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ABSTRACT. At first conditions are given for existence of a relative integral basis
for OK = OE-I ® | with [K;k] = n. Then the construction of the ideal I in

0K = 0:—1 ® | is given for proof of cxistence of a relative integral basis for
0K4(ﬁni, ﬁﬁé )40k(ﬁﬁs). F;nully gxistence and construction of the relative integral
basis for Oko(ﬁ1,/—3) /OkJ(/h),nkb(%m, /=3) /Okz(/:S) for some values of n are given.
KEY WORDS AND PHRASES. Fin/tely gencrated modules, ring of integers, ideals, relative
diseriminant, class numbers.
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1. TNTRODUCTION

Throughout this article the following notation will be used:
Q: field of rational numbers
Z: rational integers

k,K (QC kCK): algebraic nuwber (ields

disc(x): discriminant of element x

DK/k: relative different of extension K/k

ij =04 ring of intepers of ki

hk : class number for k

P.I.: principal idcal

NK/ka: relative norm of an ideal a in K for extension K/k.

2. FINITELY GENERATED MODULES
In (1, p. 24]) it was shown that if M is a finitely generated module over a

Dedekind ring R then
M2R"eA®TI, (2.1)

where 1 is an ideal in R, A is a torsion-submodule and m is a positive integer.

Now for extension K/k with |K;k] = n, by (2.1) we have
. -l (2.2)
“K 2 nk e 1

so by this we have:
’ 0K has relative integral basis

FHEOREM 2.3, 1n the extension K/k for K3kl = n,

over 0, <=» I = p.L.
k
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TLLUSTRATION 2.4, let k| = 0(/’), k = Q(/—7) Does a relative integral basis
of ()(/2,/47)/0.1 = 0(/=14) exist? osec :llno 121.
SOLUTION . By (2.2), a "relative integral basis" exists <==> 1 = P,I,, othervise
not.
2-1

We will construct an ideal T in ij where 0K Ok1 @& I. Since (dKl’dKZ) =

(2+4, -7) = 1, then using a theorem given in {3, p. 218],

l;fz_J" L’ 1+/-7 ! [- Vi 11/7’1@3&.(;;11]2 ’

‘ _ L /_](” h/—- , /)+v-]4J 2 [ /‘1 ®R,

where R is an 0, -module,

~
j=
=
L}

-
<
[

k
R= [}—H;/_Z + s+ t/-14, !2-—%@ +u +v/——17;] s (2.5)
/=14 R C R.
R= /4R = [;——f—“!f'»‘i’ff-—'z-/-g + s/-14 + -14t, =7 + /=7 + u/-14 + ‘IA\ZI (2.6)

We take (2.5) and (2.6) proportional; then

1+ V<7 + 25 4 20714 = =7 + /<7 + u/S14 + =l4ev
25 + 2e/-14 = -8 4+ u/~14 + -14v

u=2t, s=-8+-14v, for u=v=t=0, s=-4,

VUG + =7V2 + 25/<14 - 28t = (V2 + V=7 + 2u + V=14)+ -7
-28t + /=14 (142s) = -14u + =7/=14 (1 + 2v)
u=2t, 12s=-7(1+2v) , for u=t=v=0, s=-4,

Then,
477 VIvATA 7+ 7 S+ G
O i T I B e
2 2 2 2
- 9/ - 7/-1% 27 - 14
VAT P!-“”“-ZJ-{“”‘“ , 251 -—-'ﬂ - [111_/2;_.63_4 A /_—7],
R= ./tlé..!.;z;;i?.? S 12,/-141, k= 1= (2,/%] is an ideal in 0 = (1,/514)-z .

Since 1 = [2,/-14] is not P.l. in O3 then 0K does not have a relative integral

over 03. The ddeal 1 = 12,.—|4| is unique (up to equivalence of ideals).
The wethod of the previous theorem is only good for the case n = 2 since for
n > 3, computation of an ideal in Ok = Oz-l ® 1 is too difficult. Thus we neced a

relation such as the following between T and one of the invariants in the extension
K/k.

THEOREM 2.7. [f C is the class of ideals in k containing d and CK/k is a

K/k
class containing I, then
2
C = CK/k .

Now we will give the "eriterion for existence of a relative integral basis", for
the extension K/k. See Norkicwicz et al. [1,4,5,6].

THEOREM 2,8, Let [K:k] = n, hk = odd, then 0K has a "relative integral basis"
over Ok <=> dK/k (relative discriminant) is a principal ideal. TFor more details see
{1, p. 359].
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PROOF, =>: 1If OK/Uk has a relative integral basis, T = P.1. Therefore by
Theorcm 2,7 dK is P.I.

=g dK/k = P.I., so cvery ideal in the class of L is P.I. Therefore 12= P.I.,

K/k
since (2,hk) = 1. Then =P .1, and by (2.2), ¢ hns a relative integral basis
over Ok.
’ C o = p = ia . =
COROLLARY 2.9. If Ok P.L.D., then hk 1 is odd and dK/k P.I. Thus by

Theorem 2.8 for cvery finite extension of k where the ring of integers is its
P.1.D., a relative integral basis e\lth.

(LLUSTRATION 2,10, Lt k, = Q(PTI) and k = Q(/S3), K, = QGF3,9213), ny = 21.
Does a rclative basis of 0Oy o/ exist or not?

We know that for n=ah2, (1 b) =1, ab #1 in k3 = Q(}H),

Ty 3y
()3 = [l,ﬁnb ,ﬁazbg]-x for a £+ b mod 9, and
: 5 2 P —
3 35
0y = [“0 = tt~£3b 3+ Ya’h , vab®, Va b:] for a = b mod 9 .
We call these two cases respectively Type T and Type 11, 3 = (/CS)Z kZ’
In Type I, 3 = 3?1 , 3]2' =3, 3?| = /3, 503 = 313 and we define f = 3ab.
. _ a2 52 02 22 . = . . =
In Type 1T, 3= 37137,315 5 31 = 35 5 375°3)5 = 31 5 31;°31,73,5 /=3, so
2. . . _ 22 _ _
3= 3| 52 and we  define fu = ab. 6/3 ll’ d6/3_ 311 = 31 N d6/3 = 3] =
1
(-3,7213).  Sce [5, p. 221]. By Theorem 2.5, since h3 is odd and

dgsg = (=3,721% =6) = (=343,9213 =6) = (J213 =6) is a P.I., so a rclative integral
basis exists.

Incidentally in (3.1) we will prove that if 3 I h.3 then 06 has a relative
integral basis over 03, but here h3 =21 so 3|h3 and also a relative integral
basis exists.
3. EXTSTENCE OF A RELATNIVE INTEGRAL BASIS: .

BY SOME CONDITIONS ON n FOR 06(?/5, /<3) / 03(‘}6).

Now here we will show that for some n € z this extension has relative integral
basis.

THEOREM 3.1, 11 3 [ h}, then UKb has relative integral basis over O3 for
Type 1.

PROGF. By Theorem in [7, p. 222}, 06 has a relative integral basis over
O3 <= 6/j/ /-3 = / /=3 = 1/) is a P.1. in O6 generated by an element of k
But 3[ = (-3, %1 + I) whcn 3 I 1b and 3[ = (-3, %n when 3|ab in Type I
and (3) = J ) lor Ipr 2,

Now, 3 1 h so 307 = (3,50 + D> = (3) or 3% = 3,97 = (3 for p.1.,
so: = (-3, }n +1) nr (- 3,}n) =3 is P.1. Then 1/3 also generates a P.I. in Q

1
In Type 1L, (3) = .3, ), it is dependent on ideals 3 and 32 ; therefore in this

6"

case, a relative busls may cxisl or may not exist.

But it may be that 3|h and again 06 has relative basis over 03. For example

3
in k = Q(}Ql}), 3 21 and 31 = (}l)} - 6), so 3| 21 and a relative integral basis
uxlblﬁ. Thercefore the inverse of Theorem 3.1 is not true in general.

HURA S Bas showd 1T 18] 1ol L3 E Q(}n):
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THEOREM 3.2. Oae of the following statements holds:
1) n=13
2) n=p, p=prim , p 2 -1 (mod 3)
3/ h3 <=>4¢ 3) n

3p or 9p, p = prime = 2 or 5 (mod 9)

4) n = p+q (p,q are primes), p = 2 and q 2 5 (mod 9)

5) n pz-q (p,q are distinct primes), p2q=2 or 5 (mod 9).

DEFINTTION 3.3. A number n is called a Honda number if it is a number in the
table for Theorem 3.2,

By Theorems 3.1 and 3.2 we have:

THEOREM 3.4. 1f n is a Honda number in type I, 06(93, /=3) necessarily has a
relative integral basis over O. (}h)
4.  RELATIVE INTEGRAL BASIS 01 Ok %, ,/—3)/0,(3(%)

We proved in Theorem 3.1 that 1[ 3 I h3 , then 31 is P.I. only for Type I.

Therefore a relative intepral basis for 06/03 exists, since by the theorem in

LK 3+/3
. 2 , 2|
[3, p. 2011, dlsc[l, »~~3—M—J = dK k. 31 . Therefore |1, 3 is a relative
1 6" "3 1
integral basis for 06 over (),3 , SO¢

5. CONSTRUCTION OF KELATIVE INTEGRAL BASIS FOR O (¥n, /3)/0 (/=3).
Since 0 (v—j) is P.l.De, then by (2.3) O (%\,/~§)/O (/—3) has a relative

intepral b.l., it

3

THEORIM 5.1. let A = -<--—d=—-— . Tor Type 1 and 3. is a P.I., if 3]a then
(3+/=3) !
0, = [1,
and if 3|b then
O¢ = 1, - .

3,2 2
[ Since & i A in O tl are integers.
PROOF. Since Nb/l( /nb /4) and N6/2( /a“b/x") are in ,» then are g
1f d6/2 = disc(l, vub /) 3/a b/A )'02, then by the theorem in [3, p. 201]
x = [1, 3/ub /A, 3/a h/) is a relative integral basis of 06/02’ so we are going

to compute disc(x).
)y ¥3o,2 2
1, Vab“/y Va“b/A

-
disc x = 1, » /ubZ/l' s p2 |/a2b/«\'2

9 375 3
1, PZ /uhz/X" s, P /uzb/l"z

32 5 1 |2
. 1 1 .
=y CHE 2 gy 2
4 6 1 1
3.2 ) )
3] 310 P
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] is a relative

2 76
= (ab)”" - (3+7=3) 7 32(3' 2
o6 18P
2
= 32082 .
2 375, 3% 9
For "Type I' we have d()/'i = I") = dis¢ x, s0 x = [l,v/.'ll)—/)\,/;l b/A~
integral basis ol 1)6/()’. scee Colm et al. [7,9,10].
TLLUSTRATION 5.2,  For K,; = ()(}"’l 3), the ideal
(Type I, 3|a), so o
3 } N
_ V2173 213 ./213 6
Og = |1 =757 Tyt 02 , where A= — .
6 | I —(3+f3)
We have to mention that il '%I is not a P.l., this is gtill an open question,

for 3 | ab and

(5.4)

b= 3k+1 and

2

3 :
THEOREM 5.3,  Assume l‘; = Q(/:llrz), 3) = 3? = (v/all)z + n)3,
"Type [", then: . o 3o
/.1[)2 + - /=3 }abz + /azb + tl"
o, =1, R Mo ST I (NN
K() ) 'il 31 ) k2
where tl =0 for a = 3k+l and b = 3k+2 or conversely and t] =1 for a=
t] = -1 for a = b = 3k+2.
PROOF. Now .
’.. — ,2 N 3.... .i —.__
/ab® 4+ n - /-3 Vab® + /a b+t
-, o e =
}l I 3] 2
are integrals because Nl\ /k (u ) and NI\ /l\ (uz) are integers. We take x = [1, o ;12]
and 12 4= V-3 - s —
anz + t, /ab + /1 b + t
by g
- —_ R
o Vab® + ot }ab2 + p2 /azb +t
. B 2 1
dise(x) = L s C R N
1 1
3% 2 3% 35
/zh +t2 p° Vab® 4+ p Va b+t]
1 : S e T
3l 31
3775 35 2
3| Jab™ 4 L, Vab + t,v‘
- -
1 ) 32 2
= 5 3; po Yab® o+ t2 p” Vab + t,3
} ; . 3._-,_.
o 2 5.2 2
31 p° Vab® + e, p vab + £y
for t:3 = t] - t2

disc(x) = {1 < (pab+ ot 1

"t .
+ 3] (p db+ c2

2
", . .
+ 3' (p ubf—t3

disc(x) = [_f 3n:1|>.-z + 3nabp + Jabpt,, - 'Szlhpzl,, o -

For t, =+ a - /=3

2

3
/;lhz +t

—

1
/a b+ t,3p2

2 2

we have

Vab” +t2‘c3

2 2 32
ih +L2u Jab+ Lz't3-o ab-p t2'/zn b

35
(12 /112|)+ t, ’t,}- p ab-t

-pab-t

2

1

2

w

3
/azb-pt /1[) +t 'tj)]

—
-t p2 /nbz- tyrty)

/ab -t -/a b-t -t)

101

_an 12 an 2_ n2 2_ ' \2
3 p)+3] (3];) 3]p)+3] (3]p 31p)1

.
= (/203 -6) is P.1. and 3|ab’

wl,_.
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disc(x) = l;mub(p -p)=3abr, (( '—.;) = 31I)(p —p)(n -t )- 3ab(p -p)(n- n+ /.3)]

2 '}z 2

disc(x) 1/3 © 37 e a"h"t . 3

disc(x)

L}
-
S
.
-

2 2 _ .
since ‘IK()/k-y = f(‘) = (3ab)” = disc(x) .
Thus (5.4) is a relative intepral basis for ()K() over Oy,

Also we have the same result for the case t2 =-n- /3.

TLLUSTRATTON 5.5. (1) If ky = ()(‘.72'), 3, = (%Jr 1) then n = 1 and a = 3k+2,
b = 3k+l, so t] = 0. Therelore:

(1) 0 = |1 }2 1= ’/f'; }2 f..'/;/‘ +0 .
Ke | 3 3 ky
@) Fork, = a5y, 3= (5-2), n=-2and t = 0. Ve have
r- 3 _
0 = |1 /}: .2-:_..,(-.3 ‘/5 i'___}gé_i 0 .
, 3 H] .
% | 3 3 ky

For all Honda numbers 3! is necessarily Pol. so for such n we can construct a

relative integral basis as in (5.4) for OK(/KZ.
)

THEOREM 5.€.  The relative integral basis in "Type 11" of 0, over 0, is:
1\6 1\2

379 3
Vab? - 1 1+ v /ab "+ /azb ]

0, = {1, == z5--, —— 0 .
l\6 /= 3 J k2 -
v :
PROOF. For "Type 11" (i.c. a = ¢ b mod 9), B = 1% vab ab * /\ b_ satisfies in
3 2 I-ab _ l-a+a” Zpan2 3
cquat ion 00 - OO + 00 C oyt T Oy R 0__1_ so then it is an integral and also

(};II)Z - 1)/V-3 is an integral, because: From (}.\h - 1)/Y/<3 = t, we have

(}“bz)3= (/-3 e+ ])3’ so -3/-3 (t3—l.) = ab?-1+9t% and at last we have the equation:
5 b
6, (b, (=D’ 2. (1+2ab°)

t o+t 237 + ToogTeet = 0 which shows t is an integral. We take
x = [1,t,0.], then
0 -~ 35 35 2
9
1 B UVl 2% S
/-3
373 YT, 257
fsc(x) = p._Yab” -1 1 +p Vab” +p% Va'h
disc(x) 1 iy 3
35 3— fp—
Lot o 14 p? Vant +p Valh_
V-3 3

"

0 - 0 — 0y 35 72
- ["_ G2 b= 1 a2 e e Fan2o1- 02 TanZe 1)+ —0 (o Jap? 1-/ab2+])1

3 /3 3f-3 3/=3
_ 2 .
disc(x) = ;3_"_‘_’.(1“..9_)] = nzbz. Since d, ,, = f2 = (z-lb)2 = disc(x), then
3 /3 l\6/1\3 0
7 370 3y -
[— /db -_! s ~»—/i‘l)' t!‘} b+l J is a relative integral basis of 0K /0, .

6 "2

TLLUSTRATION 5.7. For k,} = Q(}ib), a #4 bmod 9, so

3. 3... 3%
0 = |1 /i() -1 _}_]..Q_ j_.’/lg.z_... 1 .« 0
K6 ’ f‘} ? 3 J k2 *
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Here we will give another theorem for computing a relative integral basis of 0K6
over Op, for + n = 3t+ 1 no matter whether 3, is a P.I. in O or not,

1\2 = 1 k 3.

THEOREM 5.8. lLet no= 3t+ 1, m = -n  be square-frec in k = Q( n) for Type I,

then 3
- - 2 3 p—
14+ Yo - 3727
0, [ A R\ -0,
}\() - /-3 "J kZ
or } / 3 -
_ | 1=Vm+ m ~ - .
()Kb = [ /_ , /o, /m :‘ _i)k‘_ .
PROOF. At first we will show that t = (1+}P+ /n y//=3 is an integral.
We take .
_ (l—}h)(l-l»}'n + 'vj/nz) (a-n) - t/=3 ‘3/'-1 ((]-n)-g/——3)3 =n
= S TARIIR I Pl S S s Az =tv=5) s
A+dhy- =/33 - /3¢ 363-/73
3 L, 9 -
=m0 33 = 3+ V=3 (1-m)° = 9%(ten) = ne’ + 3/3 = o,

[ 00 - 3a-m® - ]2 = = aen® + 02a-m]?

or brictly:
4 2
- 270-m %0 St a-mtem - 9c?a-mt - a-mf -0,

1-n)2 _n)4
& 4 o 4 -(}--39)—‘ e —(—L;—)- =0,

which shows that t is an integral. Now we take

-
e [rehet? 3 52,

N
3. 3,2 — 2
. /) 3
l Lt /ot i /2 |
/-3 3+
. » 35 -
. 1+ p }'n +p° n© 3 232
disc(x) = == B ——j.;’l,—_ —— p/n p° vn
I + .) I/n+ p__Vn p2 Jn o /n

3.3 3
- nZ[ltfz‘_‘r_ IS o Toep? Il 2 pr_z_}n_te../_r!. (02-9):]2

(b™=p)+ = : s (pT-p) + '
/=3 V=3 /=3
2 2
=l [9——}9 (3+0+ 0)] = 3202
/=3 2
Since (/Z = (3n) = disc(x), then
o, ::(l+v/n+/n }fl,/n :l. .
Ko /3 2
We can apply the same proot for m = -n.
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