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ABSTRACT. Using equivalent formulations of Ekeland's theorem, we improve fixed point
theorems of Clarke, Sehgal, Sehgal-Smithson, and Kirk-Ray on directional contractions

by giving geometric estimations of fixed points.

KilY VIORDS AND PHRASES. l.s.c. function, (weak) directional contractionm, fixed point,
sialionary point, Haucdorff psuedom:tric.
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1. INTRODUCTION AND PRELIMINARIES

In [11, [2], Sehgal and Smithson proved fixed point theorems for set-valued weak
directional contractions which extend earlier results of Clarke [31, Kirk and Ray [41,
and Assad and Kirk [5]. In the present paper, results in [1], [2] are substantially
strengthened by giving geometric estimations of locations of fixed points.

The following cquivalent formulations [6] of the well-known central result of
Ekeland [71], [8] on the variational principle for approximate solutions of minimization
problems is used in the proofs of the main results.

THEOREM 1. Let (V, d) be a complete metric space, and ¢ : V> R U {4} a
l.s.c. function, [/ +o , bounded from below. Let € >0 and X > 0 be given, and a
point u e V such that

F(u) < ian F+e€.
Let S(A\) = {x eV ] F(x) € F(u) - ¢ A"d(u,x)}. Then the following equivalent condi-
tions hold:
(i) There exists a point v € S(\) satisfying
F(w) > F(v) - ex-ld(v, w) for ¥ w = v,
(ii) If T : S(\) ~» ZV is a set-valued map satisfying the condition
¥x e S(A) \ T(x) 3y €¢ V\ {x} such that
F(y) € F(x) - ex~ld(x, y),
then T has a fixed point v ¢ S()).
(iii) 1f f : S(\) - V satisfies
F(fx) £ F(x) - ex=ld(x, fx)

for all x € S(x), then f has a fixed point v e S(}).

In Theorem 1, 2V denotes the power set of V ., Note that
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S() C{x e V| F(x) £ F(u), d(u, x) < A} CB(u, 1)
and fS(A) C S()A), where B denotes the closed ball.

Throughout this paper, (V, d) denotes a metric space and B(V) denotes the
class of all nonempty bounded subsets of V with the Hausdorff pseudometric H defined
by

H(A, B) = max(supX d(x, B), sup d(y, A)}.

€A y € B
Also, C(V) denotes the class of all nonempty compact subsets of V . For an x e V
and A € C(V), we put
[x, Al ={y € A I d(x, y) = d(x, A)},

which is nonempty. For x , y €V , we denote

[x, yl = {z e V| d(x, 2z) + d(z, y) = d(x, )},
and

(x, yl = Ix, yl \ {x}, (x, y) = (x, y1 \ {y}.

Let S be a nonempty subset of V and T : S > C(V) be a set-valued map. For

x € S and A € C(V), the weak directional derivative DT(x, y) of T at x in the

direction of a y € [x, T(x)] is defined by

0, if x =y,
DT(x, y) = inf{ﬂé%§l~§§l Iz e (x, yl1 NS}, if (x, yJNS =4,
w, if (x, yI1 NS = 4.

Amap T : S » C(V) 1is called a weak directional contraction if there exists a
k € [0, 1) such that for each x € S, there exists a y € [x, T(x)] with DT(x, y)
<k [2].

Amap T : S - B(V) 1is called a directional contraction if there exists a
k € [0, 1) such that for each x € § and y € T(x),

H(T(z), T(x)) < kd(z, x)
for all z e [x, ylNns [7].
2. RESULTS.

THEOREM 2, Let S be a complete subset of V and T : S+ C(V) a weak direc-
tional contraction for which the function F(x) = d(x, T(x)), x € S, is l.s.c. Then
for any u € S and € > 0 satisfying F(u) € (1 - k)e, T has a fixed point in
s(e) C B(u, €) N S.

PROOF. Choose a point u ¢ S satisfying F(u) < inst + (1 - k)e. Suppose

x € S(e) \ T(x). Since T 1is a weak directional contraction, there exists a ye

[x, T(x)J, x =y, with DT(x, y) < k . Hence, there exists a z ¢ (x, yJ] NS such

that
H(T(x), T(z)) < k d(x, z).
Since
d(x, z) + d(z, T(x)) < d(x, y) = d(x, T(x)),
we have

d(z, T(z)) < d(z, T(x)) + H(T(x), T(z))
< d(x, T(x)) - d(x, z) + k d(x, 2z)
d(x, T(x)) = (1 - k)d(x, 2z).

A
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Hence, F(z) € F(x) - (1 - k)d(x, #). rlherefore, by Therem 1(iii), T has a fixed point
v £ S(e).

Theorem 2 is an improved version of Theorem (a) of [2] with much simpler proof.
In fact, for suitable values of ¢ and k , the conclusion gives geometric estimations
of locations of fixed points. However, for Theorem (b) of [2], such estimation seems
to be hard to get.

Note also that for Theorem 1 of Clarke [3), we can apply our Theorem 2.

The following improves Corollary of [2] and a result of Kirk and Ray [4].

COROLLARY 1. Let S be a closed convex subset of a Banach space X and T :
S » C(S) a map for which the function F(x) = d(x, T(x)), x €S , is l.s.c. Suppose
there exists a k e 10, 1) such that for each x € S there correspond a y = y(x)
elx, T(x)! and a & ¢ (0, 1) satisfying

H(T(x), T(x + §(y - x)) < ké||y - x||.

Then the conclusion of Theorem 1 follows.

PROOF. As in the proof in [2|, T 1is a weak directional contraction with the
conatant k .

THEOREM 3. Let S be a closed subset of a complete metric space V and T :
S > B(V) a directional contraction with the constant o . If T satisfies

(a) for each x €S, y e€T(x) \' S, there exists a z € (x, y) \ S with T(z) C S,
and

(b) g(x) = d(x, T(x)) 1is l.s.c.,
then, for any u ¢S, € >0 and B, a < B <1 satisfying g(u) < (1 - B)e , there
exists a fixed point v of T in S(e) N S.

LEMMA [4]. Under the hypothesis of Theorem 3, there exists a map A : S - B(X)
with the following properties

i) for each x €8S, A(x) # ¢ and A(x) C T(x)

ii) if y e A(x) , then d(x, y) < (1 - B +a)-ld(x, T(x)),

iii) if A(x) NS =¢ for some x €S, then there exists a y = y(x) € A(x) and

a z =2z(x, y)e (x,y) NS such that

d(x, y) < d(x, T(x)) + (B - a)d(x, z). (2.1)

PROOF OF THEOREM 3. Define amap f : S > S as follows: for x € S such that
A(x) NS = ¢ , let f(x) be any element of A(x) NS ; and for x € S such that
A(x) NS = ¢ , since there exist y = y(x) € A(x) and z = z(x, y) € (x, y) S
satisfying (2.1) by Lemma, let f(x) = z . We claim that for any xe€¢ S,

H(T(x) , T(f(x))) < a d(x, £(x)). (2.2)
This is clear if A(x) NS =¢ . If A(X)N S =z ¢ , since f(x) € T(x) and f(x)e
[x, f(x)1 NS, the definition of T implies (2.2). Set F(x) = (1 - B)'lg(x) . We
know that for any x€S and y = f(x) ,

F(y) < F(x) - d(x, y)

holds as in the proof of [1, Theorem 1]. Therefore, by Theorem 1 (iii), for any u ¢ S

and € > 0 satisfying F(u) < infs F + e, there exists a fixed point v of f in

S(e) NS . This implies that v e T(v) for otherwise f(v) * A(v) NS and hence by
the definition of f , A(v) NS =¢ . Thus, f(v) ¢ (v, y(v)) for some y(v) € A(v).

This contradicts v # f(v) . Consequently, v ¢ T(v). Since infq F=0, u can be
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chosen so that F(u) € ¢ , that is, d(u, T(u)) < (1 - B)e. This completes our proof,

Note that Theorem 3 is a strengthened form of [1, Theorem 1].

A metric space is said to be convex if for each ’x, ye X, x #y, there exists
a z € (x, y) . It is known that if S 1is a closed subset of a complete convex metric
space V and x €S and y ¢ S, then there exists a z e [x, y) N8S where § |is
the boundary.

Now, we obtain the following improved version of [1l, Corollary 1] as an immediate
consequence of Theorem 3.

COROLLARY 2. Let S be a closed subset of a complete convex metric space V .
Let T : S - B(V) be a directional contraction which the constant o such that
T(-S)Yc S . If ¢(x) =d(x, T(x)) is l.s.c. on S , then for any ue S, ¢ >0,
and B, u« < B < 1, satisfying g(u) £ (1 - B)e, there exists a fixed point v of T
in S(g) N S,

Also, the following improves [1, Corollary 2] and an earlier result of Assad-Kirk

COROLLARY 3. Let S be a closed subset of a complete convex metric space V .
Suppose T : S - B(X) 1is a contraction, that is, there exists an ae [0, 1) such

that for all x,y € S,
H(T(x), T(y)) < a d(x, y).

If T(8S)C S, then for any ueS, € >0, and R, a < B < 1 , satisfying
d(u, T(u)) < (1 - p)e , either u 1is a fixed point of T or there exists a fixed

point v of T in
S(e) N S \ B(u, s)

where s = d(u, T(u)) (i + a)-! .

PROOF. Since a contraction is a directional contraction and g(x) = d(x, T(x))
is continuous, by Corollary 2, T has a fixed point v e S(¢) NS . Suppose u is
not fixed under T . Then for any ye B(u, s) N S we have

d(u, T(u)) < d(u, y) + d(y, T(u))

< s + d(y, T(u)),

that is,

a(l + a)~ld(u, T(u)) < d(y, T(u)).

Hence,

d(y, T(u)) > as > ad(y, u).

Suppose y e T(y) . Then we have
H(T(y), T(u)) > ad(y, u),

a contradiction. This completes our proof.
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