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ABSTRACT. Using some previous results of the author and Kirk-SchDne-

berg, theorems for the existence and uniqueness of an absolutely con-

tinuous solution of a singular boundary value .problem for neutral

equations have been proved.
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1. INTRODUCTION.

The aim of the present paper is to obtain conditions for the exis-

tence and uniqueness of an absolutely continuous solution of a singular

boundary value problem for neutral equations, using the results due to

Angelov [1] and Kirk-Schneberg [2].

Let us state the singular boundary value problem: we look for an

absolutely continuous solution y(t) of the initial value problem

y’Ct) X(,t, [YCai(t)) ]m (t))] ni=I’
[y i i=i ), t > 0

y(t) i(t,), y’(t) t < 0t (1.1)
which satisfies the condition lira y(t) y., where y.. is given, ttere

the unknown function y(t) and the parameter take values in some
Banach space B with a norm I!., and

[y(a i (t)) ]m
i=l (y(a (t)) ,... ,y(are(t)))

[y’ (Tl(t)) n
1=1 (Y’(I (t)),...,y’(Tn(t))).

We shall use the standard denotations:

R (--,) R+ =[0,); R_ ,0].
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Let us set x(t) y’(t)for t > 0 and (t,u)
Then we have

..t,v) for t < O.t

ai(t)
x(t) X(,t,[(O,) + Y x(s)ds] m [x( (t))]ni=I’ 1 i=I ), t > 0

o
(1.2)

x(t) (t,u), t < O.

The integrals are in a Bochner’s sense. (Hille-Phillips [3]).
The method used by Angelov [1] is not immediately applicable to

the singular boundary value problem for an equation(1.1). In order to

illustrate this fact we shall consider the following particular case:

y’ (t) A(t)u + X(u,t,[y(a i(t))]mi=l [y, (T 1(t)) ]n1=1) (1.3)

which occurs in the applications. Here A(t) is a family of linear con-

tinuous operators. We must seek a solution of (1.3)in the space L I(R 1,B)
which implies IIA(t)lleL (R:). But then the supposition for the existence

-1of A (t) (Seidov [4]). is not natursl because one of the conditions

for the existence of an inverse operator is IIA(t)ull m I11 (Kantoro-
vich-Akilov [5], p. 209).

That is why we shall apply some recent results of Kirk-Sch/Jneberg
[2] for the operator equation in u.

Let us formulate some auxiliary propositions due to Angelov [i].

If Bi(i 1,2) are Banach spaces with norms ll.]]i, then"

PROPOSITON [I]. Let the following conditions hold"

1. The nonlinear continuous operators Ni’BixB B i satisfy the inequali-
ties
((l+y-a)x + Ni(x,)) ((l+Ya)Y+Ni(Y,’)ll. IIx-yll i (i-- 1,2) for

every x,yeB i,
X > 0, B, for some > 0, a > 0.

2. RESULTS.
The linear map j:B B

2
satisfies the condition j(Nl(x,))

N 2(ix,u) for every xB and B.
Then for maps x(u)’B B and y():B / B2 connected by the condi-

tion ix(u) N2(Y(),) + y(u) there exists a unique map z()’B B

for which N1(z(u),) + z() x(u) and jz(u) y(u).

PROPOSITION 2 [i]. Let the conditions of Proposition 1 hold, let

the x():B B1, y(u):B B 2 be continuous and let IIN i(x,v)-N i(y,)lli
MIIx-Ylli (i 1,2), where > > 0.

Then the map z()’B B1, satisfying the equation Nl(z(v),u)+z(u)--
x(v) is continuous.

PROPOSITION 3 [1]. Let the conditions of Proposition 1 hold and

let z i(), (i 1,2) satisfy the equalities N l(z i(),) + zi() xi(),
jzi(u) yi(u) N2(Yi(u),u + yyi(u) Jxi(u). Then IlZl(U) z2(u)ll
a 2
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We shall formulate the results of Kirk-SchDneberg [2] in order to

apply them to our problem.
Let X and Y be complete metric spaces. Recall that: 1) Y is said

to be metrically convex (Mengev [6]) if for all, u,veY with u v there
exists wY, w u, w v, such that o(u,v) o(u,w) + o(w,v); 2) a map-
ping T’X Y is said to be closed if un ueX and T(Un) zeY imply
T(o) z.

LEMMA [2] Let T:X Y be a closed mapping Fix yeY.Let U be an
open subset of X for which T(U) is open in Y, and suppose

0(Tu,Tv) O(u,v)

for all u,veclU. Suppose also that there exists u eU such thato

o(TUo, y) < p(Tu’y) + o(Tuo,Tu)

for all ueU.

Then there exists ueU such that Tu y.
If T is a mapping of X into Y and D is an open subset of X, then T

is said to be locally expansive on D if for all UoeD there is a neigh-
bourhood N of uo contained in D such that o(Tu,Tv) > o(u,v) for all

u,veN.
PROPOSITION 4 [2]. Let DCX be open, and suppose T:X Y is a clo-

sed mapping which is locally expansive on D. Suppose also that T maps
open subsets of D on to open subsets of Y, and there exists xoeD such
that 0(Txo,Y) < 0(Tx,y) for all xeX\D. Then yeT(D).

COROLLARY [2]. Let T:X / Y be a closed mapping, which maps open
subsets of X onto open subsets of Y. Suppose also that T is locally
expansive on all of X. Then T(X) Y.

THEOREM i. Let the following conditions hold:
i. the functions Ai(t) TI(t):R+ / R are measurable, Tl(t) have the

property (S) (Angelov, [I]) and $f(l(t))dt < k$ f(t)}dt for some

k const > 0 and every feLI(RI;B).
Bm+n2. the function X(,t,u1,...,um,v 1,...,vn):BxR+x / B satisfies the

Caratheodory condition and

n
vn) : IIVlll]IIX(u,t,u ,Um,Vl,..., < [a(v,t,llUlll ’llUmll) + o 1-1

nlIX(,t,Ul,...,Um,Vl,...,vn) X(,t,51,...,Um,1,... <

n
m_[B(u,t,llu - IlUm-mll) + Z 8111Vl- II]’’’’’ 11--I
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for some constants > m > O, ao, 81 > O; a,B’Bx +I/R+ are comparison

functions (Angelov [i])1 a(u,.,u1,...,Um) S(u,.,u1,...,um)eL1(R+)
and

n
$ B(u,t,v,...,v)dt + kv z I v, vR+.
o

Besides, X(u,t,...) is uniformly continuous in u with respect to the

other variables (Angelov [1]).
5. the initial function (.,u)LI(RltB)" for every ucB and

o
lira

o

[le(t,u) e(t,Uo)Idt O.

Then there exists a unique solution x(.,u)LI{R1;B) of the initial

value problem (2), which depends continuously on v. +.

Proof" Let B be the Banach space L (R ;B) with norm [If[[=$ [If(t)ldt

and B 2 be the Banach space LI(R.1;B) with norm [g[[2
Define the operators N i. BcB B i (i 1,2)

aiCt)
-vX(,t,[ (0,) + f f(s)ds] mi=I’

0

NI (f’ ) (t) [f(l(t))]n1=1 t > 0

0 t 0

$ g(t)lldt.

feb1, ueB and N2(g,v (t) O, t

The map j’B B2 is defined as in Theorem 1 (Angelov [1]).
Since N l(f,)(t is strongly measurable, then the inequalities

llN1(f,v)(t)ll < a(,t,llV(O,)ll + llflll,... V(O,)ll + llflll)
n
z ,f(, (t))+ a 1-I 1

show that feB implies N l(f,u)B for each uB.
We are going to show the Lipschitz continuity of the operator

fllN 1(f,u) (t) N (g,u) (t)lldt m[f(v,t,llf-gll ,...,llf_glll)dto o

n
+ Z 81 $11fCl(t)) gCt lCt))lldt]

i’I 0

.Z B I] < mf-gll’m[$8(P’t’llf’glll’ ’ll-gllldt + kllf’glll
1o I"
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Further on the proof is analogous to the one of Theorem l,’om

Angelov[ ].

THEOREM 2. Let the conditions of Theorem 1 hold and let x(i,u)(t),
(i 1,2) be solutions of the problem (2) with initial functions

i(t,u). Then

O

Y m 2

THEOREM 3. Let the conditions of Theorem 1 hold true. If, in addi-

tion, we suppose:
1. (0,.) is locally expansive, closed and maps open subsets of B onto

open subsets of B.
2. for every eB there is a neighbourhood U of u such that

IIX(u 1,t,...) X(v2,t,...)ll > (t)llu 1-u211
for vl’u2’U’ where (t)eL1 (R+), (t) > 0 and the mapping

Q(v) f X(,t,Ul,...,Vn)dt is closed and maps open subsets of B onto
open susets of B, provided the last integral exists.

Then there exists a value of the parameter o such that x(t,o) is
a solution of the problem (2) and the solution y(t,o) of (1) satisfies
the condition lira y(t,o) y.

Proof" Let B be the Banach space L (R ];B) and B 2 bethe Banach
space L (R1;B).

Oefine the operators Ni:BiB Bi (i ],2), T’BB1 B’

N (f,) (t)

-X(v,t, (0,v) +
ai(t)

$ f (s)ds] i:o

If (1 (t)) ini=i t > 0

0 ,t(0

where

i(t)
T(u,f) y (O,u f X(u,t,[ (0,) + $ f(s)ds] mo o

[f(l(t)) n
l__])dt, fB].

Proposition 1 implies an existence of a unique function x(t,v)
which satisfies (2) and depends continuously on v.
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On the other hand, it is easy to verify that the operator T(,f)
satisfies all conditions of Corollary. Indeed, T(u,f) is closed and

maps open subsets of B onto open subsets of B. Besides, for every
there is a neighbourhood U of u such that

IIT( 1,f) T(2,f)ll clll-u211 + $(t)dtll1-211
o

for all 1’2eU" Consequently, there is voe B such that T(o,f 0.

So we obtain

lim y(t,Uo) v(O,uo) + $ x(S,uo)ds
t/ o

(0,:o) + ; X(o,S,[(0, o) +
o o

x(o, .u d,- ]m

[x( l(s)) ]l=l)dS (0,o) + y- ’(0,o) y..

Theorem 3 is thus proved.
Finally we shall note that an analogous result can be formulated

for systems of the type"

mm]
(a s (t))] s

Yi (t) Xi(i’t’[Yl(a!k(t))]k=l’’’’’[Ys k

nnl ’(z (t))] s[Yl(lk (t)) ]k=l ’[Ys sk k=l )’ t>0

a i (t vi)
Yi (t) i(t’i)’ Yi(t) t t0

(i 1,2,...,s).
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