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ABSTRACT. Strong summability with respect to a triangular matrix has been defined

and applied to derived Fourier series yielding a result which extends some known

results under a general criterion.
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1. INTRODUCTION.
The triangular matrix A [an,k], n, k 0,1,... and an, k

regular if

lima =0
n/

n,k

n
lan,kl M, M is independent of n

k=O

and

0 for k > n is

n
lim }: ann+- k=O ,k 1

k
Denoting the sum I: u r by sk, Fekete [1], defined that the series I: u r is

r=l

strongly suable to the sum s, provided

n
Is-sl =o(n)

k=l

This type is now known as strong Cesro summability of order unity with index 1 or

[C,I] sumabil ity.

The series 11 u r is said to be strongly summable by Cesro means, with index q,

or summable [C,q], or summable H to the sum s ifq
n
S Isk sl q o(n)

k=l
A special point of interest in the method of summability H lies in the factqthat it is given neither by Toeplitz matrix nor by a sequence to function transforma-
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tion. The relationship between summability H and some regular methods of summa-q
tion given by A- matrices has been investigated by Kuttner, [2], who proved that if

A is any regular Toeplitz method of summability then for any q (0< q < 1) there is
a series which is not summable A but summable Hq

In the present paper e shall define strong summability of series I: u k with

the help of a matrix.

DEFINIIION. The series z u k is sid to be strongly summable by the regular
method A determined by the matrlx Jan,k] with index q(q > o) to the sum s if

n
}1 a n klSk sl q o(I), as n

k=o

For an,k n+--#-i-’ k <_ n, vie get (C,I) matrix.

2. MAIN RESULTS.

Let f(x) be a periodic function with period 2 and integrable (L) over
(-,). Let

f(x) 1/2 a / (a cos nx + b sin nx) (2 I)n n

be the Fourier series of f(x) and

% n(bn cos n x a n sin nx) (2.2)
1

be the first derived series of (2.1) ottained by term by term differentiation.
Write

g(u) f(x+u) f(x-u) 2uf’(x) (2.3)
where f’(x) is the derivative of f(x),

t
G(t) f ldg(u)l (2.4)

o
Here we shall take q 1,2. Since the cse q 1 is included in the strong
summability for q 2, we omit the same. Precisely we prove the following"

THEOREM. Let g(u), G(t) be defined as ir (2.3) and (2.4). If g(u) is a
continuous function of bounded variation over [0,] and for some B 1

G(t) o [t B(t)] as t o (2.5)
where B(t) is a positive function of t such that

B(t) o as t o (2.6)
it is monotonic in (n-l,a) (6 being small but fixed) and

1

xzB{t) dt 0(I) (2 7)t
n

then the derived series (2.2) is strongly summable to f’(x) by the matrix (C,1) with

index 2.

Note (2 7) is equivalent to 2(t)
t-- L(o,a).
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and

In order to prove the theorem we need the following lemma.
LEMMA. If G(t) o(t) as t o then for small but fixed 6

1 t2- 1n n
PROOF. Since

Therefore

Again

Idg(u)l du o(n)
b

’’U’I du o(n)u

Idg(u) du + duu -1 un

o(I) + S_ o() du, in view of (2.4)
In

o(log n)

fl IdgIt dt /_1 Idg(u)lu
n n

-I Idg(t)It2 dt S_
1

Idg(U)lu du

n n

6
t

n n

du o(lof# n) 2 o(n)

t

+ S GGu-du} dt

/-I Idg(t)l + o(I) + o(log n t)} dt
t2n

dg(t)o(I)
I t2 log nt}

n

ttGt- lgnt In-]-f1
0, + _, ,o n< < in

n6 n6

o(n) + o (S(Iiu2) du) + o [S(Ig ulu2) du]
1 I

o(n).

3. PROOF OF TIIE THEOREM.
The kth partial sum Ok(X) of the series (2.2) is given by [3],
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k(X)" f’ (x)=o Sinsin k21-+1/2)tt dg(t)

Further, simplifying certain steps as given by [3] and [4] we have

Therefore

1j_1 sin kt dg(t) + o(1)Ok(X) f’(x) T t
n

-E
n

n 2 1 f dg(t)
{Ok(X f’(x)} t

k=l -In

n (g(u)
I: sin kt sn ku
I u

+ o(n)

g()

_
"

+- I: {COS k (u-t) cos k(u+t)} dg(u} + o(n)u
n

/I dg(t)

_
_.in(n+l/2)(u-t) I dg(u)Sn- i (u-t)t

nl

dg(t)_ si-nln-+.1!2)(u-t) ul-dg(u) + o(n)t 2 sin "I (u+t)
n

On simplifying and using the first part of the lemma we obtain

n n_l )/1r. {ok(x)_ f,(x))2_ 1 dg(t sin n(u-t) dg(u)
k= 1

t

NOW, since

and

Therefore

1 Jl d(-d 1 sin n lu+l} dg(u) + o(nt (u+t) u
n

P1 + P2 + o(n), say.

fl sin n(u-t) dg(u)

_
dgu)

_
sin n{u-t)dg(t)t u(u-t)- z t (u-t)

n n

t

P1 1 t -In

sin nlu-t dg(u) + 1 / dg(t)S sin nlu-t dg(u)u’(u-t -I t u{u-t
t

t
dg(t) 1 sin n(u-t)
-t u(u-t) dg(u)

n
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t

. -I t’ 1n n

sin n(u-1) dg(u)

6 t 6 t
1 n dt) n sin n-t)dg(u)+ o [ f dg(t)l

_
-- (u- t, -1 -1 -1n n

t

=--Z 2 (ut 1n n

by virtue of the second part of the emma.

Similarly it can be proved that P2 o(n). Thus we get

t
n 1 n .dg(t) nr sin n(u-t)
}: {k(X) f’(x)}2 =- t2 u(u-t)k=l -1 -1

Integration by parts gives

t t t

J_ dg(u)sin n l.u-tl I sin n lu-tl f dg(u)]-I
1 (u-t (u-’t) -1 nn n

Using (2.5) this is equal to

t

[{ .n coS,{u_tnlu-t), sin(u_t)2n(u-t) dg(u)] du

Therefore

k=l

o(n) [G(t) B(t)] -In

+ o(n) J-1

t

+ 0 [ f sin n(u t) B

-I
(u.t) {t (t)} du]

n

o [ n t LB(t) ]

{Ok(X) f’(x)} o[n

_
dg(t) B(g)] + o(n)

1 t
n

+ o(n)If-1 dg(t)B)dt]
n

G_ B B-l(t) ’(t)} dt]t

o(n) + o(n) f-1n

/ o(n) [
-1n

B ).B(t) }.B-l(t) X’(t) dt]

u

dg(u) + o(n)

t
[ sin n(u-t) B t

_
cos n(u-t_

(u--{-) o {t X (t)}] -I o [ {n tBx (t)} (u-t) du]
n 1
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1 d :X2B(o(n) + o(n) [ g [[ t) dt]
-1n

o(n) by the hypothesis (2.7).

Since B(t) is monotonic, hence its differential coefficient is of constant sign.

Thus we get

and therefore

n
]Ok(X f’(x)l 2 o(n)

k=l

n
7. an, k ]Ok(X f’(x)}2 o(r,)

k=l

This completes the proof of the theorem.

an,k

4. SPECIAL CASES.

By way of an application of our theorem, we take B 1, x(t) I/log (l/t) and

1 then the following result follows, [4]"

then

THEOREM (Sharma). At a point for which f’(x) exists and

1G(t) o[ t/log ] as t o

n
Z }Ok(X) f’(x){2 o(n loglog n)

k=l

Since the above theorem is an extension of the result from [C, I] summability to the

case of [C, 2] summability, (Prasad and Singh [3]), our theorem further extends that

result under a general type of criterion.
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