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ABSTRACT. For the function 12’ defined by (n)xn x

the author derives two simple formulas. The simpler of these two formulas is expressed

solely in terms of the well-known sum-of-divisors function.
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i. INTRODUCTION.

Following Ramanujan [4,p. 155] we define for each positive divisor of 24 an

arithmetical function as follows:

(n)xn x (l-x24n/), (I.I)

an identity which is valid for each complex number x such that Ixl < I. Of course, 24
the celebrated Ramanujan tau fuction. In this paper we are specifically concerned with

12(= for simplicity). As a matter of fact, we derive two explicit formulas for .
Since these formulas involve the sum-of-divisors function and the counting function for

sums of eight squares, we need the following definition.

Definition. (i) For each positive integer n, o(n) denotes the sum of all posi-

tive divisors of n. (ii) for each nonnegative integer n, rk(n denotes the cardinality

of the set

{(Xl,X2 Xk k In x + x +...+ x},
k an arbitrary positive integer.

We can now state our main result.

Theorem i. For each nonnegative integer m,
m

(2m+I) (-i) irs(i)o(2m-2i+l), (1.2)
i-0

(2m+2) 0. (1.3)

In section 2 we prove theorem i, and thereafter prove a corollary which gives a

formula expressing solely in terms of .
2. PROOF OF THEOREM i. Our proof requires the following three identities, each of which

is valid for ach complex number uc et Ixl < I.

H (i+xn)(1-x2n-I)
(2 I)
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(l-xn)(l x2n-l) (-x) n2 (2.2)

(l-x2n)(l+xn) xn(n+1)/2 (2.3)
0

Identity (2.1) is due to Euler, while (2.2) and (2.3) are due to Gauss. For proofs see

[3, pp. 277-284]. We also need a fourth identity which the author has not been able to

locate in the literature. This we here record in the following lemma.

LEMMA. For each complex number x such that Ixl < I,

xm(m+l)/2}4 (2m+1)xm (2.4)
0 0

Proof: Here we need the following two identities, stated and proved in [I, p. 313].

(1-x2n)2(l+x2n-l { x2m2} 2 + x{ x2m(m+1)} 2

(l-x2n)2(l-x2n-l)4 { x2m2} 2 x{ x2m(m+l)} 2

We square these identities, add the resulting identities, and utilize the fact that the

fourth power of the right side of (2.2) generates (-l)nr4(n), to write:

2 r4(2n)x2n r4(n)xn + (-l)nr4(n)xn
0 0 0

2 r4(n)x2n + 2x2{ x2m(m+l)} 4,
0

whence

x2{ x2m(m+l)} 4 [r4(2n)-r4(n)]x2n
0

[ r4 (4m)-r4 (2m) ]x4m
0

+ Z[r4(4m+2) r4(2m+l)]x4m+2
0

[24o(2m+i) 8o(2m+l)]x4m+2
0

24 E o(2m+l)x4m+2
0

Here, we’ve made use of Jacobi’s formula for r4(n). Now, cancelling 24x2 and subsequent-

ly letting x x I/4 we obtain (2 4)

Continuing with the proof of theorem I, we use (2.1) to rewrite (2.3) as

(l-xn)(l-x2n-l) -2 xn(n+l)/2
0

We then raise the identity to the fourth power, and multiply the resulting identity by

the eighth power of identity (2.2) to get

H(l_xn) 12 {Z (-x) n2 }8 { xn(n+l)/2}4

(_l)ir xi xj
i=O

8(i) I o(2j+l)
j=O

xn (-l)ir8 (i)o (2n-2i+I).n=O i=O
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In the foregoing we then let x x2, and multiply the resulting identity by x to get

(n)xn x. (l-x2n) 12

x2m+I (-l)ir8(i)o(2m-2i+l)
0 0

Comparing coefficients of xn we thus prove our theorem.

By appeal to the well-known formula for r8, viz.,

r8(n) 16(-l)ndn (-l)dd3’ n +

(e.g., see [3, p. 314]), we eliminate r8 from (1.2) as follows:

m
(2m+i) o(2m+i) + 16 o(2m-2i+i) Z (-l)dd 3

i=l

In order to extend the inner sum over all d in the range 1,2 i we define (i,d)

to be i, if d divides i, to be 0, otherwise. Hence,

m i
(2m+I) o(2m+I) + 16 Y. l (-1)do(2m-2i+l)e(i,d)d 3

i=l d=l

m m
o(2m+I) + 16 E (-I) d d 3 Y. g(i,d)o(2m-2i+l)

d=1 i=d
m

o(2m+l) + 16 I (_l)dd 3 l o(2m-2kd+1)
d=l k=l

The upper limit of summation of the sum indexed by k is naturally [m/d], the integral

part of m/d. Thus, we have proved the following

COROLLARY. For each nonnegative integer m,

m dd 3 m/d
(2m+1) o(2m+l) + 16 I (-1) l o(2m-2kd+l).

d=l k=l

CONCLUDING REMARKS. According to Hardy, Ramanujan conjectured that each of the

(for dividing 24) is multiplicative" e.g., see [2, p. 184]. These conjectures

were later confirmed by L. J. Mordell. Owing to classical identities of Euler and

Jacobi, i and 3 are trivially defined. Ramanujan himself deduced formulas for 2’
4’ 6 and 8"
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