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ABSTRACT. Complex functions are investigated which are solutions of an elliptic
system of partial differential equations associated with a real parameter function.
The functions f associated with a particualr parameter function g on a domain D
form a Beltrami algebra denoted by the pair (D,g) and a function theory is
developed in this algebra. A strong conformality property holds for all functions in
a (D,g) algebra. For g = |z| = r the algebra (D,r) is that of the analytic

functions.
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1. INTRODUCTION.

The idea of defining classes of functions which are generalizations of the
analytic functions by means of systems of first order partial differential equations
goes back at least to a paper of Picard in 1891 [1]. The solutions of that system
were of the type later called '"pseudo-analytic functions of the second kind" by Bers

[2] where for f = u+iv

* * y 1.1)
-u,=bv, -av
where a, b, ¢ and d are appropriate real-valued functions. The relationship of

solutions of the elliptic system

(1.2)

2. 1, to those of system (1.1) is

where a, b,c and d are real valued and bc-a
well developed in papers by Caldwell, [3, 4]

Two current research areas related to the early investigations of elliptic
systems are the theory of auasiconformal mappings and function theoretic methods in

partial differential equations. Works from the latter point of view which have
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extensive references are Vekua, [5] and Gilbert and Buchanan, [6]. Ahlfors
discusses, in his introduction to [7], analytic theory generalizations and rationale
concerning quasiconformal mappings in particular. FExamples from the algebras of
functions which we consider are found in very different areas of investigation,
indicating the possibility of an interesting and useful function theoryv. (e.g.,
Concerning quasiconformal mappings see [R], p. 71; topological analysis, [9] and
[10], p. 198; c¢lliptic systems of partial differential equations, [5], p. 121.)

The functions considered are solutions of a Beltrami differential eauation with
complex dilatation at each point 2z dependent on a real parameter function g . A
generalized derivative f; is defined. Necessary and sufficient conditions for
existence of f; include the Beltrami equation which reduces to the Cauchy-Riemann
equations for analvtic f . Both re f and im f satisfy the same second order
partial differential equation with analytic antecedent the Laplace equation.

Although the available generalization of the Laplace eouation and its applications
are of interest in anv elliptic system, the parallel is not always so direct. (e.g.,
In the system of [11] a different generalized system holds for each of re f , im f.)

For functions in algebra (n,g) | a generalized conformality holds which is
invariant in the algebra, that is, for given =z and two fixed arcs the angle between
the image arcs is the same for all functions in the algebra. The generalized line
integral gjf shares in modified form much of the theory of the ordinary complex
line integral. Among some applications in the last section is a function continuous
on the finite complex plane, in a (D,g) algebra on ¢-{(0,0)} , K-quasiconformal on
bounded sets, and which maps ¢ onto a fixed open disk.

2. NOTATTION AND DEFINTTTONS.

Complex valued functions of one complex variable z = rele = x+iy are denoted
f and re f=u, imf=v, [fl =p and arg £f=¢ . Partial derivatives are
denoted by subscrivts. Standard definitions used are:
_ —ib _ ¢
f =e (fr (L/r)fe) s

Z

€ = e+ (/08 (2.1)

3= 6,02 - |62

The complex plane is denoted T and a domain D c ¢ is an open connected set
(and, later in the paper, is required to be simply connected). The classes C" [C]
comprise the functions with continuous partial derivatives of n [alll orders.
Usage is generally consistent with [12]1 and [13] as concerns classical analysis;
[8], T71 and [14]) as concerns quasiconformal functions; and [15] as concerns
functional analysis.

The derivative f; defined here is the limit of a generalized difference
quotient involving the parameter function g which reduces to the difference
quotient for analytic functions. For f ¢ C' in a domain, existence of the limit
of this generalized difference auotient is shown in [16] to be necessary and
sufficient for our defining condition (2.2 below).

DEFINITION 1. A parameter function g in the following discussion is a real
valued positive function of [z[ =r for z e D, such that g' = deg/dr exists and
is continuous on D .



FUNCTION THEORY FOR A BELTRAMI ALGEBRA 249

DEFINTTTON 2. The ordered pair (P,g) represents the set of complex valued

homeomorphisms f e c?(m satisfying

_ = Q-(g/r)) i%e
fz %ﬁ%ﬁé’m—e fz . (2.7)

For such functions the generalized derivative is defined
£y = e H0r . (2.3)

A function is called g-analytic at a point 2z when there is a parameter function g
so (2.2) holds on some domain containing z ; f;z is called the pg-derivative.

The Reltrami equation (2.2) 1is equivalent to a generalized Cauchy-Riemann
condition. When stated in rectangular coordinates in the form (1.2) the functions
a, b, c are: a= xy(xz?-rz)/gr’3 ; b= (x2r2+y222)/2r3 H
c = ()’2\'?~1>)(?22)/£r3 . For computational convenience we state that condition as a

system in polar form

(im f)e = ¢ (re f)r

(2.4)
(re f)e = -g (im £)_
or,
fe = ig fr
NDEFINTTION 3, Tet f be complex valued and continuous on (piecewise)
differentiable arc Yy on which r # 0 . A generalized line integral dependent on
parameter function ¢ is defined by:
g (
[f =J W/g)(ucosB-vsing)dr - (vcosB+usinB)do
(2.5)

¥ + ij(w/e)(vcose'l-usine)dr + (ucos6-vsing)dd

r Y

where w= expfdr/g
1

The properties of the lemma follow from the definitions in a straieht-

forwvard manner.
LEMMA 1.
a) When e (D,e), 3= (2/O)|F |7 .
b) The constant functions are in each set (D,e) and are the only functions
in (n,g‘)n(n,gz) » #) # £, 3 f'gEO for a constant function.
c) Tf £ € (D,g) and f'g =0, then f is constant. Also, f is
constant if either re f , im f | |f| or arg f is identically constant.
d) Tf fe (D,p) and ¢ is a complex number, then cf € (D,g)
e) If f , h € (D,g) then the sum, product and reciprocals are in (D,p) (1/f
for f # 0) and the generalized derivatives are:
(f+h)‘é = f; + h; ,
(fh)"z = f;h + h;f , (2.6)
arey = -£3/06)’

f) Tf £, h e (D,g) such that f;E h”! on D, then f-h is a constant

function on D

2) Tf nonconstant f ¢ (D,g) and h e (D,r) then hofe (D,g)
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h) (D,g) is an algebra over § . (Th. multiplicative unit is £ = 1 .)

For o= r, (D,g) is the set of functions analytic on D, and (2.3) and
(2.5) are, respectively, the usual derivative and line integral. The reauirement in
Definition 1 that the function g be positive is equivalent to reauiring that the
Jacobians for functinns f € (D,g) be non-negative and hence that the functions be
sense preserving., This is consistent with practice in the larger auasiconformal
class althoueh, as rhere, many of these results hold for sense reversing functions.
Nther condirions on f or ¢ 1n the definitions mav hbe weakened in some
1oplications. See 1171, [41 for careful discussion of topological and
auasiconformal properties of Reltrami svstems.

3. MAPPTN(I PROPRERTTFRS

Functions which are solutions of the Reltrami eauation (2.2) are locallv

aquasiconformal. TIn particular, at 7z e D the dilatation auotient is eiven

L)

[ 0+ 6] 11+ /)] + |1 - (o) . g/r, g/r 21,
_ lf_ [ 1/(g/x), g/r ~ 1.
A

The dilatation quotient is bounded on every compact subset of D and, if it is

i £, |1 + /ol -1 - e/

bounded on N then f  is a regular K-quasiconformal! mapping for

K > sup max{e/c, r/g} .
~ zeD

A strone generalization of conformality holds for gp-analvtic functions. Given a
point z and the parameter function g , the angle between the images of two fixed
arcs s the same whichever £ € (D,e) maps the arcs. This reduces to angle
preservation in the conformal case. Tt is more specitfic than the inequality
available for the lareer class of auasiconformal mappines in general. (See [181,
Theorem 4, which is an eauivalence to auasi-conformality.)

THEORFM 1,  Arcs Yy and Y, intersect at z where they have tangents which
make aneles respectively of o and B  with the real axis and of 0 and T with

1

the radial direction through =z . Tf fe C is g-analytic in a domain containing

z then the angle Y' hetween f(‘yﬂ and f(Y?) is determined by:
siny'/cosy = ((9/r‘sin(8—a))f(c0520+(g/r\7sin79)cosacosB
+ (sin79+(9/r)cosye)sinacosB + cosesine(l—(p/r)Z)(sin(o.+8)1-] (3.2)

= ((g/r)(sin(T=0))/(cosccast+(a/t)? singsint) .

! T>0

Conversely, if f e C , and (3.2) holds on some domain containing z
where g sarisfies Definition 1, then f is p-analytic at z .

PROOF.  The socond of the forms of (R.2) is most convenient to derive. The
first then follows, since og=0+l-8 , T=B+1-6. TLet 0' be the angle made by
f(Y') at the point f(z) with the radial direction throueh f(z) . Manipnlating
algebraically with allowable angles, we have

sing' rcosgd_ + sinodg
2209, - p(dé/dp) = r
cosQg I‘COSUD: + sinope

(rcosovr + sinOve)u - (rcosOu_ + sincue)v

- (rcoscrvr + sino‘/e)v - (rcoscur + sinOue)u
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and, using similar expressions for T , T' write

siny' sin(T1'-0")

cosy’ = cos(t'-0"J

)

vei i - + vei
(rcoscur s1n0ue)(rcos‘tvr sanve) (rcosovy sinove)(rcos‘rur sinTug

(rcosovr+sinove)(rcosTvr+sinTve) + (rcosOur*sinOue)(rcosTur+sinTu )

0

(3.3)

r im(frfe)(sinfr-c)

(r?|fr‘2cosccosT*sincsinT|fe|2+r(sin(0+r))re(?rfe)

Since f € (D,g) by hypothesis, substitution using (2.4) gives (3.2)
Conversely, if f 1is a function for which the expressions (3.2) , (3.3) are

equivalent for all arcs, then

r?(glfr|2—im(grfe)FT(g(re(Erfe))(tano+tanT)N((g “a2~g7im(Erfe)(tanotanT))=n

s

and hence we have the system

2 LT
g|fr| - lm(frfe) 0

(3.4)

re(;rfe) 0
which is equivalent to the complex form of (2.4) : since J > 0, f is sense
preserving, hence f is g-analytic.

DEFINITION 4. If f e (D,g) and f satisfies (2.2) 1locally for all =z e p,
then f is g-conformal on D .

For all functions in a given (D,g) algebra, the g-conformality gives the angle
between the images of intersecting arcs depending on the tangents to the arcs
themselves and the point at which they intersect. Tn the algebra of analytic
functions (D,r) the relation is not only also independent of the intersection point
but, reducing to angle preservation, is the same for all pairs of arcs (YI’YZ) with
the same anele between them. The similarity to the analytic case is less obvious in
the case of the effect of the g-analytic function on arc length. Where ds and dS

are elements of arc in the 2z and f(z) planes, respectively,
as? = |fé|2(dr2+ g2a8?) . (3.%)

The modulus of the generalized derivative retains position as a magnification factor,
although not in the Fuclidean metric.
4, PROPERTIES OF THE FUNCTION THEORY

Tn addition to some theory of the generalized derivative (2.3) and integral
(2.5) , we give a generalized harmonicity relation which is satisfied bv both re f
and im f for f in a (D,g) algebra. Tt is helpful to first construct two
examples which are the most general functions in a (D,g) algebra under certain
conditions.

From now on, we assume a domain D is a simply connected.

EXAMPLE 1. If at z € D
£(z) = Xr) exp(ilcf +c,)) (4.1)

where €y » ¢y are real constants, S # 0 , and nonconstant real valued Mr) e

c?(p) , then f is g-analytic at z and g =c;A/\'. On the other hand, when f,
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is a g-analytic function of form (4.1) then
f](r) = exn(cler/g + i(c19+ c?)) . (4.2)

EXAMPLE 2. Tf f2 € (D,g) and (re f?)e = 0, then there exist real constants

€y €y and a branch of areg z =6 such that
fz(z) = cIJdr/z + i(c]9+c?) H (4.23)

when h e (D,g) and (re h) =0 cthen h= if,, where f, is as (4.%) . The
statement follows <ince (im ’7‘9 is independent of r and (re f7)r is
independent of 06 , so that there exists real ) such that (im f?)e =
elre f?\r =<

We consider two relationships between the example functions of (4.2) and
(4.3) . Clearly fl = ho f7 where h is the exponential function. Ry Lemma lg on
composition of functions f, is g-analvtic if and only if fy is e-analvtic. Also,
the g-derivative of f?. is given by (f2);z= (cl/g)e_ie which is a function of the
form of (4.1) and hence is gy-analvtic for g, = p/e' . Now, in gereral, if we
recquire the function of form (4.1) to be in (n,gl) we note that f;=
A oxp(i((c]—l)eﬂ‘?\) and g, = c])\/)\' . Tt follows by mathematical induction that
the Fth derivative exists under appropriate conditions. (See Theurem 3b.)

Theorems 2 and 3 discuss the existence of higher order derivatives.

THEORFM 2. Let f € (D,A) and ze D, then f' is g-analvtic at z for real
positive function e =8 only if at Jeast one of the following conditions holds:

a) There is a real number k such that A(r) = r+k : for this case & = r+k .

h)  There exists real valued differentiable h(8) such that (im f)r =
h(8)(re f)r

¢) Fither (re f)e or (re f)  is zero.

PROCF. Let f = utiv ; then re f = cosBu +siBv_; im f>" = cosﬁvr—sireur .

Requiring that (2.4) hold for some real A(r) gives the matrix eauation

cos B sin@ u u A'-1
r rr
- 0 . (4.4)
sin®  -cosh v Ve A -6
If the third matrix is the zero matrix then we have a) . When u, or v, is zero,
we have ¢) . (See Fxample 2, (4.3),) Otherwise, the requirement that UV TV U S

0 implies the relation of b) .
THEOREM 3,

a) Tf f e (D,g) for g(r) =r+k , then f e (D,g) . If f e ¢ , all

r+k
orders of higher derivatives exist in (D,r+k) and are defined by

- o-ing A7f
r+k 3rn
b) If f € (D,g!) is of the form f = )\exp(i(cle+c7) where g, =

c'A/A'

f

, ther the nth derivative exists for

. . )
min{c, , max{d € integers |)\(d'

I)(d)

exists}} , < >0

max {d € integers exists} , ¢ <N
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To particular, where g = (cy-n+1)) (n-])/)\(n) , then

n
({fél);zz‘“)' = )\(n) exD(i((cl—n)e+c2))

*n
(When < <0 and X € C* all orders of higher derivatives exist.)

c) Tf nonconstant f € (D,A) with (re f)e =0 or (re f)r =0 then the
first derivative exists and reduces to case b) . (See the discussion following
Example 2.)

PROOF, a) and b) can be proved using mathematical induction.

If € is in an algebra (D,p) , then both re f and im f satisfy the sam.
second order partial differential equation which is the Laplace ecuation for analvtic
f . Tn a simply connected domain construction of conjugate e-analvtic functions
follows.,

THFORFM 4, T1f f e (D,e) , re f and im f ecach satisfy

ad .+ 2'¢r + (lle)cbee =0, (4.)

PEFTNTTION 5. Real valued ¢(r,0) ¢ €7 satisfving (4.5) is called
e-harmonic. Real functions u(r,8) and v(r,8) which satisfy (2.4) are
called ﬁ-cuniuaqtus.

THFOREM S. Tf ¢ is g-harmonic in N | then ¢ has at least one e-
conijugate.

PRNOF. Without loss of generality, let u satisfv (&4.5) and consider

r

v(ir,0) = f -ue(r,eo)drlg + Ieg u (r,9)de

T, 8)

where z is a fixed point z, = roexp(ieo) . It is immediate that ve(r,e) =

gur(r,e\ and we also compute

V[_(r,e) = -ue(r,BOVE + Ie (Aurr(r,e) + X'ur(r,e))de
%
which after substitution of (4.5) reduces to v, = —ue/g , satisfying (2.4) for
f = u+iv .

Examination of Definition 3 of the g-integral as an Riemann path integral
involving the function g shows that the usual operational properties regarding
multiples and path components continue to hold. We derive a few useful properties of
the generalized line integral; in particular these are analogues of Cauchy's Theorem
and path independence, Morera's Theorem, and some convergence theorems of the
Weierstrass type. Domains are simply connected.

THEOREM 6. 1f f ¢ (D,g) and <y is a simple closed curve homologous to 0 in
D then gjf =0.

PROOF. Using the polar form of Green's Theorem, re g[f and im ng each
reduce to zero after substitution of the generalized Cauchy Riemann conditions (2.4) .

The stronger form of Cauchy's Theorem, allowing exceptional points in the domain,
is developed in [16], p. 62-66. g b

COROLLARY 1. When f € (D,g) , then ff is independent of the path joining
a and b in D . a

PROOF. 1If two paths form a to b in D do not cross or cross a finite number
of times, the result follows by Theorem 6 and the definitions and operational
properties of the path integrals. 1If the paths cross infinitely often a limiting

process is available. (See [13}, p. 315).
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THEOREM 7. Let f € (D,g) and z, be fixed in D , and define

gz
F = f ; thenm F e (D,g) and further
Zo r
. ((exp[dr/g)/g) £ . (4.6)
1

PROOF. Since the generalized integral is path independent we apply properties
of line integrals in the plane to compute the partial derivatives of the real and the
imaginary parts of the integral function F . System (2.4) 1is satisfied, so the

derivative Ffunction is given by (2.3) as
. g z
Fé = e i8¢ f £) . which is equivalent to (4.6)
z
o

We thus demonstrate for the generalized case the differentiability of the
integral. The analytic case g(r) =r 1is seen by (4.6) as necessary (as well as
sufficient) that F; = f.

THEOREM 8. Let f e C! in D and g satisfy Definition 1. 1f

%{f =0 for every simple closed curve Yy 1in D, then f 1is g-analytic in D .

PROOF. 1In (2.5) both the real and imaginary parts of the generalized integral
are represented by real line integrals I (P dr + Q d8) where P and
Q are both in c! . Since by the hypotzesis we have independence of path for
these integrals, Pg = Q, , or:

(l/g)(uecose - vesine) = -v cosf - ursine ,

(l/g)(vecosa + uesine) = u cos§ - v _sing

Alpebraic manipulations of this system show (2.4) for f = u+iv .

Before showing some Weirstrass-type convergence results, we need a bounding
relation on the generalize integral which depends on inequalities for real line
integrals.

LEMMA 2. When Y 1is rectifiable
| gf f] < K ML .7

r Y
where K_ =4 max((expj’dr/z)(l*max]l/g|)) s M =max|f| , L = length of vy .
£ zey 1 zey zZey

THEOREM 9. If fn is continuous on regular arc Y for each o , and

the sequence {fn} converges uniformly to f on Yy then

lim 8fe = B[f .
n—>®
°

Yy

PROOF. Since f is continuous there is an N such that for n > N

8 g
| an - Ifl - [g[(fn-f)l <e'RL < e
Y Y

by Lemma 2. Y

THEOREM 10. If for all o , fn € c? is g-analytic on open set A and {fn}
converges uniformly to f on compact subsets of A , then f 1is g-analytic on A .

PROOF. For 2z € A there is a disk containing 2z with its closure in A. Ve
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show f € (D,g) on such disks, hence f 1is g-analytic for z € A . LetY be any
simple closed curve in a disk contained in A . Then gffn =0 for each n by
Theorem 6. By Theorem 9, E(f = 0 hence Theorem 8 gives g-analyticity in the disk.
COROLLARY 2. If to the hypothesis of Theorem 10 is added, for fn =u, + ivn
that {un} converges uniformly to u and {vn} converges uniformly to v where

= : [ '
f = u+iv , then fg r}-}&p(fn)g‘

PROOF. We now have lim(u )_  and lim(v ) = v_ hence there is an N such
n»> 0T n->o ND'r r
that for o > N
= -1 . .
[CEDs = £l = leT 0 +idv ) ) = (uriv )] <e .

A version of the argument principle and of Cauchy's Integral Formula are
available from the theory of Beltrami's equation. For completeness we show the
latter for g-analytic functions.

THEOREM 11. If f ¢ (D,g) and Y 1is a simple closed curve homologous to O

in D, and z, is in the interior of Y , then

(g-r) el fé(z)drde

= 1
£z) = 537 | 7 - z, = 2m z - z,

f(z)dz | 1 [

Y nty
See [5], p. 24-25 and p. 91 for discussion of more general cases.

5. APPLICATIONS
One interesting example of a g-analytic function with domain ¢-{(0,0)} and
locally quasiconformal with continuous extension at the isolated boundary point

(0,0) , and K-quasiconformal on bounded sets, maps the finite plane onto a fixed open

disc.
EXAMPLE 3. For fixed p , real and such that 0 < p < = , define
(ZOeletan-lt)/ﬂ , 2% 0,
f(z) =
0 , z2=0.

The function satisfies (2.2) for g = (l+r2)tan‘lr and maps the finite plane onto

the open disc [f(z)] < p .
Concentric annuli may be g-conformally mapped whatever the proportions of their
radii.
EXAMPLE 4. For annuli: A= 0 < T < |z| < ry o ,
A2=0<R1<|z| <Ry <,
let
= oif - )= - -
£(z) = e (Ry(r-1 )-R(r-ry))/(r,-r)) .
Then f=A1 -=> A, homeomorphically and f is g-analytic for
g =1+ ((Rry-Ryr)/(Ry)-R)) .
The convergence properties of the g-integral allow a comparison to the general
quasiconformal situation. When the generalized functions satisfying the Beltrami

equation (2.2) are quasiconformal in a domain (see Section 3), they are of the type

called regular quasiconformal. Although the uniform convergence of a sequence of K-
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quasiconformal mappings to a homeomorphism implies that the limit mapping is also K-

quasiconformal, in the case of a sequence of regular K-quasiconformal mappings the

limit mapping need not be regular. (See [8], p. 17-19.) For g-analytic regular K-

quasiconformal functions, the limit mapping is g-analytic.

10.

11.

12.

13.

14.

15.
16.

17.

18.

COROLLARY 3. A Beltrami algebra (D,g) 1is uniformly closed.
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