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ABSTRACT. Let X and Y be Banach spaces and let F and be Gateaux

differentiable mappings from X to Y In this note we study when the operator

F + is surjective for sufficiently small perturbations of a surjective

operator F The methods extend previous results in the area of normal solva-

bility for nonlinear operators.
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Let F be a nonlinear mapping from a Banach space X to a Banach space Y

We call F Gateaux differentiable if for each x X there is an operator F’ (x),

not necessarily linear, mapping X to Y for which

lim
F(x+th) =(x) F’(x)(h)

tt-O

for all h X This operator F is nory solvable if the injectivity of the

set of adjoint operators F’(x)* implies surjectivity of F

In this light, the theory of normally solvable operators has been investigated

by, among others, S.I. Phohzhayev [i], F.E. Browder [2], [3], [4] and [5], W.A.

Kirk and J. Caristi [6], D. Downing and W.A. Kirk [7], M. Altman [8], W.J. Cramer

and W.O. Ray [9] and J. Kolomy [i0]. Throughout these works the injectivity of

each of the operators =(x)* has been implicit assumption. If it is assumed also

that each F’ (x)* has a bounded inverse, then similar surjectivity results are

obtained by weakening an assumption on the closure (or weak enclosure) of F(X)

When F’ (x)* has a bounded inverse, Newton’s method can be employed to solve the

equation F(x) 0 if the bounded inverse assumption is removed, J. Moser [ii]

showed that Newton’s method can be modified to still yield a solution of F(x) O.

(See also W.O. Ray [12]).

In this note we avoid the explicit use of adjoint operators; instead we con-

sider a uniformly surjective Gateaux differentiable operator F which we perturb

by a "small" Gateaux differentiable operator Under the assumptions we make

on 6’ (x) we demonstrate, via a transfinite Newton’s method, the surjectivity of

the operator F + Hence Newton’s method is sufficiently regular that small
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perturbations of a differentiable operator do not hinder the convergence of the

iterates.

As the primary tool in deriving our main result, we make use of an extension

of Caristi’s Theorem formulated in [13]:

THEOREM i. Let (M,d) be a complete metric space and let M[O,(R)) be

a lower semicontinuous function. Let c [0, (R)) (0,) be a continuous non-

increasing function for which fc(u)du and let x
0

M be fixed. If g

is a mapping of M into itself which satisfies

c(d(x,Xo))d(x,g(x))
_
(x) (g(x)) (x E M) ()

then g has a fixed point in M

Our main result is the following theorem, the proof of which is similar to

those found in the earlier paper [13].

THEOREM 2. Let X and Y be Banach spaces and let F and be Gateaux

differentiable mappings from X to Y Let c [0,(R)) (0,) be a continuous

non-increasing function for which fc(u)du Suppose for each x X that

’(x) is a bounded linear operator from X to Y (i)

and

F’(x)(B(O;I)) B(O;c([[x[[)) (2)

Suppose, in addition, for some E (0,i) and each x X that

(II[I)-II (x)l[ . .
If the mapping P m F + has closed graph, then P is an open mapping from X

onto Y

(Note that if F’(x) is linear, invertible and if IIF’(x)-lll c(llxll)
then (2) is automatically fulfilled.) As a simple consequence it is enough to

assume that F and each have closed graph.

THEOREM 3. Let F and be given as in Theorem 2. Define the Gateaux

differentiable operator P XY by P F + If F and have closed

graph, then so does P in particular, P is an open mapping from X onto Y

The proof that P is open in Theorems 2 and 3 follows readily from a direct

application of Theorem 2.1 of [9]. Instrumental in verifying both the surjectivity

and openness conclusions above are a pair of "contractor inequalities" (cf. [8]).

These inequalities are given by:

LEMMA. Let F and be given as in Theorem 2. Let XY be defined

by P F + Then there is a q (,I) such that for each y Y there is

a t (0,i] and an E X such that

[[P Px t(y-Px)[[ qt[ly Pxl[ (4)
and

[IX x[[) c(l[xll)-itlly pxll (5)

Similar inequalities can be deduced from injectivity hypotheses on
(see the survey [14] for a discussion). It is noteworthy that the uniform surJec-
tivity hypothesis (2) is somewhat weaker than the corresponding assumptions on the
adjoint P’(x)*
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When specialized to the case that the function c(u) is a constant, the

above extends a result of I. Rosenholtz and W.O. Ray [15].

THEOREM 4. Let X and Y be Banach spaces and let F and e be Gateaux

differentiable mappings from X to Y Suppose for each x E X that

e’(x) is a bounded and linear operator from X to Y (6)

and

F’(x)(B(O;l)) B(O;5) for some 5 > 0 (7)

Suppose, in addition, for some E (0,i) that

6-111G ’(x) (8)

If the operator P F + e has closed graph, then P is an open surjection. In

particular, if F and e each have closed graph, then P is an open surjection.

We now present the proofs of the above theorems; we first verify the Lemma and

then use it to prove our main results.

PROOF OF LEMMA. Fix y Y and q (,i) If y P(x) for some x

then choose x and the conclusions follow for any t

So without loss of generality we may assume y P(X) For each x X

c(llxll)llY- PxlI-I(y-Px) 6 B(O;c(llxll)) By (2) there exists a w E B(O;l) so that

F’(x)(w) c(llxll)llY Pxll-l(y-Px) Set h c(llxll)-llly Pxllw Then the homo-

geneity of F’(x) implies that F’(x)(h) y Px with llhll c(llxll)-lllY Pxll
By hypothesis both F and e are Gateaux differentiable, so we can choose

t 6 (0,i] so small that

llF(x+th) F(x) tF’ (x) (h)II
(q-)tIly Pxll (9)

and

]Je(x+th) e(x) te’ (x)
<i(q-)tllY P(x)ll

Setting x+th and combining (9) and (i0) yields, via the triangle and (3),

(10)

that

+tllF’ (x) (h) (y-Px)ll + tile’ (x) (h)ll

i-< 1/2(q-)tlly Pxll + (q-)tllY Pxll
+ 0 + tile’ (x) ll-llhll

-< (q-)tllY Pxll + t’c(llxll)c(llxll)-lllY xll
qtll xl1

giving (4).

To derive (5) observe that II xll tllhll c(llxll)-itllY Pxll We now prove

Theorem 2.

PROOF. We begin by demonstrating the surjectivity of P f + 6

Define a metric p on X by p(x,y) max{(l+q)llx yll c(o)-lllPx PylI}.

Since P has closed graph, (x,p) is a complete metric space.

Fix y Y and q (,i) Set @(x) (l+q)(l-q)-lily- Pxll Then

is continuous from (X,p) to [0,) since P has closed graph.
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We proceed by contradiction, so suppose y P(x) Then by the Lemma, de-

fining g X-X by g(x) it follows that

llP(g(x)) Px t(y-Px)ll - qtlly Pxll (ii)
and

c(llxll)Ilg(x) xll -< tllY PxII (12)
Note that since y # Px it follows that g(x) # x for each x X Applying
the triangle inequality to (ii) gives

llP(g(x)) Pxll -< (l+q)tlly Pxll (13)

A second application of the triangle inequality gives

IIP(g(x)) y (l-t)IPx yll -< qtlly xll
or

tllY Pxll -< (l-q)-l(IIx Yll llP(g(x)) Yl]) (14)

Now, (13) and (14) together imply

llP(g(x)) Pxll -< (l+q) (l-q) -I (llPx yll llP(g(x))
(x) (g(x)) (15)

Also (12) and (14) imply

(l+q)c (llxll) llg (x)
(l+q) (l-q) -I x (llx- Yll- ]l(g(x))
(x) (g(x)) (16)

Now let x
0

0 be fixed in X Consider first if p(x,O) (l+q)llxll
Then llxll -< (l+q)llxll implies that c((l+q)llxll) _< c(llxll) since c is nonincreasing.

Likewise, if p(x,0) c(0)-lllpx P(0)I (and thus (l+q)llxll _< c(0)-lllpx P(0)II)
then llxll _< c(0)-lllpx P(0)I so c(c(0)-lllpx P(0)II) -< c(llxll) Hence in

either case, c(p(x,0)) _< c(llxll
Now, if p(x,g(x))= (l+q)llx- g(x)II then (16) implies

c(p(x,0))p(x,g(x)) _< c(llxll)(l+q)llx
_< (x) (g(x))

so (*) holds, while if p(x,g(x)) c(0)-iIIpx- P(g(x))ll then (15) implies

c(p(x,0))p(x,g(x)) _< c(llxll)c(0)-lllpx
-< Ii’x (g (x))II
_< (x) (g(x))

so again (*) holds.

Thus Theorem I implies g has a fixed point, a contradiction. Hence

y P(X) and P is surjective.

Now, to show P is open as well, fix w X and let 6 > 0 It suffices

to show that B(Pw;) c_ (B(w;6)) for a sufficiently small choice of

So let y B(Pw;) then fly- Pwll <- Define a mapping B(w;6) Y

by (x) y- Px We will show 0 (B(w;6)) thereby completing the proof of

Theorem 2. We accomplish this by applying Theorem 2.1 of [9].

By hypothesis, for q (,i) fixed, there is a t (0,I] and an X

for which (4) and (5) hold. Hence (4) implies
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[[P- (l-t)xll fly- P-

-< qtllY

qllII

while (5) implies

I1 xll -< c(llxll)
=(llxll)

-ltlly
-tllxll (17)

Now observe that x B(w;6) implies II wll -< 6. so llxll IIII -< llx wll
yields that llxll-< 6 + ]lwll Applying the function c gives that c(6+llwl[) -<
c(llxl[) So (17) becomes

I1 xll -< c(/llwll)-tllxll (IS)

In order to apply Theorem 2.1 of [9] we must verify that

(l-q) -I Fa s-iB(s)ds _< (19)

for appropriate choices of a,B [0,)-[0,) and a If we choose a 6

M c(6+]lw]]) -I B(s) s and a c(6+llwll)-lllwllel-q and if

0 < e < 6(l-q)c(6+llwll)eq-I then (19) follows:

(l-q)-if0a s-iB(s)ds (l-q)-ifoa ds

-1(l-q) a

(l_q)-lc(6+llwll)-lllxlle l-q

_< (l-q)-lc(6+llwll) -1 e
l-q

_< (l-q)-ic (6+l]w]])-16 (l-q) c (6+]]wl]) eq-lel-q

=6

Hence Theorem 2.1 applies to give the existence of an x
0 B(w;6) for which

Px
0

0 Thus y Px
0

and y 6 P(b(x;6)) as required.

Theorem 3 is an easy consequence of the Mean Value Theorem.

PROOF. Let {xn} be a sequence in X for which Xn-X, and PXn -y i.e.

y lim Fx + x Since {Xn} is Cauchy, for every > 0 there exists an
n n

n-
N > 0 so that m,n >_ N implies [Ix

n Xmll E -ic(0) -I Applying the Mean

Value Theorem of Mcleod [16"1 to yields that

(Xn) (Xm) E -{’(tx
n + (l-t)Xm)(Xn xm) 0 < t < i}

from which it follows, via (3), that

llxn xmll -< llxn xmllsup{ll’ (tXn + (l-t)xmll 0 < t < I}

-< llxn- xmllsup{c(lltXn + (1-t)xmll) 0 < t < i)

_< IIxn xmll.c(O)
< E

if m,n >_ N

Hence {x is Cauchy in Y so the completeness of Y implies {Xn}n
converges. By assumption has closed graph and so lim x x

n
n-
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Since Fx + x y it follows that Fx y x But F has closedn n n
graph, so Fx, y x, Therefore y Fx, + x Px giving P closed

graph, as desired.

By Theorem 2, P is an open surjection.

We conclude by remarking that most of our conclusions are fairly direct con-

sequences of earlier results which have used inequalities (4) and (5) as their main

assumptions. Thus, for example, surjectivity in Theorem 2 is a special case of

Theorem 3.2 in [13], while openness was inferred directly from Theorem 2.1 of [9].

Our main goal here has been to expose a further class of operators to which these

more general results apply. The inequalities (4) and (5) have come to play a

central role in the theory of normal solvability, and the above results show that
these inequalities and the mapping properties they imply are stable under small

perturbations.
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