trami eQi,tion (2.P) are ]ocallv

TI, dilatation quotient is bounded on every compact subset of D and, if it is

bounde’l on ,n then is regular g-nuasiconforma! mappin for

. > un ax{Ir, r/}
zcD

A stronq eneraliation ,)f c,,nF,;rmaIitv holds for ,-analvtic f,nctions. Oiven a

point z nd the parameter f,nction the anle between the im,.es of two fixed

arcs is the sam,, whichever (D, maps the arcs. This reduces to anle
preservation in the conformal case. It is more soecific than the inequality

available for the lar.er claqs of o,asiconform.l mal)pin.s in eneral.

Theorem 4, which is an enuivalence to nuasi-conforma] itv.)

THF,ORFM 1. Arcs Y1 and y? intersect at z where they hnue taneonts which

make anles respectively of ( and [ with the rel axis and of (7 and T with

the radial direction throuRh z Tf O is -analvtic in a domain containinl
z then the nle 2’ between f(y1) and f(Y2) is determined by"

’ /cos=. ((e/rsin(B-O)[fcos20+(/r?,s in O c oscc osB
?+ (sinPO+(/r)cos O)sinccos6 cosOsinO(1-(,/r)2)(sin(0t+3)] -I

((,lr(sin(T_o)l(cosccosx+(/r)P sin(Tsinx)

(lonverselv, if C " 0 and (3.2) holds on some domain containinlz z,

where . qetisfies Definition 1, then is ,-anlvtic at z

PROOF. The q,.cond of the forms of (’.9) is most convenient to derive. The

first then Follows, since (7= c+II-O T= f+II-O. Let (7’ be the anzle made

f(yl at the point f(z) with the radial direction throu.b f(z). ManiD,latin.

aleebraicallv ith allowable anRles, we hve

sino’ p(dqb/dp) rcSOr + sin(TqbO
coso’ rcospr + sin(p0

+ si )u- (rcos(Tu + sinOuo)V(rcSJVr nOVO r

(rcosclv
r

+ sin(TVo)V- (rcos(TUr + sinOuO)u
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and, using similar expressions for T T’ write

s int’ sin(T’-O’)

cos’ cds(’r ’-’)

rcoSOUr+Si nou@ rcosrVr+S inky0 (rc oSOVr+Snovo)(rcos Ur/S inxu
0

(rcoSOVr+SinOVo)(rcosl;Vr+Sina;v0) + (rcosOur+SinOu0)(rcosa;ur+sinxu0)
(3.a)

r im(]r f0) (sin(x cY)

(r? fr
.qince f e (D,) by hvlothesis, substitution usinR (?.4) Rives (’.2)

Conversely, if is a function for which the expressions (3.2) (3.3 are

eouivalent for all arcs, then

r 2 (e fr
2

m (r f0) )+r (.(r e( r f0 )) (t a nO+ a n))+((R Ire]2- ? im(fr- 0

and hence we h.ve the system

1%12 i(o)
(.4)

re(frf@) 0

which is e0uivalent to the comple form of (2.4) since J > 0 is sense

preservinR, hence is -analytic.

DEFINITION 4. If f (D,g) and f satisfies (3.2) locally for all z D

then is R-conformal on D

For all functions in a iven (D,R) alzebra, the -conformalitv Rives the

between the images of intersectin arcs de0endinz on the tanRents to the arcs

themselves and the point at which they intersect. In the algebra of analytic

functions (D,r) the relation is not only also independent of the intersection point

but, reducin to anle preservation, is the same for all airs of arcs (y1,y2) with

the same anle between them. The similarity to the analytic case is less obvious in

the case of the effect of the g-analytic function on arc length. Where ds and dS

are elements of arc in the z and f(z) planes, respectively,

dS 2 Ifgl2(dr2+ g2d021 (3.a)

The modulus of the eneralized derivative retains position as a mgnif[cation factor,

although not in the Euclidean metric.

4. PROPERTIES OF THE FUNCTION THEORY

In adaition to some theory of the zeneralized derivative (2.3) and intezral

(.) we Rive a meneralized harmonicity relation which is satisfied bv both re

and im f for in a (D,R) alRebra. It is helpful to first construct two

examples which are the most Reneral functions in a (D,R) alRebra under certain

cond it ions.

From now on, we assume a domain D is a simply connected.

EAMOLE 1. If at z D

f(z) )(r) exp( i(clO *c?) (4.])

where c c 2 are real constants, c] 0 and nonconstant real valued %(r)

C2(D) then is R-analvt ic at z and R Cl)/), On the other hand, when
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is a -analytic function of form (4.1) then

fl(r) exn(ClJdr/z + i(Cl0+ c2)) (a.)

EXbgPLE 2. If f2 (D,) and (re f?)0 13 then there exist real constants

and a branch of ar. z 0 such thatc! ,c 2

f2(z) clJdr/ + i(cl0+c 2)
when h (D,g) and (re h)r 0 then b _= if 2 where f? is aq (4.a) The

st-tement ,)llows qince (irn f:?O is independent of r and (re f?)r is

indenendent of O o that there exists real c such that (ira f?O

,e consider two relationshits between the example functionq of (4.9) and

(4.’) f’learly fl ho f? where h is the exponent ial function. By I,emma 1 on

conositio, of functions fl is .-analvtic if and only if f2 is e-analytic. Also,

(c /.)e-i0the -derivtive of f2 is given by (f2). which is function of the

form ,f (.1) nd hence, is t,l-nalvtic for -1 ,/g’ Now, in eneral, if we

require the function of form (4.17 to be in (n, 1) we note that f’e
’ exp(i((cl-1)O+c2) nd el c1%/%’ It follows bv mathematical induction that

the I-th derivative exists under atpropriare conditions. (See Theorem 3b.)

Theory,ms 2 and di_scusq the existence of h[her order derivatives.

TqEORE.M 2. Let (D,>,) and z D then f’ is .-analvt ic at z for real

positive function e =6 only if at least one of the followinR conditions holds"

a) There is a real number k such that X(r) r+k for this case ( r+k

h) There exists real ,,alued differentiable h(0) such that (ira f)r
h(O)(:-e f)r

c) Fither (re f)o or (re f)r is zero.

f +sin0v im f’ osOv -sin0uPROOF. Let u+ iv then re cosOu r r r r
Rec!uir[nR that (2.) hold for some real X(r} gives the matrix eouation

0 ’r r
nO

o (a.4)

sin0 -cos ’r rri

If the third matrix is the zero matrix then we have a) When ur
or

r
is zero

we have c) (See xample 2, (t.a).) Otherwise, the renuirement that UrVrr-VrUrr_
0 implies the relation of b)

THEOREN q.

a) If f (O,R) for (r) r+k then fr+k e (D,R) If f C(D) all

orders of higher derivatives exist in (D,r+k) and are defined by

e-in0 3nf
r+k 3rn

h) If f (1,1 is of the form )exp(i(clO+C 2

cl/),’ theo the nth derivative exists for

where gl

rain{c] max{d integers exists}} c > n

max{d inte.ers (d) exists) c < 0
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In particular, where Un (Cl-n+l)X (n-!)/x(n) then

((f,), ...),
el 2 n exp(i((cl-n)O+c2))

(When c <" 0 nd % C all orders of hiher derivatives exist.)

f)oc) f nonconstnt E (D,X) th (re 0 or (re f)r 0 then the

first derivative exists nH reduces to case b) (See the dcusson follon
aple 2.)

PROOF. a) and h) can be proved usin mathematical induct ion.

If is in an algebra (D,p) then both re f and im f satisfy the am,,

s,cod order partia] differential eoation which is the Laplace eouation for analytic

n a simply connected domain construction of coniuate -ana]vtic functions

f,) ows.

THnRM h (D g r@ )ld im ech sat sfv

+ ’ + C11) nrr r 00
saeisfvin (.5) is called

p-h,rmonic. Real functions u(r,0) and v(r,O) which satisfy (2.&) are

col led -c)n tes.

FORE 5. Tf iS -harmonic in n th,,n has at least one -conuate.
PROOF. Without loss of enera]ity, let satisfy (A.5) and conider

v(r,O) !r -ue( r,O )4rl + u (r O)dOo
0

is a fixed point z roeXP(iOo) It is immediate that vo(r,Owh,r( z
O o

r(r,@ and we also compute

Vr (r e) -ue(r 0o1/ + (XUr r
(r ,8) X’Ur(r O))dO

which ater ubstitutio of (4.5) reduces to vr -u0/ satisfying (2.4) for

u+iv

Examination of Definition of the g=itegral as an Riemann path integral

ivotvin the function g shows that the usual operational properties regarding

multiples and path components continue to hold. We derive a few useful properties of

the generalized line integral; in particular these are analogues of Cauchy’s Theorem

and path independence, Morera’s Theorem, and some convergence theorems of the

Weierstrass type. Domains are simply connected.

THEOREM 6. If f (D,) and T is a simple closed curve homologous to 0

D then g[f 0

PROOF. sing the polar for of reens Theorem, re f and i f ech

reduce to ero after substitution of the enerlized Cauchy Rienn cndition (2.)

The stronger for of Cuchys Theorem, lloing exceptional points in the doin,

is deeloped in [16], p. 62-66.
gb

eOROLLR7 1. hen f (,g) then f is independent of the pth jonin

a and b in D

PROOF. If to paths fov a to b [n D do not cross or cros a finite number

of t[es, the result follows by Theore 6 and the definitions and operational

properties of the path intevals. If the paths cross infinitely often a tiit[nR

process [s available. (See [13], p. 315).
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W

THEOREM 7. Let f (D,g) and zo be fixed in D and define

Zf then

zo

F (D,g) and further

Fg’ ((exPrlrdrlg)Ig) f

I

(4.6)

PROOF. Since the generalized integral is path independent we apply properties

of line integrals in the plane to compute the partial derivatives of the real and the

imaginary parts of the integral function F System (2.4) is satisfied, so the

derivative function is given by (2.3) as

Fg e-J0( f)r which is euivalent to (4.6
o

We thus demonstrate for the generalized case the d[fferentiability of the

integral. The analytic case g(r) --r is seen by (4.6) as necessary (as well as

sufflcient) that F
TtlEOREM 8. Let f C in D and g satisfy Definition I. If

gff 0 for simple closed curve in D then f is g-analytic in Oevery Y

PROOF. In (2.5) both the real and imaginary parts of the generalized integral

are represented by real line integrals [..(P dr + 0 dO) where P and

Q are both in C Since by the hypothesis"" we have independence of path for

these integrals, P0 Or or"

(l/g)(u0cos0 v0sin0) -VrCOS0 UrSin0

(I/)(vcos0 + u0sin) urcos VrSin
Al.ebraic manipulations of this system show (2.4) for f u+iv

Before showing some Weirstrass-type convergence results, we need a bounding

relation o the generalize integral which depends on inequalities for real line

integrals.

LEMMA 2. When y is rectifiable

(4.7)Ig/fl <KML
.r

where Kg 4 max((exD_1 dr/)(l+maxll/gl)), M maxlf e length of y.
zcy i zcy zy

THEOREM 9. If fn is continuous on regular arc y for each n and

the sequence {fn] converges uniformly to f on y then

PROOF. Since f is continuous there is an N such that for n > N

fn f (fn- f)] <-- e ’KgL < e

by Lemma 2. { T T

THEOREM I0. If for all n fn C2 is -analytic on open set A and {fn
converges uniformly to f on compact subsets of A then f is -analytic on A

PROOF For z A there is a disk containing z with its closure in A. We
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show f (D,g) on such disks, hence is g-analytic for z A Let Y be any

smple closed curve in a disk contained in A Then glfn 0 for each n by

Theorem 6. By Theorem 9, g[f- 0 hence Theorem 8 gives
)

R-analyticity in the disk.

COROLLARY 2. If to the hypothesis of Theorem I0 is added, for fn Un n

that {un} converes uniformly to u and {vn} converges uniformly to v where

u+iv then f’ lim(f )’

PROOF. We now have lim(u )r and lim(v )r v hence there s an N such
n-+ R n R r

that for n > N

vers[o of the argument principle nd o Cauchys ntel ormula

available from the theory of Betram[’s euaton. or completeness e sho the

atte fo -analtc functions.

THEORH 11. f f (D,) nd y s a simple cosed curve homoloou to 0

i D and z is n the nte[o of y then

[ f(z)dz + 1
(g-r) et2Of()drd

See [5], . 2-25 nd p. 1 for discussion of ore enerl cses.

5. PPLIeTIONS

One interesting exapIe of a g-analytic function ith

locally quasiconforl ith contnuou extension at the lated boundary

(0,0) and -quasiconoraI on bounded ets, ps the finite pIane onto fixed open

disc.

EPLE 3. For fixed 0 real and such that 0 < 0 < define

(20ei@tan-lr)/ z 0
f(z)

0 z=O.

The function satisfies (2.2) for g (l+r2)tan-lr and mps the finite plane onto

the open disc [f(z){ < 0

Concentric annuli may be g-conformally mapped whatever the proportionm of their

radii.

EXAMPLE 4. For annuli: A 0 < r

A2=0 <R

let

< I1 < 2
<1"1 <R2<

iO (r-r))/(r2-rf(z) e (R2(r-rl)-R1 2

Then f:A --> A2 homeomorphically and f is g-analytic for

g r + ((Rlr2-R2rl)/(R2-R1))
The convergence properties of the g-integral allow a comparison to the general

quasiconformal situation. When the generalized functions satisfying the Beltrami

equation (2.2) are quasiconformal in a domain (see Section 3), they are of the type

called regular quasiconformal. Although the uniform convergence of a sequence of K-
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quasiconformal mappings to a homeomorphism implies that the limit mapping is also K-

quasiconformal, in the case of a sequence of regular K-quasiconformal mappings the

limit mapping need not be regular. (See [8], p. 17-19.) For g-analytic regular K-

quasiconformal functions, the limit mapping is g-analytic.

COROLLARY 3. A Beltrami algebra (D,g) is uniformly closed.
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