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ABSTRACT. Suppose that S is the space of all summable sequences a wlth

lla’S n>oSUp ajJl and J the space of all sequences 6 of bounded variation

aJBl S "a"SllSl’J this inequality leads to e description of e dual space

of S as J. It, related Inequalities, and their consequences are the content of

this paper, In parttcular the Inequality cited above leads directly to the Stolz

form of Abel’s theorem and provides a very simple argument. Also, some other

sequence spaces are discussed.
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I. INTRODUCTION.

Suppose S is the space of all summable sequences s (s)(R) with
n nmO

norm glven by "s"s’Sup LsIn>0J--
the remalnder In the sum of s after n-terms.

An example of such an s, summable but not absolutely summable, Is given by

s
(-1)n

n O, I, 2, 3, so that X --’----’--(-1)n Is an alternatlng convergent
n n+l =0 n+l

series. Here, as is readily verified, ,s,
S

sup <->l- in 2, the
n>O -n’J

the natural log of 2. This paper is based on the observation that S, with this

norm, is naturally isomorphic to co, the space of all sequences having limit zero

endowed with the supremum norm. Moreover, if we consider S on Its own, we get

several Interestlng results. For example, since S Is isomorphic to co and co*
the dual of co, is Isomorphic to 41, the space of all absolutely summable

sequences, then It follows that S*, the dual of S, is isomorphic to 41
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However, if we compute the dual of S without using the Isomorphism with c0, we

find that S* is isomorphic to J, the space of all sequences 8 of bounded

variation with

11311j---11301 + n.l= Bn- 8n_ll an example of such a 8 being given

by 8 i! 1...]= n O, I, 2, 3, so that II + 2.
n n+l

J
n=l n n+l

Of course, J is isomorphic to t I. Another example is that we get the following

new inequality: If 8 e J and s S I s 8 < ,’s,,
S "8"j, which can be

j=o
used to glve a proof of Abel’s Continuity Theorem.

Similarly, we consider the space H of all sequences X (Xn):_0 such that

n

"H n>0Sup J=0 j[ is finite; for example %n (-l)n’ n O, I, 2, 3, so

that {l[l
H I. We get the following inequality: If A e H, 8 e J, and 0 lim 8

then 1400 + n(O- n_l)[ _< ,,"H.,Sllj. Consequently we have that + e J* If
n--1

and only if (8) XOp + (0 8
n

for 8 J
n=l

n -1

Also, we glve characterizations of the bounded linear operators on S easily

obtained from a description of operators on c These results, however, may be

obtained using the uniform boundedness principle.

To make the presentation reasonably self-contalned, we shall include a resume

of pertinent results and definitions.

2. PRELIMINARIES

DEFINITION 2.1. Let (X, fix) and (Y,II y) b two sequence spaces, which are

Banach spaces with the respective norms. For a fixed y (yn) Y define the

mapping y:X R by y(X) . XnYn for those x (xn) in X for which the
n=O

series converges.

Assume that ..lY(X) <Mllxllx with M some absolute constant, that is,

y is a bounded linear functional on X for any fixed y Y. Let X* be the

space of all bounded linear functlonals on X, endowed with norm

sup [(x)] and b the mapping from Y to X* given byIIx.
x X

b(y) y. If Is onto and llylly llyllx, then we say that Y is

the dual of X, in this sense we rlte Y X*.

DEFINITION 2.2. We define the sequence spaces S, I, , Co, and H respectively

by

S s (s) summable sequences such that llsn n=O

n n=O =0

sup < (R)},{ (n)n=o’ I1(R) J>...o

p>_.O J p

CO { (Yn)=O lim Yn 0, ,,Y,c0 sup
n+ n>O
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n n=O’ H n>O J=O
We believe that this is the first time that S is taken as a space with this

TqF)REM 2.3. The space S is a Banach space isometrically isomorphic to c0.

The iometry T:S c being given by T(s) (r (s)) and T-I
n n=O :CO S by

-] () (n- n+1)n=O where r (s)

:),I’IN[TION 2.4. Two Banach spaces (X,I fIX) and (Y,U fly) are isomorphic

eq,Ivalents if there exist a one-to-one and onto lnear mapping T:X Y such that

Nil ,IX --< ITXlly _< Mllx;l
X,

with N and M absolute constants. If there exists such a

such a T with llTxlly I;Xllx, then we say that X and Y are isometrically

onorphlc.

Notice in Theorem 2.] T and T-I can be represented as infinite matrices,

0
0 0
0 0 0

-I 0 0 0
0 -I 0 0
0 0 -I 0
0 0 0 -I 0...

TIEOREM 2.5. M is a bounded linear operator from c into c if and only if M
is represented by an infinite matrix with columns in c and rows in il
uniformly bounded in i l- That is if M (rank) then

i) llm rank 0 for any flxed k,
n/

n>O k=O

THEOREM 2.6. $ is in co* if and only if there is a 6 (6) e I suchn

that for any (n) e c () n=O nYn’ in which case there is only one

such () e I and JltJ IIJJn co* I
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THEOREM 2.7. The space J is a Banach space, isometrically isomorphic to

I The isometry L:J I is given by L(B) (B )
n n-I n=O

8-I O, and L-I:I J by t-l() I with (5) e I and
j=O

n=O n

(Bn) E J.

THEOREM 2.8. The space H is a Banach space isometrically isomorphic to E(R).
n

The Isometry :H is given by ()

by -l(U) (n- n-1)n=O with

3. THE DUAL OF S

THEOREM 3 (Holder’s type inequality) If s (s) e S and B () J
n n

Proof: For N > I, we notice that
N-I N

nO= sBnn -r0(s)B rn(S)[Bn__ln Bn-l]l IrN(S)BNI IrN(s)I’IBNI
where r (s) . s Now since s is summable and B Is bounded, It

follows that rN(s) BN 0 as N . Therefore we have proved that. Snn
r0(s)B0 + . rn(S)[Bn Bn_l] consequently

n=O n=1

so that the theorem is proved.

Consider the mapping 8:S R defined by (s) s B where
n=.O n n

(8 n) is a fixed element In J. In view of Theorem 3.1, we have Is

a bounded linear functional on S. At this point, a natural question is:

are these all the bounded linear functlonals on S? The next result tells us

that the answer is yes.

THEOREM 3.2. (Duality Theorem). If S then there is a unique ()

such that , that is, (s) s B for any s (s) e S Moreover
rl n nn--0

IIIS, lllj. Conversely If (s) s 8 then 0 e S* so that the mapping
n=0

n n

,J Se degtned by (a) is an Isometric tsorpht fro J t S.

Prof If (s) Sngn, then e already hae seen by Theor 3.1 that
n0

a bounded linear guncttonal on S, that ts e Se. So it reatns t pre the

first part. Let e Se; then using Theore 2.3 e hae
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Now notice that o T-I E co*, so that there is a Y (Yn) l (see Theorem 2.6)

such that

(s) ( o T-l)[(nSj) I Yn [__ s and A o T-II ,yU (3.3)
J= n=0 n=0 n c0*

n
Observe that (3.3) can be written (s) n=0 Snj =0yj; therefore we may let B (Bn)

where 8
n j0Y_

Since 8 L-I(y), B is In J. Consequently given E S* there Is a

8 g J such that 8" On the other hand Theorem 2.6 tells us that

=0 n=0 c 0*
Now as liT-lit I, It follows that liJ iOS*" Also notice that Theorem 3.1

implies tt*tIS* lBtIj (since CB). Therefore putting together these last o

inequalities we ve ttOS* .I; consequently the mpplng $:J S* defined

by (8) SB Is an Isometry, so that the theorem Is proved.

We ve used Theorem 3.1 to characterize all bounded linar functlonals on

S. Now we are going to use this theorem again to give a proof of Abel’s continuity

theorem which Is as follows.

THEOREM 3.4 (Abel’s continuity theorem). If a-- (an) is summable and

f(z) anZ then llm f(z)= f(1), where z is restricted to approach the
n=0 z+l

Proof: ’irst of all, let C be a positive absolute constant such that

p(R). a zPl < ,(z )p.Nllj-,(ap)N,S
for N > by the above inequality applied to the sequences (a) and (zP),

p

+ #z[ + +

N using the hypothesis we have (zP)NJ + C. Consequently,

p=NapzP _< (I+C)(ap)NS 0 as N since (an) e S. Then

N-I N-I

P p=O P P p=0 P p=N P

fix N so that B (2+C)](ap)N[ S
/2. For z-1 sufficiently sll,

A < /2. Hence lira a zp= a Therefore the theorem Is proved.
z+l p=O p p=O p
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4. THE DUAL OF J

Of course, for fiel s (Sn) in S the formula Os(g) j.OSjBj
defines a bounded linear functional on J. However, these are not all the

members of I*. As a key to our description of J*, we note that if

8 (8n) is in J with limit 0 then ,s(B) jfoSj)p + .jfoSj(Bj-o)
0O + l: L(p B_1) where 0 l:0 s and for Z j --s_I.

!fete Z=0 0; so that is in S.

TIiEOREM 4 (Holder’s type inequality) If L (L) e H, B (B) e J, and
n n

p lira 8 then [LOP + n:lT L(pn -8n-l)[ < [LH.,B,, "J

Proof: Ths inequality follows easily from the observation that

10P + I L (p- 8
n oB0 + . Lj)[8n 8n I]; so that

nZl n -I
n=l

n

}LOp + . Xn(p- Bn_l) _< sup ZOLj[(IB01 + !llBn- Bn_l}).
n=l n>0 J= n

As we did for S, we consider the mapping CL:J R defined

by eL (8) Lop + Z L (p B where L (L) is a fixed element in H
nil

n n-1 n

Theorem 4.1 assures us that L is a bounded linear functional on J.

The claim of the next theorem is that these are all the bounded linear

functionals on J. Here, our representation is in a slightly different sense

than that of the Definition 2.1, the latter appearing more natural to us.

THEOREM (4.2) (Duality Theorem). If e J* then there is a unique

L (Ln) [{ such that eL’ that is, (8) X00 +n=l[" Xn (O-Bn-l) for any

8 (8 n) e J. Moreover ll@llj. LH. Conversely if @ @X then e: J*.

So that the mapping :H J* defined by (L) is an isometric iso-

morphism. Here, 0 llm 8.

Proof: By the observation preceding the theorem we see that it remains to

prove the first part. Let e J*; then in fact using Theorem 2.7

@(8) (L-!
o L(8)) (@ o L-I)(L(8)) (@ o L-I)((8

n 8n_l)nffiO) 8-1 O.

Now notice that o L-I e I’ so that there is a p (un) e . such that

(4.3) (8) ( o L-1)((Bn Sn-1 )-n=O) [ Un(Sn 8n-1 )"
n.O

n
By Theorem 2.8 U n OXj for n > 0 and some L (Xj) e H;

consequently (4.3) becomes (8) . L )(8
n -Bnn=O J=0

-I

Observe now that
N n N n

I I Lj)( 8 LOB0 + I I Lj)(8n 8
nn=0 j=O

n n-I n:l =0
-1
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we get

N N
X0N + Xn[N 8n_l X0BN + . Xn[N 0 + 0

n--I n--I n-I

N N
100 [BN 0] k + kn[0-Bn ]" Taking the limit as N

n=0
n

n--1

_)(,,- ,_) ,op + [- ,,
n=O J =0 n=l

n -I

N
since [B

N
p] I 0 as N (p llm 8) Therefore we have

n--O

lOp + . ln[P 8
n=l

n-I

n
Again by Theorem 2.8 II o L-III llull. sup n sup

n>O J=O
or lllll

H II o L-IIII* < ll’tIl3**llL-111 < llllj, sinc IlL-Ill _< I. On the other

hand Theorem 4.1 gives us that (B) S llX"H""j(since X ), which implies

llIIj, _< IIIH. Putting together these two inequallttes we have llj,
so that the theorem is proved.

5. CHARACTERIZATION OF OPERATORS ON S

In this section we characterize all bounded linear operators on S, even

though an alternate proof can be given using the uniform boundedness

principle. We rather use the characterization of operators on c O In fact

we have the following result.

THEOREM 5.1. The linear mapping A:S cO is bounded if and only if there

is an infinite matrix (ank) such that for any s (Sn) S

AS

ao0 aOl a02 a0n
alO all a12 aln

SO

ano ant an2 ann

satisfying

i) lira a 0, for any fixed k > 0 i.e. the columns of the matrix are in c0,

il) sup lan(k_l)- ank < i.e. the rows of the matrix are
n>O k=O uniformly bounded in J.

Here an(_l 0 for n 0, I, 2, 3,

Proof: Note that the operator P AT- where T- Is as in Theorem 2.3
T-I A

maps co into co, that is P:c0 S c0, so that applying Theorem 2.5 we

get the desired result.

THEOREM 5.2 The linear mapping B:S S is bounded if and only if B is

represented by an infinite matrix such that for some A:S c we have
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B A- , where X Is defined by X (nk) wlth ank a(n+l)k.
( is a shifting of A up by one row) Note that ank .;=nbjk
Proof: We define A:S S co, where T Is as in Theorem 2.3. That is,

A TB so that B T-I.
Now using the matrI representation for T-I we get

-1 0 0 0
-I 0 0

B 0 -i 0 A [I i]A IA- A- A- where

I is the Identlty matrix and Is formed by the shlftlng of I up by one row.

Notice Theore 5.2 is equivalent to saying that B:S S Is a bounded

operator If B is an infinite matrix such that each column of B is summable,

and if we consider the matrix r(B) with r(B) (Ynk), where Ynk b k’ then
Jfn

then the rows of r(B) are uniformly bounded In J.

THEOREM 5.3. The linear mapping C:e S is bounded if and only tf C is

represented by an Infinite matrix such that for some M:c e we have

C M- , M is a shifting of M up by one row.

Proof: Notice c0 S c0, T as in Theorem 2.3. So define M TC;

therefore C T-1M rl M.

Note here that the M’s are special A’s as are the B’s. The C’s are

special B’s. The reader might wish to compare these last three theorems with

Exercises 45 and 46, pg. 77, of [1].

We would like to point out that the spaces tt and J may also be found in [1]

(pg. 240). Another space there, denoted by cs, is the space of all

n
summable sequences s (sj) normed wlth norm on H, max ffiOS [. It may be

n>0
shown, as pointed out there, that es* looks llke J. We hasten here to note

that ,I is not the dual of cs In the sense of Definition 2.1. In particular,

the inequality . s.8 < Ilsn .ll,l does not hold Consider the example:

Let s (s) be given by

so I, sl s2 s3 s4 0, s5 -2, s6 s7 O; also, B (B):
n

BO= O, BI -I, B2 -2, 83 -3, B4 -4, B5 B6 -4.

< [max ZO s I]-,,BII does not hold.
n>0 J--

J

To Illustrate further the difference between cs and S, we note that cs

and S are equivalent Banach spaces: if s Is In S then ns! < 2|s!
cs-- S.

and llsll
S _< 211SNcs. So that Is In S If and only if @ Is In cs*.

For > 0 let ej be the sequence T such that T and If k Xk O.
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Now for in S*,(s) ’)i=0sj(ej); the sequence {(ej)}j=0 is in J and

I(%(ej)}nj IS*. But if 8 is the sequence of the example and is defined on

S by (s) [__08js] (so that 8j (ej)) then i,j 4. So the tural

assoclatlo of In cs* with the sequence {(e)} In J Is not an Isometry.

There ts an Isomet from cs* onto J, obtained by noting that cs

isometrically isomorphic to the space c of all convergent sequences normed with

no In ; the dual c* being isometrically isomorphic to I. This represen-

tation of c* as I, and also the representation of cs* as J, Is complicated by

the fact that the sequence {e]} does not ve dense span In c. floweret,

the latter representation (of cs* as J) Is de somewhat simpler by applying
N the Nth partial

Theorems 2.7 and 3.5. For s in S let SN(S)

sum o s, and o(s) =OSj. Let + be In cs* wlth (ej) 8j. Now,

with L s In Theorem 2.7, we ve (s) =oS(e) s]

00(> + l= (){ - 0(> + l=[() s_(>){
n

n Bn-1
j(s)u0 + Z=I Sn_l(S)Vn (v lm B, u B Bn); so v L(U), wth

n n-1
lm B + B0 B These computations suggest that f one

0 lm B n n

uses (as n [I)) the space cs rather than S the norm to used n J

should be gven by mlB,l (lira B( + Zn=l(Bn- Bn_l(- However, the norm

used there s the same as ours (see I pg. 239). With ths norm, NBN, on J

the Holder’s pe Inequality we get s (Z=OBj( < iI’ ,B, n s and

The reader might wish to compare the remarks of ths last paragraph wth some

of D. J. H. GarlIng In pages 999-1000 of [2] and page 964 of [3].

These ideas were suggested by a norm on certain power seres spaces ntroduced

by the latter uthor In an nvestgaton [4 of Fourier sne seres and Ldstone

series.
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