A VARIANT OF A FIXED POINT THEOREM OF BROWDER-FAN AND REICH

V. M. SEHGAL

Department of Mathematics University of Wyoming Laramie, Wyoming 82071 U.S.A.

(Received January 8, 1985)

ABSTRACT. Let S be a convex, weakly compact subset of a locally convex Hausdorff space (E, τ) and f: S \rightarrow E be a continuous multifunction from its weak topology ω to τ . Let p be a continuous seminorm on (E, τ) and for subsets A, B, of E, let $p(A, B) = \inf\{p(x - y): x \in A, y \in B\}$. In this paper, sufficient conditions are developed for the existence of an $x \in S$ satisfying p(x, fx) = p(fx, S). The result is then used to prove several fixed point theorems.

KEY WORDS AND PHRASES. Multifunctions, convex topology, fixed points. 1930 AMS SUBJECT CLASSIFICATION CODES. 47H10, 60H25.

1. INTRODUCTION

Let (E, τ) be a locally convex Hausdorff topological vector space with topology τ and $E^* = (E, \tau)^*$ be its topological dual. Let $\omega = \omega(E, E^*)$ be the weak topology of E. Let P and Q denote the family of continuous semi-norms generating the topologies τ and ω respectively. For sets A and B of E and a $p \in P$, let $p(A, B) = \inf\{p(x - y): x \in A, y \in B\}$. In this paper, we prove the following result.

THEOREM 1. Let S be a nonempty convex, ω -compact subset of E and f: (S, ω) \Rightarrow (E, τ) be a continuous multifunction such that f(x) is convex and ω -compact for each x \in S. Then for each p \in P there exists a x \in S satisfying

$$p(x, fx) = p(fx, S)$$
 (1.1)

Further if $p(x, fx) \ge 0$ then $x \in \partial(S, w) \cap \partial(S, \tau)$ where ∂ denotes the boundary. It may be remarked the since $w \subseteq \tau$, f in Theorem 1 is also a continuous multi-

function from $(S, w) \rightarrow (E, w)$. Consequently it follows by Reich (Lemma 1.6 [1]) that each $q \in Q$ satisfies (1.1) for some $x \in S$. However, since $Q \subseteq P$, the lemma in [1] is not applicable for arbitrary $p \in P$. In fact, Theorem 1 contains the above lemma [1] (see Corollary 2) and it provides a generalization of a well-known result of Ky Fan [2] for single valued mappings.

2. PRELIMINARY RESULTS.

Recall that if X, Y are topological spaces then a multifunction f: $X \rightarrow Y$ (fx $\neq \emptyset$ for each x) is upper (lower) semicontinuous iff for each closed (open) sub-

set A of Y, $f^{-1}(A) = \{x \in X: f(x) \cap A \neq \emptyset\}$ is a closed (open) subset of X. It follows by definition that f is l.s.c. iff $fx \cap U \neq \emptyset$ for some open set U of Y and x in X then fz \cap U \neq Ø for each z in some neighborhood V of X. Further, it is well-known (i) that if f is u.s.c. and a net $x_{\alpha} + x$ in X and $y_{\alpha} \rightarrow y$ in Y with $y_{\alpha} \in fx_{\alpha}$ then $y \in fx$; (ii) if X is compact and f is u.s.c. with compact values then fX is compact. A multifunction which is both u.s.c. and l.s.c. is called continuous.

We prove two lemmas that simplify the proof of Theorem 1. Throughout, let E be as stated in the beginning and S a nonempty subset of E.

LEMMA 1. Let A, B be ω -compact sets of E and $p \in P$. Then p(A, B) = p(x, B)= p(x - y) for some $x \in A$, $y \in B$.

PROOF. Choose sequences $\{x_n\} \subseteq A$, $\{y_n\} \subseteq B$ such that $p(x_n - y_n) + p(A, B)$. We may assume that $x_n \rightarrow x$ weakly for some $x \in A$ and $y_n \rightarrow y$ weakly for some $y \in B$. By Hahn Banach Theorem (see [3], Cor. 2, p. 29) there exists a $x^* \in E^*$ with $x^*(x - y)$ = p(x - y) and $|x^*(u)| \le p(u)$ for each $u \in E$. Consequently, since $x_n - y_n \rightarrow \infty$ x - y weakly, $|-v| = v^*(v - v) = \lim |x^*(x - v)| \le \lim p(x - y) = p(A, B) \le p(x, B)$ p(x

$$(x, B) \leq p(x - y) = x^{n}(x - y) = \lim_{n \to \infty} |x^{n}(x_{n} - y_{n})| \leq \lim_{n \to \infty} p(x_{n} - y_{n}) = p(A, B) \leq p(x, B)$$

LEMMA 2. Let S be ω -compact subset of E and f: $(S, \omega) \rightarrow (E, \tau)$ be a l.s.c. multifunction with weakly compact values. If a net $x_{\alpha} \rightarrow x$ weakly in S, then for each $p \in P$ and $\varepsilon > 0$, $p(fx_{\alpha}, S) \le p(fx, S) + \varepsilon$ eventually.

PROOF. It follows by Lemma 1 that there is a $y \in fx$ with p(fx, S) = p(y, S). Let $U = \{x \in E: p(x - y) < \epsilon\}$. Then U is τ -open and $y \in fx \cap U$. Hence by l.s.c., $f_{\alpha} \cap U \neq \emptyset$ eventually. For such α , let $y_{\alpha} \in f_{\alpha} \cap U$. Then eventually,

$$p(fx_{\alpha}, S) \leq p(y_{\alpha}, S) \leq p(y_{\alpha} - y) + p(y, S) \leq p(fx, S) + \varepsilon.$$

3. MAIN RESULTS.

PROOF OF THEOREM 1. Let $p \in P$. Define a multifunction g: $(S, \omega) \rightarrow (S, \omega)$ by $g(x) = \{y \in S: p(y, fx) = p(fx, S)\}.$

Then by Lemma 1, $g(x) \neq \emptyset$ and is clearly convex. Further, since S is τ -closed and for any y, $z \in g(x)$, the triangular inequality implies

$$p(y, fx) - p(z, fx) \leq p(y - z).$$

It follows g(x) is $\tau\text{-closed}$ convex and hence a $\omega\text{-compact}$ subset of S . We show that g is u.s.c. Let C be a weakly closed (hence weakly compact) aubset of S. We show that $x \in g^{-1}(C)$, that is $g(x) \cap C \neq \emptyset$. Choose for each α , $y_{\alpha} \in gx_{\alpha} \cap C$. We may assume that $y_{\alpha} \rightarrow y$ weakly for some $y \in C$. Also since $p(y_{\alpha}, fx_{\alpha}) =$ $p(fx_{\alpha}, S)$, there exists $z_{\alpha} \in fx_{\alpha}$ with $p(y_{\alpha} - z_{\alpha}) = p(fx_{\alpha}, S)$. Further f: (S, ω) \rightarrow (E, ω) being u.s.c., it follows that fS is weakly compact and hence we may assume that $z_{\alpha} \rightarrow z$ weakly for some $z \in fx$. Thus $y_{\alpha} - z_{\alpha} \rightarrow y - z$ weakly. Choose as before a $x^* \in E^*$ such that $x^*(y - z) = p(y - z)$ and $|x^*(u)| \le p(u)$ for each $u \in E$. Let $\varepsilon > 0$. Choose $\alpha_0 \in \Delta$ such that $p(fx_{\alpha}, S) \leq p(fx, S) + \varepsilon$ for $\alpha \geq \alpha_0$. Consequently, for $\alpha \ge \alpha_0$ $|x^*(y_{\alpha} - z_{\alpha})| \le p(fx_{\alpha}, S) \le p(fx, S) + \varepsilon$ and hence $p(y, fx) \leq p(y - z) = \lim |x^{\star}(y_{\alpha} - z_{\alpha})| \leq p(fx, S) + \varepsilon.$

Since $\varepsilon > 0$ is arbitrary and $p(fx, S) \le p(y, fx)$, we have p(y, fx) = p(fx, S) that is $y \in g(x) \cap C$. Thus g is u.s.c. Hence by Glicksberg [4] there exists a $x \in S$ with $x \in g(x)$. This implies p(x, fx) = p(fx, S).

Now, suppose p(x, fx) > 0. Then $fx \cap S = \emptyset$. Choose by Lemma 1, a $y \in fx$ satisfying p(x - y) = p(x, fx). Now, if $x \in int(S, \omega)$ or $int(S, \tau)$, then since S being weakly closed and convex, there is a $z \in (x, y) \cap S$ with $0 < p(fx, S) \le p(y - z) < p(x - y) = p(fx, S)$, a contradiction. This proves the result.

As a consequence of Theorem 1, we have

COROLLARY 1. Let S be a convex and weakly compact set in E and f: $(S, \omega) \rightarrow (E, \tau)$ be a continuous multifunction with convex and ω -compact values. Then either f has a fixed point or there exists a $p \in P$ and $x \in S$ satisfying 0 < p(x, fx) = p(fx, S).

PROOF. For each $p \in P$, let $x_p \in S$ satisfying (1). If $p(x_p, fx_p) = 0$ for each $p \in P$, then using the implication that $f: (S, \omega) + (S, \omega)$ is continuous, it follows that $A_p = \{x \in S: p(x, fx) = 0\}$ is nonempty, weakly compact and the family $\{A_p: p \in P\}$ has finite intersection property. Consequently, there exists $x \in S$ with p(x, fx) = 0 for each $p \in P$. Now, if $x \notin fx$, then since x - fx is τ -closed and convex and $0 \notin x - fx$, there exists (see [3], Cor. 1, p. 30) a $x^* \in E^*$ such that $0 \notin \{x^*(x - y): y \in fx\}$. Let $p = |x^*|$. Then $p \in P$ and $p(x, fx) \neq 0$, a contradiction.

The following corollaries result from Theorem 1.

COROLLARY 2. (Reich [1]). Let S be a compact and convex in (E, τ) and f: (S, τ) \rightarrow (E, τ) be a continuous mutifunction with convex and compact values. Then either f has a fixed point or there exists a p \in P and x \in S satisfying 0 < p(x, fx) = p(fx, S).

COROLLARY 3. (Waters [5]). Let S be a compact and convex subset of (E, τ) and f: $(S, \tau) \rightarrow (E, \tau)$ be a continuous multifunction with convex and weakly compact values. Then for each $p \in P$, there exists a $x \in S$ satisfying (1.1).

PROOF. It suffices to show that the hypotheses in Corollary 2 and Corollary 3 imply that f: $(S, \omega) \rightarrow (E, \tau)$ is a continuous multifunction. Let A be τ -closed in E. Then $f^{-1}(A)$ is τ -compact subset of S. Since S is weakly closed, it follows that $f^{-1}(A)$ is weakly closed. Thus f is u.s.c. Similarly if A is τ -open set in E then $S \setminus f^{-1}(A) = f^{-1}(E \setminus A)$ is ω -closed and hence $f^{-1}(A)$ is ω -open. Thus f is l.s.c.

In the setting of semi-reflexive locally convex spaces, we have

COROLLARY 4. Let S be a closed, bounded and convex subset of a semi-reflexive locally convex space E. If f: $(S, \omega) \rightarrow (E, \tau)$ is continuous multifunction with closed, bounded and convex values then for each $p \in P$, there exists $x \in S$ satisfying (1.1).

*Theorem 1 of this paper was presented at the summer meeting of the Amer. Math. Society, (1983), Albany, New York.

REFERENCES

- REICH, S. Fixed point theorems in locally convex spaces, <u>Math. Z.</u> <u>125</u> (1972), pp. 17-31.
- KY FAN Extensions of two fixed point theorems of F. E. Browder, <u>Math. Z. 112</u> (1969), pp. 234-240.
- 3. ROBERTSON, A. P., and W. J. <u>Topological Vector Spaces</u>, Cambridge, University Press (1966).
- GLICKSBERG, I. L. A further generalization of Kakutani's fixed point theorem with application to Nash equilibrium points, <u>Proc. Amer. Math. Soc. 3</u> (1952), pp. 170-174.
- 5. WATERS, C. Ph.D. Thesis (1984), University of Wyoming.