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ABSTRACT. Singular sclutions for 1linearized MHD equations based orn Oseen
approximations have beer cbtained such as Oseenslet, Oseenrotlet, mass source, etc.
Cy suitably distributing these singular solutions along the axes of symmetry of an
axially symmetric bcdies, we derive the approxinate values for the velocity fields,
the force and the momentum for the case of translational and rctational motions of
such bodies in a steady fiow of an ircompressible viscous and magnetized fluid.
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1. INTRODUCTION.

The motion of a body in a steady flow of an incompressible viscous and
magnetizea fluid is governed by a set of nonlinear equations known as magnetohydro-
dynamic (MHC) equations. Exact solutions for these equations have been obtained only
for a few very specific problems. However, ftor many applications these equations can
be Tinearized by using two linearization schemes known as Oseen and Stokes approxima-
tiens [1,21.

Different aralytical techniques have been applied to solve these linearized
forms for simple configurations, such as the classification separation of variables
method [3,4], matched asymptotic expansions, and integral eaquetion techniques [2].

A methed of singularities has been developed recently to solve various boundary
value preblems in matrematical physics displines such as potential theory, scattering
thecry [5], hycrodynamice [6,7], and elasticity [8]. Our aim in this paper is to
extend this method to solve some boundary value problems ir MHD, using Oseen's
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approx:riztion of the MED equations. In Secticn 2 we present the mathematical
formulation of the ecuations on the basis of this appreximation. In Sectior 3, we
presert the fundsmental sclution (singularity) of Cseens equations and censiruct
other sincularities reeded in our aralysis, including O<cens rotlet, Gseens doublet,
Cseens stresc<let. Ir the last two sections we solve two types of motion preblems for
axielly symmetiic bedies by csuitably distributing singulerities about their axes of
symmelcv:  First, the steady rotation of the boedies atout their longitudinal axis;
cecend, the uriform translational mction of those bodies in the direction of their
axiy vi symmetry. Ccrfigurations of interest in this study are proluete and obiute
spheriods and treir limiting cases including the sphere, the circular disc, and the
siende’ bcdy. For these probiene we derive fermulae for the velocity fields along
with the physical quentities, the drag and the force.

Usirg the analoq between the MHD and classicial hydrodynamice, the results tor
¢in-lar problens in the iectter are deduced.
. MATHLMATTCAL FOPMULATION.

The nen-dimensicnal equations governing the steacy flow of an incompressible,
viscous, electrically concucting fluid are

Rusv u = -v p +

E;U‘ zm
<
>
x|
>
-
-

yeu=0,v9vH=0,vxC=0, (2.1)

RJI=vxH-= Rm(f +u x H)
where R = alU/v is the Reynolds number,Rn = OueaU is the magnetic Reynolds number,

- LIRS A
and M= uHa (pv) is the Hartmann number.

The vectors u , 9 , H , and E are the velocity field, thke electric current
density, the magnetic field strength, and the electricl field strength, respectively.
The constants p, £, V, He» and o are the fluid density, pressure, kinematic
viscosity, magnetic permeability, and the electric conductivity. The constants U,
d, ana H0 are the typical velocity, characteristic length, and the unifozp
magnetic field. It is ascumed that the magnetic field is oriented in the e,
direction i.e., along the x-axis. Furthermore, for the steady rotation problem the
typical velocity is U = a @ where @ 1is the uniform angular velocity, and for the
trarslational motion U 1is the velocity of the uniform flow in the Ex direction.
The Oseers apprcximation replaces the convective (ron-linear) terms in eguations
(2.1} by convection due to the uniform velocity and unitorm magnetic fields at
infinity. Furthermore, because of the symmetry conditions, the electric field E s
taken to be zero. So writing the velocity field U and the magnetic field Eooas

G-% +u' and F-g + R
u M u ana ex

in eauations (2.1), rneglecting the quadratic terms, and dropping the primes, we
obtain the following linear system [2]:

I
v = R_]-R [(R

] u, - (R - RJu_,] (2.2)

-1
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R
_ m - -
Ho= s {uy - u_,) (2.3)
RopRyp -1
7o-up =0, 0=l (2.4)
AUy o
R: w— + VP - Vou, = C (2.5)
ooy 1
wiere kK, and R_, are the roots ot the equatior
I , 2 e .
Ry - (R + Rm) Ri 4 FPm -M"=0,and P=p+ N H-ex . (2.6)

m
Cseens approdimation is valid for Rm <<l ard R/M2 <<1, that is, wher the magnetic
tieid donirates over the inertia fcrces; however, it is valid for small and large
Earirann number .

in the presence of « solid, the boundary conditions associated with the above
system of equetions, in addition to the no-slip condition (u = C on the surface),
are H = C 1dnside and cr the solid since it is irsulated, and all the perturbations
must vanish at infinity.

Two irportant specici cases emerqe from the above system of equations: Firstly
when Ri = R =0 equations (2.4) and (2.5) recuce to Stokes flow of non-conducting
fluids. Secondly, the case (Ri = k # C) gives the equations of Oseens flow.

3. THE FUNP/AMENTAL SOLUTIONS.
The solutions of the equations
3u; 2

L — + -
R1 M W - v

Ui = g (3.1a)
and Vo Gi =0, (3.1b)
where g 15 ¢ forcing furction having some singular behavier in an infinite medium,
ere called fundamental solutions. The primary fundamental solution is called the
Cseenslet erd it correspends to a forcing function
g =8rasX), (3.2)
where o is a constani vector, and (%) 1s the three dimensional delta function.
The velocity and pressure for the Oseenslet are
:-k.i(X'r)

k. (¥-r) _ -t
1 (xa) - 2 LG Lo, (3.3)
1 (V]
05 3Ty = p aX
P'i (\xaﬁ) =2 r.3 ’ (3.4)

- 1,
where r = |x| , and k. = 5 [k.|
The ret force experienced by a control volume containing the Ossenselt is given by

F=81|;,-E. (3.5)
The iinearity of Oseen's equation 1mplies that derivatives of any order of the
(seenslet ir an arbitrary fixed direction is again a solution of (3.1), with a
forcing function kaving the same derivative of g. These derivetives can be obtained
easily by considering the Tayler series expansions of the velocity and the pressure
of the Cseenslet abcut a fixed point g # 0, that 1s,
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125 (3,3} = US°(%,)- ()08 (R,h+ & (B-0) TS (K00 ... (3.6)
with a simiiar expansior for the pressure P?s (x-B,a). The first term in (.€) is
the Cseenslet itself. The second term is the "Oseenscfoublet" and the third cne is
the "Cscensaquadropoie”.
The Oseensdcublet is civen by

wod = = =\ —~ (= eki(x-r‘ ti(x-r) 1-e7t

U (x,0,8) = -2a(@ev) ¢ o v(Ev)(aev) § T dt (3.7)

i A

o
PO (3,3, B) = 2(Rew) &%, (2.8)

r
and the correspondinc forcing function

Cog = -8 (B - vs(X)} a . (2.9)

The C<eensdoublet can be written as a sum cf antisymmetric and symmetric (witl
respect 0 interchancing o and g) terms, respectively called "Oseensrotlet" and
"Cseensstressiet" as in hvdrodynamics Stokes flow [7]. The velocity and the pressure
of the Cseensrotlet ire give by

k1(1
0 ) =-ox =0

-r)
(Y =« x 8) (3.10)

" (%) = ¢C (3.11)

with the corresponding forcing functicn
9oy = Amvxelx)y. (3.12)
The net *orque exerted by an Oseens rotlet enclosed by a control volume on the

surrounding fluid is

M=-8nyuy. (3.13)
The velocity vectcr, the pressure, and the forcing furction of the (seens stresslet
are
—Cg,— — — —_— —_ eki(x’r)
U7 (xsa,8) = - [a(B9) + B(a-¥)] ¢
k. (x r)
1-e7t
v(s v)(a-v) GS dt (3.14)
PPS (aB) = 2[(Bm)a + (@v)B) - 5, (3.15)
r
9 = -4nl(B-v)us(x) + (w-9)B8(X)] . (3.16)

Lue to the symmetry property this singularity contributes neither a net force nor 2
wermentum to the surrounding medium.

Another sinoularity which is useful in the present study is called "mass
source". Its velocity, pressure and forcing functions are

™ (x) = v(%) , (3.17)
P (%) = 13 , (3.18)
r

9o (X = - ﬁve(?) ) (3.19)
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Soluticns of various boundary value problems in MHD irvolving the motion of
aiiatly symmetric bodies can be obtained by superposition ¢f flows due to a suitable
distritution of some of these singular solutions along thre axis of symmetry of the
bucy. This will be demonstrated in the following sections.

4.  STEADY RCTATION OF PRCLATE SPHEROID.
Let us assure that the prolate spheroid
2 2

X 2 2 2
= +
a2

=1 ,p°=y" 442", azb (4.1a)

7
[4

o |

15 rotating around the x-axis with angular velocity @ in a viscous anc electricelly
conductirc fiow. The fccal length ¢ and the eccentricity e cof the sphercid are

related by

c=1(e -b') -ea,Czex<1. (4.1b)
The velocity vector of the spheroid is

U=0qe, XY = Q (-ze‘y + yez) . (4.2)

Now we construct the required solution of (2.4) and (2.5) by taking a line distribu-
tier of Oseensrotlets along the x-axis, between the foci, that is,

c

TG0 0= ) el (37, &) )at (4.3)
-C '

where t = t EX, end g(t)(c2 - t2) is the strength of the distribution. This

solutior catisfies the boundarv conditiorn at infinity. Applying the no-slip ccrdi-

tion (u. = 0) we obtain the following Fredholm equation for the function g(t)

c s o Ki{x-t-r)
g(t)(c-t e ' (1+k,r)

= dt . (4.4)
J 3

r
-C
The soluticr. of this equation will be cobtained using a perturbation technique for

smali velues of ki or equivalently, for small Hartmann number M. For this purpose
we write gq(t) as a power series in ki’ that is
g(t)=g (1) + g, (t)k; + g,(tIKE + go()KS + g (1)K} + 0(k3) (4.5)
9 3 IARTA TV ALEAT TN AL R VAL il :
Expanding the exponential function in the integrand and then equating the coeffi-
cients of different powers of ki leads to the following system of integral equa-
tions:

€ g (t)cth)

[ o dt = (4.6)
3
-c r
c ¢ L2 c 2 .2
g, (t)(c"-t%) g, (t)(c-t7)(x-t)
e 2 ; dt (4.7)
r ‘ r
-C -C
g, (t) (5t © 2.2
[ Trmat- - [ {55 engi(0) « Fien? - g () ar (4.8)

-c Y - r
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c 2 .2 c
S g (t) (e -t7) 2,2
[ - ( SC?EJ (-t)gy(t) + 3 ((x-132 - rPig,(¢)
-C -C
1 3 2, ,.3
‘e {{x-t)” - 3(x-t)r -+ 2r }go(t) dt (4.9)
ana

ARt
I
C

C 2
[ 55 Getgy(1) + F tten)? - g (t)
;
-C

+ % {(x-t)3-3(x-t)r2 + 2r3}91(t)

+ L et 60 )2+ g(x-t)r- 3rtig () dt. (4.10)

Equation (4.6} is the same integral equation which appears in the rotational
motion of proiate spheroids in Stokes tlow. Thus its solution is

2e -1
g(t) = 0 [7—7 ] (4.11)
- e
vhere L = log % f g . (4.12)

Next, substitution of (4.11) into (4.9) yields

f“ g, (1) (%)

—3 dt = 2 go(2e - LU)x . (4.13)
r
-C
To solve (4.13) we set
g;(t) = Ajt . (4.14)
So the integrated form of (4.13) is
Al(c“By | - By 3) = 2g.(2e - L)x (4.15)
where the functicns Bm p are defined by
’
c
T " ,
Bon = Tl (T 0Lz m L LS, (4.162)

-c
Trhey satisfy the recurrence relation

n-1 n
= [+ ) ! 1 ('1) \ n-1
Bm,n m-2 mz " R -z Y m2 Bm-Z,n-Z +xBm,n-l »n2? (4.16b)
2 1
r, - (x-c)
B]‘O = ]og m.). (4.16(:)
_1 ntc  x-cC
B3 o2 (r—-v7) (4.16d)
0 1 2
Bl,l =Ty - rptx Bl,O (4.16e)
_ 1
83’1 = FI -7 )+ 83’0 (a.16f)

where

ry = v (x+c)2 + pz » T = % (x-c)2 + p2 . (4.16h)
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On the spheroid surtace, equation (4.15) takes the form

2e R _ - -
Ay [ i : 1 4e - 3L ] X = ng(Ze L) .

Therefore,

. -1
A, - Zg (Pe-L) [ e +e-3L ] . (4.17)

1 C 2

1-e
By the <eme proceaure we solve equations (4.8), (4.9) ard (4.10). Curtailing the
dete.rs, we obta*n the foilowing solutiors:

a
92(1) - aZCO + Cth s (a.18)
_n -3 2 3 .
gz(t) = Dcc‘ 4 Dld + D3t (4.19/
ana

N 4 3 . Z,e 4 \
94(t = Eja + EBjatt + Eatt 4 Eqt (4.20}

where

-1
- Z 3 2
(. = [ 53___7 + 13e - §i§%§_lk ] { Ay (9e - §i§:%_lL} - gyle - il:;}lk} } (8.21a)

-1
2 2 2
_ | 2e 3-¢€ 3-e 1-e
co.[_..Q-L} [cz(se-_z_l)-Al(ge-_z_wo(e-g_n],(4.21,,)

-1
N PR I -
Do = - 5 9t [ = - | } , (4.223)

-1
, 2
D, - [ Ze sgne- 6.3 S(I3e) L] [ (20e - 18 &3 -2(5-3¢%) Ly,

2
- (e - 265 - 21%3—) Ly A & e3go] , (4.22b)

-1 "
_ | 2e 3 . 3(5-3e°)
D1 = [ I:;? + de - 3L ] [H1 - D3{-15e + e~ + == Ly) (4.22¢)
with
3 )
My = (4 - 12e + 2(3-2¢°)0L) €, + (de - 2)
2
v 3e - 283 - 3(—1;3—) LA+ % e3g0 , (4.22d)
and
-1
¢ o2e 307 113 .3 15 2 4
E4-’:l-—e.‘: +TE-T6-—Q(21-14€' +e)l.] L4, (4.233)
E-[ L, p1se . M6zeD)  yTho g 2105, 553
p= v Be-Ty— 3-8 ey
+ 3 (35 - 3002 + 3¢)L) ] . (4.23b)
. e 1-1
E1 = i t—~7 +de -3 0 Lo, (4.23c)
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R -1 3 L2y el
el 1) [ -E 2e- 18 ) (5e)
1l-e
3‘9? 1 52d)
-y {-3e v L], (4.23d)
where
2
B 15 13 .3 (1- )(-e) 3-e
I N R v L} +Dy( -3e+ =211
z
+C, { '% e + % e3 + % (l-ez)(3-e2) L} + Co {e- 159 L
Moz 53 3, 2.7 1.3
t g lze-3e’ - I(l-e LY+ £€9, (4.24a)
B ‘ 4 3
L, = Do (4e - 2L) - 5 €9 (4.24b)
U 2O |
Ly =D, (- P2 e+ 80, 3eb-2esle]) L}+D,{9e——rg3e L)
3~ 37 :
; R 2
+ 0y 1 % -Re® - 1 (1-ef)(9 - 2efL) 1+ cy € -e 228 1)
A . .
+ 5t -te v 5ed 4 3 S (1692 ) + 5 g (4.24¢)
. 175 275 3 _ 5 2 4
and L4-D3{—e-—-2— - 5 (35 - 30e° + 3e") L )
+ C { - 2— e + %3 e3 by (1-e2)(5-e2) L}
Fl 3 5.3 3, 22 9390
+—g{?e-2-e -I(l-e)L}-—TB— . (4.24d)

The value of the torque M experienced by the spheroid is obtained by adding
the torques exerted by the distributed Oseensrutlets, that is,

[ a
S - e ~ A.. €
Mi 8wy e, -é (c tg(t) dt

-2 d el (e 4 g e, (aky)?
st (ak)® 4 () + Led, + I elEg)(ak)t 4 0] (4.25)

The results for a sphere can be cubtained from the above by taking the limit as e
approaches zero, and those tor an oblate spheroia by replacing ¢ by ic and e by
ie(l-ez)i. Then by taking the 1imit as e approaches one in the latter, the results
for a circuiar disc are cbtained. Thus the torques exerted by a sphere of radius a
and by a circular disc of radius b are, respective]y, given by

Bo- -8 muad &, [1 + 15 (ak)? - 3 (ak) + Bg (ek)' (4.26)
and
Moo= - 32w g 01w d(ok)? - g (k)P e 57 (k)% (4.27)

Formulae for the torgues on the rotating sphere and rotzting circular disc about
its ciameter have been obtained previously by several authors [9,2] using different
techniques, up to the third order. Those results are special cases of (4.26) and
(4.27) when dki = bki = Mj2, while the fourth order term appear to be new.
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w

TRANSLATION OF PROLATE SPHEROID.
In this section the prolate spheroid (4.1) is assumed to have a uniform velocity
ng virected along its aris of symmetry. In this case the velocity will be obtained
by erploying a line distribution of Oseenslets in the e directicr with strength
t{x;, and a line distribution of mass sources with strength h(»} between the foci
of the spheriod. Thus the solutior will have the followirc functional expression
U5y = e, +_C;c f(t) U3°(x-T, €) dt
c
= f R TS(R-E) dt . (5.1)
-C
On the <urface of the spheroid the no-slip condition gives the follewing integrel
equation for f(t) and hi{t):

< —C —_ - P
-Ue, = _C{ f(t) B33(x-1, €) dt
¢ -
- n(e) TP (x-T) at . (5.2)
-Cc

hgain, for small values of ki we have

—0s ,— LT (F S LT(T S
U5 (x, €, U0 (x, ex) + Ul(x, ex) ks

o 3
+ (%, e )k + 0(k) (5.3a)
where
T, (X, 6) =r€, + 3. e (5.3b)
2 2
ToT oSy L Xr = x0 -t -
UO(X, ex} e + ——-2—';3— X (5.3C)
b, 5 - e’ Gen®uen) 5 (5.3d)
247 Tx or X 6 3 st :
r
The strengths f(x) and h(x) are assumed to have the Maclaurin series
£(x) = F(n) + £,00k; + F,00KF + 0(k3) (5.4a)
h(x) = hy(x) + hy(x)k; + hy()kZ + 0(k3) . (5.4b)

Substituting (5.3), (5.4), and (£.5) into equation (5.2), and equating the coeffi-
cients of like powers of ki’ we obtain the following system of equations:
c
— —— -_— _mS — — _ —
-cf [F 0 (x-T, &) - h (1) UP(x-E)] dt = - U e (5.6)

i _g‘c F(0) T(xE, ) dt (5.7)

C _—— - _——
U OT (T, &) - (1) TP (x-D)] at
-C

c —_ — _——
§ 0T (xE, &) - hy(t) T (x-1)] at
-C
c — —_—— —
- HWhGE ) vt

(x-t, e.)? dt . (5.8)
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To solve equation (5.6), we set
= = (
fo(t) Fo s ho(t) Hyt (£.9a,b)
where . ang H, «re constants to be found. Substituting (5.9) intc (5.6) and
m.ne €quation (5.6) has the following form
B30 " P B30 ¥ By ) +H (kB y - By S)Y e,

using tte function P
- 2
[F(?(BI,C‘ *

r - 1 oep = - Ue
+ \_Fo(x 83’0 83’1) + HO 83’1‘ pep Uex . (5.10)

Py rmaling use of the recurrence relatiorn (4.16b) and the values of BIr n on the

surfice of the prolate spheroid, equation (5.10) tekes the form

2~ 2.
b e, + ¢ xpe

;2 2e X p - 1 w= =
(- FC + ; ,‘HO)( 3 77 ) + [(LL - -e-)Fo- LOH('J ex = - U ex . (5.11)
1-e a” - e%x
This equaticn is saticfied if
2 2 [ 2 17
- -e
F o= > H = Ue 2e - (1+e%) L] . (5.12)
0 (1 - ee, [¢}

Foilowing the same procedure for equation (5.7) we find, after some computations,
that

fllt) =Flg+Fyt (5.13a)
and hl(t) =Hpgt Hipt + Hiot (5.13b)
where
F = :82 H = -2ea F2 (5.13 )
10 1- e? 11 U 'o°® (5.13c
b= 122 . att-ed)ize-(1-eP) . (5.13¢)
03T e a3 O
and
3 2,2
Fip = et fle L (5.13e)
e"[12e - 2(3-e) L]
The solution of equation (£.8) is ) o 10a)
- 5.14a
f,(1) = Fpg + Fpy £+ Fpp t°,
2 3
- ¢ .14b
ho(t) = Hag + Hyp t + Hpp t7 + Hyg 7, (5.14b)
where
el 2 .
ae(1-e“) {-10e + (5-e )L}F0
H,, = —~ 5 (5.15a)
22 (ge+(3-5e%)L}i-2e+(1+3%)L}
22e4138e3- 18¢ + (9-22¢2+ 5e)L} ’ (5.150)
F, = .
21 3(1-e2) (-2e +(1+e2)L}{6e-(3-e)L)
3 4 L2, 2
12e5 - 6o + (3-2e2-¢") L} F +3el-zeP4(1-e%) (L -3)LIFy, 5101

2
1-e )
Mo, = .

23 (36 6e%+ 2et - (6e - 5e+ )L + 3 (1-e2)2L°
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{9e Lg—%»—l- }H2 = F + {e-(l-ez)L}F11

2 ,(5.15d)
8e - (4 - 2e°)L
1 2.2 a? 3 .5
Fog = - 3€72 Fpo [ =— {1 -6e + 16e” - 1Ze” + 3(1-¢? L)F
18e
-2e3dF B'{ -6e + ze3 + (1-e°)(3-e°)L IF 1 2e- (1+e2)177} (5.15€)
M, = at {(1-e9)2F, + e, + de(1-e2 )y (5.15f)
20 * -~ Te 10 27 , .

T
S
n

be*
By super position of (3.5), the force experienced by the spheroid is

2 4 P
l-e le Z2.¢
21 (—-ﬁ) [ 6F20 —?-l— F + 3a (1 -e ) 1 ( 42)H:3 + 6e“a F22 ]. (5.15h)

_ c _
Fy = -8m _C{ f(t)dt e, (5.16)
= -16m aleF + eFjoks + (eFpg + 5 a2e Fpp)kl + 0(K3)1 e, . (5.17)

Following the procedure of section 4, the forces exerted by a sphere of radius a
and a circular disk of radius b are given by

Fo=6m Ual 1+3 (ak) - po (k)2 + 0(ak )% 3 &, (5.18)
and
12412 2 3,
TFyo= 16u bU( 1+ 2 (ak ) + —2)(ak )2 +o(ak)y e, . (5.19)
12

Results (5.18), (5.19) agree up to the first order with the known results [2],
while the second order term appears to be new.

Another interesting 1imiting case is the elongated rod, in which the slenderness
ration ¢ = %3 is small. In this case the force is given by

Foo s [ 1,2k (kD) 1 3]s
Femme Ll-lgr - g et 0lk) le . (520

6.  NON-CCMDUCTING FLUID FLOW.

For a non-conducting fluid we have Rm = 0, and therefore M = 0, hence the
system of equations (2.4, 2.5) breaks down into two uncoupled systems of equations
each associated with one of the roots (0,R) of equation (2.6).

The first system is

v P
V. 0
which describes the steady Stokes flow, thus all the previous results in Section 4
and 5 reduce to that of CHWANG and WU [6,7], by putting ki = 0.

Seccndly, the system associated with the root R is

<l =)
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WU 2 -
R 2 =-v Pavy
ve.eu =0

which governs the stesdy Oseen flow.

For *his type of flow the results of section 4 and 5 with ki = R/2 are
believed to be new, apart from the limiting formulas (4.26), (4.27), (5.18), ana
.£.19) which agree up to the first order with Lamb [1C). Finally, formule (5.20) for
the slender bodies concides with the formula derived by Dorel [11].
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