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ABSTRACT. This brief report describes some new finite difference methods of

order 2 and 4 for computing eigenvalues of a two point boundary value problem

associated with a fourth order linear differential equation y(4) (p(x) q(x))y 0.

These methods are derived from the formula

(4) (64 66 7 68h4yl -- "’’’)Yi
Numerical restilts are included to demonstrate practical usefulness of our methods.
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i. INTRODUCT ION

We shall consider the fourth order linear differential equation

y(4) [p(x) q(x)]y 0 (1.1)

associated with one of the following pairs of homogeneous boundary conditions:

(a) y(a) y’(a) y(b) y’(b) 0

(b) y(a) y"(a) y(b) y"(b) 0 (1.2)

(c) y(a) y’(a) y"(b) y"’(b) 0

Such boundary value problems occur frequently in applied mathematics, engineering and

modern physics, see [1,2,3]. In (1.1), the functions p(x) q(x) E C[a,b] and they

satisfy the conditions

p(x) _> 0 q(x) 0 x [a,b] (1.3)

Recently, Chawla and KaCi [4] have developed a finite difference method of order

2 for computing approximate values of for a boundary value problem (l.l)-(l.2a).

For the same problem, a fourth order method was developed by Chala [5] which

leads o a generalized seven-band symmetric matrix eigenvalue problem.

The purpose of this note is to present some new finite difference methods for

computing approximate values of for the boundary value problems (l.l)-(l.2b)
and (l.l)-(l.2c). These methods lead to generalized five-band and seven-band

symmetric matrix eigenvalue problem and provide 0(h2) and 0(h4) -convergent
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approximations for the eigenvalues.

2. A SECOND ORDER METIIOD FOR COMPUTING X FOR (i. I) and (l.2b)

For a positive integer N 4, let h (b-a)/(N+ iI and x. a ih
1

O(1)N We shall designate Yi Y(xi) Pi P(xi) and qi q(xi)" The

boundary ralue problem (l.l) and (l.2b) is discretized by the difference equations

(4) 4)(a) -2Y0 SYl -4Y2 Y3 -h2y; h4[- y y + tl

64yi 4)(b) h4y t. i 2(1)N- (2 1)

tN

Note that the truncation errors t. i I(1)N are

59 (6)
(a,x3)3- h6y (l

(6)
ti h6y (i) i (x

i_ 2,xi +2 2(1)N-

59 (6)
3--6-d h6y (N) CN (XN- 2 ’b)

The formula 2.1(b) is obtained from the well-known central difference formula

(2.2)

(4) [64 6 7 8 41 68 ]Yi (2 3)h4yi 2- 7560

(i 2,3,4

The discretizations 2.1(a) and 2.1(c) are introduced so that the resulting coefficient

matrix in (2.1) is a five-band symmetric matrix. The system of linear equations

(2.1) can be written in matrix form

(j2 h4p)y Xh4Qy t (2.4)

where j2 is a symmetric five-band matrix and J (Jrs) is tridiagonala matrix

such that

2, r s

Jrs
0, otherwise.

The matrices P and Q are diagonal matrices

(2.5)

P diag[Pl P2" PN Q --diag[ql q2 qN

and

T TY [Yl Y2 YN t [t t
2 tN]

Thus, our method for computing approximations A for X of (1.1)- (1. 2b) can be

expressed as a generaiized five-band symmetric matrix eigenvalue problem

(j2 h4p) Ah4Q (2.6)

2In fact, the matrix J is a positive definite matrix and hence for any step-size

h 0 the approximations A for X by (2.6) are real and positive for all

p(x) _> 0 and q(x) 0 That our method provides 0(h2) convervent approximations

A for t can be established following Grigorieff [6]. We omit the detaiIs of
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convergence proof for brevity.

3. A FOURTI! ORDER IETHOD

The boundary value problem (1.1)-(1.2b) is now discretized by the following

difference equations

(a) -17y0 44YI 38Y2 12Y3 Y4 -8h2y h4[’lv4)
(b) 10Y0 38Yi 56Y2 39Y3 12Y4 Y5 h2y

h6v((,)h
4 (4) 6y +[Y Yo 3-F6 "o

{c) {64 6)y 6h4y (4) 7 8 (8)h Yi i 3{1)N= 2
40

13 6y6)6y 4)] -6h

As in [7], the derivation of (3.1c) is immediate from (2.3), on truncating the

infinite series on the right of equality sign after the two terms. The additional

difference equations (3.1a, b, d, e) are chosen so that the resulting matrix associated

with the system of linear equations in (3.1) is a seven-band symmetric matrix. It

turns out that our method for computing approximations ^ for of (l.l)-(l.2b) can
be expressed as a generalised seven-band symmetric matrix eigenvalue problem

[(6j2 j3) + 6h4p] 6Ah4Q (3.2)

The matrix 6j2 j3 is a positive definite matrix and hence for any step-size

h 0 the approximations A for by (3.2) are real and positive for all

p(x) 0 and q(x) 0. As before, it follows from the results of Grigorieff (1975)
that our present method provides 0(h4) -convergent approximations A for

4. METHODS FOR COMPUTING FOR (l.1)-(l.2c)

For this section, let h (b-a)/N and x a + ih 0(1)N. The boundary

value problem (l.l)-(l.2c) is discretized by the following scheme

(a) 4y0 7y 4Y2 Y3 2hy h
4 4) h

3

yy (- ...)

(4) (6)
i x 2)(b) 64yi h4yi h4y (i (xi- 2

2(13N- 2

_h2y II 4 (43(C) YN- 3 4YN- 2 5YN- 2yN h YN-
s (s)

(-j h YN "’’)

7 4 (4) 5y(N(d) YN- 2 2YN- YN h2y h3y n YN (- h 53

(4.1)

This system can be written in matrix form
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(A h4p)y h4Qy t

and our method for computing approximation A for X of (I.I)-(1.2c) can be

written as a generalized five-band symmetric matrix eigenvalue problem

(A h4p) h4Q (4.3)

where

7 -4

-4 6 -4

-4 6 -4

0 -4 6 -4

-4 6 -4

-4 5 -2

-2

(4.4)

It can be established (see Appendix A) that the matrix A is a positive definite

matrix and the approximations A for X by (4.3) are 0(h2) -convergent.

A third order method is obtained on discretizing (l.l)-(l.2c) by the difference

equations

(a) -45Y0 76YI -42Y2 12Y3 Y4 24hy
4 hSy5) h6y6)h4(-y4) 6y4)) - (- * ...)

27 113
(b) --Y0- 42YI --Y2- 39Y3 12Y4- Y5 -3hy

hSyS) h6y6)h4 y4)+ 6y4)) -(a" + (ga- + --’)

_h4 (4) 7 8 (8)(c) (664 66)y
i

6 Yi (- h Yi 3(1)N- 3

(d) -YN-5 12YN-4 39YN-3 54YN-2 34yiq_ 8YN -h2y
+ 2h3y, 591_ h4yN(4)- 2 (- 5 hSyN(S) ...)

(e) -YN-4 12YN- 3 34YN- 2 36YN- 13YN 4h2y
s26 ,4 (4) hSy ...)-4h3y -- n YN-

(f) -YN-3 8YN-2 13YN-1 6YN 5h2y 4y’

-h174.yN(4) 72
23 h6y(6)(SN) N (XN- 3 ’b)

(4.5)

This third order method gives rise to a generalized seven-band symmetric matrix

eigenvalue problem

(B h4p) Ah4Q (4.6)

where
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m

7-6 -42 12 i

1-41-42 113
-39 12 1

2
2 -39 56 -39 12 1

1 12 -39 56 -39 12 1

i 12 -39 54 -34 8

1 12 -34 36 -13

1 8 -13 6

(4.7)

5. NU[ERICAL ILLUSTRATIONS

To illustrate our methods for order 2 and 4 for the approximation 1 of (l.l)-

(l.2b), "e consider the eigenvalue problem

(4) 1
y y 0

(i +x)4
(5.1)

y(0) y"(0) y(b) y"(b) 0

The smallest eigenvalues l(b) for b 1,2 are

%(i) 416.324,564,86...

and I(2) 646.269,207,... respectively. We computed approximations ^(i) and

^(2) by our methods (2.1) and (3.1) applied to the problem (5.1) for h 2
-m

m 3(1)6. The corresponding errors 1 --- are shown in Table I. It s easily

verified that our methods based on finite difference approximations (2.1) and (3.1)

do provide 0(h 2) and 0(h) 4- convergent approximations for the smaiiest eigenvalue

of (5.1).

b h

TABLE I
l(b)Error 1 based on the method

(2.1) (3.1)

1/8 2.68-2* 1.09-4

1/16 6.76-3 8.34-6

1/32 1.69-3 5.46-7

1/64 4.23-4 3.29-8

1/8 2.61-2 2.50-3

1/16 7.13-3 i. 70-4

1/32 1.82-3 1.08-5

1/64 4.58-4 6.39-7

-2*We write 2.68-2 for 2.68 i0

We now illustrate our methods for the approximation of I of (i.i)-(1.2c) by

approximating the value of the smallest eigenvalue I
1 satisfying

y + (I + y 0
(1 + x)

4
(5.2)

y(0) y’(0) v"(1) "(i) 0
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where
1 135.320,349,281,57 We list the errors 1 for h 2-m

m 3,4 5,6. It is readily verified that the relative e rors based on the finite
difference scheme (4.1) are O(h2)- convergent and likewise the relative errors
based on the scheme (4.5) are O(h3)- convergent.

TABLE I I

Error I -- based on methods

(4.1) (4.5)

1/8 1.40-2 2.80-3
1/16 3.41-3 3.50-4
1/32 8.41-4 4.31-5
i/64 2.08-4 4.78-6
1/128 5.13-5

APPENDIX A

It is well known that the tridiagonal matrix J introduced in (2.4) is a

positive definite matrix, it follows that the matrices j2 and (6j2+j3) introduced

in equations (2.6) and (3.2) respectively are also positive definite matrices. In

order to establish that the real symmetric matrix A given by (4.4) is a positive

definite matrix, it suffices to prove that the (N- i) principal minors

i,
6 -4 1

-4 5 -2

i -2 i

are each equal to i and AI 2
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