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ABSTRAT. A function f, analytic in the unit disc A, is said to be in the

family R ((z) if Re{(znf(z))(n+|)/(zn-;f(z)) (n)} > (n+c,)/(n+l) for some

a(0 < I) and for all z in A, where n e No, No {0,I,2,. }. The

The class R (a) contains the starlike functions of order a for n 0

and the convex functions of order ( for n >_ I. We study a class of

integral operators defined on R (a). Finally an argument theorem is proved.

KEY WOROS ANO PHRASES: Univalent, convolution, starlike, convex

1980 AM5 SUBJECT CLASSIFICATION CODES" Primary 50C45, 50C99; Secondary 50C55.

INTRODUCTION.

Let A d,note the family of functions f which are analytic in the unit

disc {z" Iz < I} and normalised such that f(0) 0 f’(0) I. The

Hadamard product or convolution of two functions f,g A is denoted by f,g.

D
n

Let (z/(]-z)n+l)*f, n 6 No {0,1,2,...} which implies that

Dnf z(zn-]f)(n)/n! n e No

Denote by S*() and K(e) the subfamilies of A whose members are,

respectively, starlike of order and convex of order , 0 < |. Then

f S*(e) <----> Re(Df/Df) > a, z A,

K(C) <----> Re(Df/Df) > (l+()/2,z A

Ruscheweyh 116] introduced the classes {K of functions f e A which

satisfy the condition

Re(Dn+lf/Dnf) > @ z e A (1.1)

so that the definition of K is a natural extension of S*(|/2), and K(O)
n

He proved that K K for each n N Since K S*(|/2) the
n+ n o o

elements of K are univalent and starlike of order /2.
n

In this paper, we consider the classes of functions f A which
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satisfy the condition

Re(z(Dnf) ’/Dnf) > (, z A (1.2)

for some a(0 a < ;) We denote these classes by R (a) We have
n

R (a) S*(a) and R]() K(a) for 0 a < I. The classes R R (0)O n n

were considered earlier by Singh and Singh []71. It is readily seen that for

each n P 0 R (a) R (0) and for each n R (a) K We note that inn n n n

definition (].2), restriction 0 can be replaced by (I-n)/2 for

each n and, further, that the negative choices of permit us fully to

partition K into classes R (a) K (n I) such thatn n n

uR (a) K
n n

l-n
<<

2

It can be easily seen that R (a) R (a) for each n E N and forn+] n o

all . These inclusion relations establish that R (a) S*(a) for eachn

n e 0 and R (a) K(a) for each n I.n

An important problem in univalent functions is the following" Given

a compact family F and an operator J defined on F is J(f) E F for

every f F Libera []]] established that the operator

j(f) 2 fz f(t)dtg
O

preserves convexity, starlikeness, and close-to-convexity. Bernardi [5]

greatly generalised Libera’s results. Many authors [],2,7,8,]2,]5,]7]

studied operators of the form

j(f) ]+Y rztY-]f(t)dt (1.4)
zY Jo

where y is a real (or complex) constant and f belongs to some favoured

class of univalent functions from A Recently, operators (| 4) have been

studied in more general form by Causey and White [6], Miller, Mocanu and

Reade []4], Barnard and Kellogg [3], and Bajpai [2]

In this paper, we study a class of integral operators of the form

(].4) defined on our family R (a) We also obtain an argument theorem for
n

the class R ()
n

2. INTEGRAL OPERATORS.

Let be a complex number with Re-I We define h by
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h (z) . Y+!z z e AY j=IY+J

Let the operator J’A A be defined by F J(f), where

F( l+y /
z
f(t)tY-ldt

Y Jo

Then the function F can also we written in the form

F(z) f(z)*h (z)
Y

We need the following result of Jack [9] which is also due to

Suffridge [18]

(2.2)

LEMMA. Let w be nonconstant and analytic in Izl< r < 1,w(O) 0

zf Il aai aium ae on h ci Il a ehn
0

Z W’(Z kw(z where k is a real number and kO O O

We first give a condition on E A for which the function J(f)

belongs to R (()
n

THEOREM I. Let 0 <- C < I, and ]( # -I be a complex constant such

that Re]( e-(, Im]( >_ O, and I](I + 2((I + Re]() I. If for a given

n E No, E A satisfies the condition

Re
z(Dnf(z) )’ > e (l-)(Ot+Re]() (2.3)

Dnf( z
2 ]](I +2tRe(+(la +(l-0t)

for all z A, then F(z) given by (2.2) belongs to R (e).
n

PROOF From (2.2), we obtain

z(DnF(z))’+y DnF(z) (](+l)Dnf(z). (2.4)

Define in A by

z(DnF(z)) l+(2-l)w(z)
l+w(z)DnF z

(2.5)

Here w(z) is analytic in A with w(O) 0 and w(z) # -I, z e A

We need to show that lw(z)l < for all z e A. In view of (2.4),

(2.5) yields

Dnf(z) +]()+(2(- +y)w(z)
(I+]()(l+w(z))DnF z

(2.6)

Differentiating (2.6) logarithmically and simplifying, we obtain
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]-w(z) 2( l-()zw’ (z)z(Dnf(z))
e (|-e) 1+w(zDnf(z) 1+w(z))(1+y+(2a-1+y)w(z))

(2.7)

Now (2 7) should yield lw(z)l < for all z A for otherwise, there

exists a point z A at which ,,lW(Zo)l and by Lemma we have
O

z w’(z) kw(z k |. For this value of z z we find that (2 7) yields
O O O’

ReZo(Dnf(zo) )’

Dnf(zo
a 2k(1-a)(a+Rey) (2.8)

]( l+y)+(ma-l+)W(Zo)]

(l-a)(e+Rey)
2 I] +2aRe+a +(l-a) Imy}

which contradicts (2.3) Hence lw(z)] < for all z A and by (2.5),

it follows that F(z) e R ().
n

COROLLARY. If for a given n E No, E A satist:ies the condition

Ro
z(Dnf(z))’ 2a(7+0)-(l-e)) z A> 2(y+(X)

Dnf(z)

(2.9)

where (e,y) is any point in the set

D {(a,y) T+2a l, 0 a < 1, > -1}

then F(z) given by (2.2) belongs to Rn()
PROOF. If y # -! is a real constant such that + e 0 then

IYI2+2e(l+Rey) e implies (y+l)(y+2e-1) 0 The result follows

from Theorem
It is easy to show that if R (a), then satisfies the conditionn

(2 3). Thus it follows from Theorem that J(R (a)) R (a) More preciselyn n

we state the result in
THEOREM 2 If f R () then the functionn

j(f) y+l fz f(t) tY-ldt
z"(

o

is again an element of R (a) where y # -I is a complex constant with

restrictions as stated in Theorem I.

REMARK Letting n 0 and n y in Theorem 1, we

get L(S*(8)) S*((x) and L(K(B)) K((X) respectively, where L is the

Libera transform de fined in (|.3), and

B ((2(x2+3et-1)/2(l+et)) < a

These results improve the earlier results due to Libera [11] and Bernardi [5]

in the sense that their results hold under much weaker conditions
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In [2], Bajpai has established that J(S*) S*() for some . We

generalize thls result in

THEOREM 3. Let J’A A be defined as in (2 2), where y is a

complex constant If e R then J(f) e R (), where satisfies the
n’ n

inequality

ll+Yl+12-,+Yl -< 2(l-O)(+Rey) and 0 -< Ot <

PROOF Proceeding as in Theorem and applying Lemma, we have

Re z(Dnf(z)
Dnf(zo

2(1-()((+ Rey)
l+y)+(2a-l+y)w(zo)

2(1-() (c+Rey)
(I 1+xl+12_+yl)

where Roy . Since the right hand side is O, we have a contradiction

for c R R (0). Thus we must have lw<z)l < for all z in A and
n n

by (2 5) it follows that J(f) C R ()
n

REMARK If let n=O=y-I in the above theorem, then

U(S*) S*(]-3), where L(f) (2/z) fzf(t)dt Thuswe have recovered a
O

result of Miller, Mocanu and Reade ([14], pp 162-163).

REMARK 2 If n I, y is a real constant such that y+ O, and

e K, then it follows from Theorem 3 that the function F(z) in (2 2) is

an element of K(), where

-(2X+I) + /(2y-l)=+8(l+y)
(

4
This result was proved by Miller, Mocanu and Reade ([|4], pp 165)

Further, this is an improvement of an earlier result due to Bernardi [5],

who proved that E K implies F e K

For y n, where n e N we have an improvement over Theorem 2

THEOREM 4. Let

F(z) f(z) * h (z)
n+l z n-1

f(t)t dt
n n

o

If E R () then F E R ()
n n+l

PROC F. From (2. I0), we obtain

z(Dn+IF(z)) nDn+IF(z) (n+l)Dn+If(z)

(2.10)

(2.11)

and
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z(DnF(z)) + nDnF(z) (n+|)Dnf(z)

Using the identity

z(Dnf(z)) (n+])Dn+|f(z) nDnf(z)

in (2. ]]) and (2. 12), we obtain

(n+l)Dn+If(z) (n+2)Dn+2F(z) Dn+]F(z)

and

Dnf(z) Dn+]F(z)

In view of the identity (2 ]3) and the relations (2. 14) and (2 15),

E R (() yields
n

Re
(n+2)Dn+2F(z) (n+])Dn+]F(z)} > (

Dn+]F(z)

which implies that

Re z(Dn+IF(z))’} > ( z c A
Dn+ 1F z

This proves that F
n+]

(2.12)

(2.13)

(2.14)

(2.15)

REMARK For n O, Theorem 4 gives the well known result"
g

J(S*(()) K(C), where J(f) f (f(t)/t)dt
o

We now investigate the converse of Theorem 2. In fact, we find the

sharp radius of the disc in which f E R (8) when F defined in (2 2)
n

is in R (a) for 0 a < 0 < I" In [12] Libera and Livingstonn

have solved this converse problem for the case n O, y when

a 8 < ]. These authors were not able to obtain suitable results for the

complementary case when < a However, the method used in the next

theorem gives results that are more general and also covers both e a

and 8 < a.

THEOREM 5. If F is an element of R (a) for n e 0 and 0 a < I,

l+y zF(z) -- f(t)tY-Idt

with z A, Rey -> a, and 0 -< B < 1, then the function is an

element of R () for Izl < r where r is the smallest positive
n o 0

root in (0,]) of the equation

(y+2a-l)(2a-B-1)r2+2((y+a)(a-B)-(l-a)(2-a))r+(y+l)(l-B) 0

(2.16)

(2.17)

The result is sharp
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PROOF Since F R (a), we can write
n

z(DnF(z))’
DnF(z)

a (I-&)P (z),
n

(2.18)

where P (z) Is analytic in A and satisfies the conditions P (0)
n n

ReP (z) > 0 for z A Using the identityn

z(DnF(z)) (n+|)Dn+IF(z) nDnF(z) (2.19)

in (2.18) and then taking logarithmic derivative, we obtain

z(Dn+lF(z)) Dn+lF(z)ia+(1-ct)P (z)
|-Ot)zP’ (z)

n
n+a+(l-a)P (z) (2.20)

From (2 16) we obtain

z(Dn+lF(z)), + yDn+lF(z) (y+l)Dn+lf(z). (2.21)

From (2 20) and (2 21) we have

(y+l)Dn+If(z) Dn+lF(z) [a+y+(l-a)P (z) +
n

l-a)zp’ (z)
n

n+a+(l-0t)P (z)] (2.22)

Also (2. 18) together with the identity (2 4) yields

(l+y)Dnf(z) DnF(z)(a+y+(l-a)P (z)).
n (2.23)

Now from the relations (2 22), (2 23), and (2.18) we conclude that

1-Ct)zP’ (z)z(Dnf(z))’
8 a- 13 (l-a)P (z) +

n

Dnf(z) n Or+y+(1-Ot)Pn(Z) (2.24)

Using the well known estimates

ZP’n(Z)l -< (mr/(1-r 2))Rep (z)
n

and

ReP (z) -> (l-r)/(l+r) Izl r
n

in (2 24), we obtain

Re
z(Dnf(z))’

Dnf(z)
131 _> (a-3) +

(l-S)(( l-r)(y+ l+(y+2a-1 )r)-2r)
1-r)((Y+2a-1 )r+T+l) (2.25)

where Rey e -a Therefore,

Re
z(Dnf(z))

> 8
Dnf(z)

if the right side of (2.25) is positive, which is satisfied provided that

r < r where r is the smallest positive root in (0,|) of (2. 17).

o o

The result in the theorem is sharp with the function f defined by

|-c
z
c (2 26)

f(z) (1/(l+c))z F(z))
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where c Rey -a and F is given by

z (DnF(z)) 1-(2ot-1)z

DnF(z) |-z
(2.27)

REMARK. By specializing choices of a,B,y, and n theorem 5 gives

rise to the corresponding results obtained earlier in [3,4,8,|2,13,15]

and by many others

3 AN ARGUMENT THEOREM.

THEOREM 6 If E R (a), then
n

Dkf(zJ[ 2(l-a)sin- r + Z sin
2(1-a)r

[’arg _. k-1

z (m+ 1-(m+2a- )r
m=O

for each k(O k n+l).

PROOF We may write

Dkf(z) f_( z)-- Dm+l f(z)
z z m=0 Dmf(z)

which yields

0_< k< n+l

Dkf(z) f(z) k-I Dm+l f(z)
arg -< [arg l + F [arg (3.1)

z z
m=O Dmf(z)

Since R (a) R (a) Vn c N it follows that f c R (a) for eachn+ n o m

m(O m n) Setting

Dm+|f(z)

Dmf(z) qm(Z) (0 _< m _< n), (3.2)

we note that Re(qm(z)) >_ (m+cg)/(m+])

Therefore, the function

w(z)
m+O)(qm(z) m---" (I m----)
m+a m+Cx.(qm(Z) n--) + (I m---$-)

qm(Z)-

qm(Z (2(m+e_____) 1)
m+

is analytic with w(O) 0 and lw(z)l < in A Hence by Schwarz’s

Lemma,
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qm(Z)-
qm(Z)+ 1- 2(m+a)/(m+l) < II

for z in A Now it is easy to see that the values of qm(Z) are

containod in the circle of Appolonius whose centre is at the point

(m+l-(m+2(-l)r2)/((l+m)(|-r2)) and has radius 2(l-a)r/((m+l)(l-r2))

Thus maxlarg qm(Z)l is attained at the points where
zeA

2( l-a)r
arg qm(Z) +/- sin I(m+l_(m+2ct_l)r

which gives

D
m+l f(z) -1 2( 1-a)rlarg -< sin (. (3.3)
Dmf( z

m+ I- (m+2(- )r

for 0 m g n and z e A

Next note that R (a) S*(a) n O, and f S*(a) if and onlyn

[(f(z)/z)dz is in K(a) But for V K(a), we haveif F(z)

arg F’(z)l -< 2(l-()sin-lr (Izl r)

Thus f c R () implies
n

f(z)larg -q--I -< 2( l-a)sin Ir (3.4)

Applying (3 3) and (3.4) to (3.1) we obtain the result.

For n 0 we obtain

and

COROLLARY If f e S*(a), then (3.4)

larg f’ (z) 2( 1-a)sin
-1 2( 1-(l)r

r + sin l_(2a_l)r)

REMARK The case n O, a 0 way proved by Krzyz [I0].

The author is grateful to the referee for his suggestions which

greatly helped in presenting this paper in a compact form.
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