RELATIVE INTEGRAL BASIS FOR ALGEBRAIC NUMBER FIELDS

MOHMOOD HAGHIGHI

Department of Computer Science Bradley University Peoria, Illinois 61625 U.S.A.

(Received January 23, 1985 and in revised for March 26, 1985)

ABSTRACT. At first conditions are given for existence of a relative integral basis for $O_K = O_k^{n-1} \oplus I$ with [K;k] = n. Then the construction of the ideal I in $O_K = O_k^{n-1} \oplus I$ is given for proof of existence of a relative integral basis for $O_{K_4}(\sqrt[n]{n_1}, \sqrt[n]{n_2})/O_k(\sqrt[n]{n_3})$. Finally existence and construction of the relative integral basis for $O_{K_6}(\sqrt[n]{n_1}, \sqrt[n]{n_2})/O_{K_3}(\sqrt[n]{n_3})$. $O_{K_6}(\sqrt[n]{n_3}, \sqrt[n]{n_3})/O_{K_6}(\sqrt[n]{n_3})$ for some values of n are given.

KEY WORDS AND PHRASES. Finitely generated modules, ring of integers, ideals, relative discriminant, class numbers.

1980 AMS SUBJECT CLASSIFICATION CODE. Primary 12A30, 12F05.

1. INTRODUCTION

Throughout this article the following notation will be used:

Q: field of rational numbers

Z: rational integers

k,K ($Q \subseteq k \subseteq K$): algebraic number fields disc(x): discriminant of element x

 $D_{K/k}$: relative different of extension K/k

 $o_{k_i} = o_i$ ring of integers of k_i o_{k_i} : class number for k

P.I.: principal ideal

 $N_{K/k}a$: relative norm of an ideal a in K for extension K/k.

2. FINITELY GENERATED MODULES

In [1, p. 24] it was shown that if M is a finitely generated module over a Dedekind ring R then

$$M \cong R^{m} \oplus A \oplus I$$
, (2.1)

where I is an ideal in R, A is a torsion-submodule and m is a positive integer. Now for extension K/k with $\{K;k\} = n$, by (2.1) we have

$$O_{k} = O_{k}^{n-1} \oplus I$$
 (2.2)

so by this we have:

THEOREM 2.3. In the extension K/k for [K;k] = n, 0_K has relative integral basis over $0_k \iff I = P.I$.

ILLUSTRATION 2.4. Let $k_1 = Q(\sqrt{2})$, $k_2 = Q(\sqrt{-7})$. Does a relative integral basis of $Q(\sqrt{2}, \sqrt{-7})/Q_1 = Q(\sqrt{-14})$ exist? see also [2].

SOLUTION. By (2.2), a "relative integral basis" exists <==> 1 = P.I., otherwise not.

We will construct an ideal I in 0_{k_3} where $0_K = 0_{k_3}^{2-1} \oplus I$. Since $(d_{K_1}, d_{K_2}) = (2\cdot 4, -7) = 1$, then using a theorem given in [3, p. 218],

$$O_{K} = \begin{bmatrix} 1, \sqrt{2} \end{bmatrix} \times \begin{bmatrix} 1, \frac{1+\sqrt{-7}}{2} \end{bmatrix} \cdot z = \begin{bmatrix} 1, \sqrt{2}, \frac{1+\sqrt{-7}}{2}, \frac{\sqrt{2}+\sqrt{-14}}{2} \end{bmatrix} \cdot z ,$$

$$O_{K} = \begin{bmatrix} 1, \sqrt{-14}, \frac{1+\sqrt{-7}}{2}, \frac{\sqrt{2}+\sqrt{-14}}{2} \end{bmatrix} \cdot z = \begin{bmatrix} 1, \sqrt{-14} \end{bmatrix} \oplus R ,$$

where R is an O_k-module,

$$R = \left[\frac{-1 + \sqrt{-7}}{2} + s + t \sqrt{-14}, \frac{\sqrt{2} + \sqrt{-14}}{2} + u + v \sqrt{-14} \right], \qquad (2.5)$$

√-14 R C R.

$$R = \sqrt{-14} R = \left[\frac{\sqrt{-14} + -7\sqrt{2}}{2} + s\sqrt{-14} + -14t, -7 + \sqrt{-7} + u\sqrt{-14} + -14v \right]$$
 (2.6)

We take (2.5) and (2.6) proportional; then

$$\begin{cases} 1 + \sqrt{-7} + 2s + 2t\sqrt{-14} = -7 + \sqrt{-7} + u\sqrt{-14} + -14 \cdot v \\ 2s + 2t\sqrt{-14} = -8 + u\sqrt{-14} + -14v \\ u = 2t, \quad s = -8 + -14v, \quad \text{for } u = v = t = 0, \quad s = -4, \end{cases}$$

$$\begin{cases} \sqrt{-14} + -7\sqrt{2} + 2s\sqrt{-14} - 28t = (\sqrt{2} + \sqrt{-7} + 2u + \sqrt{-14}) \cdot -7 \\ -28t + \sqrt{-14} (1+2s) = -14u + -7\sqrt{-14} (1 + 2v) \\ u = 2t, \quad 1+2s = -7(1+2v), \quad \text{for } u = t = v = 0, \quad s = -4. \end{cases}$$

Then,

$$R = \begin{bmatrix} \frac{1+\sqrt{-7}}{2} - 4 + 0 & \frac{\sqrt{2}+\sqrt{-14}}{2} \end{bmatrix} = \begin{bmatrix} \frac{-7}{2} + \sqrt{-7} & \frac{\sqrt{2}+\sqrt{-14}}{2} \end{bmatrix}$$

$$\sqrt{-14} R = \begin{bmatrix} \frac{-7\sqrt{2} - 7\sqrt{-14}}{2} & \frac{2\sqrt{-7} - 14}{2} \end{bmatrix} = \begin{bmatrix} \frac{17(\sqrt{2}+\sqrt{-14})}{2} & -7 + \sqrt{-7} \end{bmatrix},$$

$$R = \frac{\sqrt{-14}(1+\sqrt{-7})}{2\sqrt{2}} \cdot [2,\sqrt{-14}], \quad R = 1 = [2,\sqrt{-14}] \text{ is an ideal in } 0_k = [1,\sqrt{-14}] \cdot z.$$

Since $1 = \{2, \sqrt{-14}\}$ is not P.1. in 0_3 , then 0_K does not have a relative integral over 0_3 . The ideal $1 = \{2, \sqrt{-14}\}$ is unique (up to equivalence of ideals).

The method of the previous theorem is only good for the case n = 2 since for $n \ge 3$, computation of an ideal in $0_k \cong 0_k^{n-1} \oplus I$ is too difficult. Thus we need a relation such as the following between I and one of the invariants in the extension K/k.

THEOREM 2.7. If C is the class of ideals in k containing $d_{\mbox{K/k}}$ and $C_{\mbox{K/k}}$ is a class containing I, then

$$c = c_{K/k}^2$$
.

Now we will give the "criterion for existence of a relative integral basis", for the extension K/k. See Norkiewicz et al. [1,4,5,6].

THEOREM 2.8. Let [K:k] = n, h_k = odd, then 0_K has a "relative integral basis" over $0_k \iff d_{K/k}$ (relative discriminant) is a principal ideal. For more details see [1, p. 359].

PROOF. =>: If o_K/o_k has a relative integral basis, I = P.I. Therefore by Theorem 2.7 $d_{K/L}$ is P.I.

<=: $d_{K/k} = P.I.$, so every ideal in the class of $C_{K/k}^2$ is P.I. Therefore $I^2 = P.I.$,
since $(2,h_k) = 1$. Then I = P.I. and by (2.2), 0_K has a relative integral basis
over 0_k .

COROLLARY 2.9. If $O_k = P.1.D$, then $h_k = 1$ is odd and $d_{K/k} = P.I$. Thus by Theorem 2.8 for every finite extension of k where the ring of integers is its P.I.D., a relative integral basis exists.

HLLUSTRATION 2.10. Let $k_3 = Q(\sqrt[3]{213})$ and $k = Q(\sqrt{-3})$, $K_6 = Q(\sqrt{-3}, \sqrt[3]{213})$, $k_3 = 21$. Does a relative basis of O_{K_6/k_3} exist or not?

We know that for $n=ab^{2}$, (a,b) = 1, $ab \ne 1$ in $k_{3} = Q(\sqrt[3]{n})$,

$$\begin{aligned} & O_3 = \left[1, \frac{3}{4}ab^2, \frac{3}{4}a^2b\right] \cdot z \quad \text{for a } t \pm b \mod 9 \text{ , and} \\ & O_3 = \left[\frac{3}{4}ab^2 + \frac{3}{4}ab^2 + \frac{3}{4}a^2b\right] \cdot z \quad \text{for a } b \mod 9 \text{ .} \end{aligned}$$

We call these two cases respectively Type I and Type II. $3=(\sqrt{-3})^2$ in k_2 . In Type I, $3=3_{11}^6$, $3_{11}^2=3_1$, $3_{11}^3=\sqrt{-3}$, so $3=3_1^3$ and we define $f_0=3ab$. In Type II, $3=3_{11}^23_{12}^23_{13}^2$, $3_{11}^2=3_2$, $3_{12}\cdot 3_{13}=3_1$, $3_{11}\cdot 3_{12}\cdot 3_{13}=\sqrt{-3}$, so $3=3_1^2\cdot 3_2$ and we define $f_0=ab$. $P_{6/3}=3_{11}$, $P_{6/3}=3_{11}^2=3_1$, $P_{6/3}=3_1=3_1$,

Incidentally in (3.1) we will prove that if $3 \nmid h_3$ then 0_6 has a relative integral basis over 0_3 , but here $h_3 = 21$ so $3 \mid h_3$ and also a relative integral basis exists.

3. EXISTENCE OF A RELATIVE INTEGRAL BASIS: BY SOME CONDITIONS ON n FOR $O_6(\sqrt[3]{n}, \sqrt{-3}) / O_3(\sqrt[3]{n})$.

Now here we will show that for some $n \in \mathbf{z}$ this extension has relative integral basis.

THEOREM 3.1. If 3 / $\rm h_3$, then $\rm \,^{O}K_6$ has relative integral basis over $\rm ^{O}3$ for Type 1.

PROOF. By Theorem in [7, p. 222], 0_6 has a relative integral basis over $0_3 \iff 0_{6/3} / \sqrt{-3} = 3_{11} / \sqrt{-3} = 1/3_1$ is a P.1. in 0_6 generated by an element of k_3 . But $3_1 = (-3, \sqrt{n} + 1)$ when 3 / ab and $3_1 = (-3, \sqrt{n})$ when 3 / ab in Type I and $(3) = (3_1 - 3_2)$ for Type 2.

Now, $3 / h_3$ so $(3_1)^3 = (-3, \sqrt[3]{n} + 1)^3 = (3)$ or $(3_1)^3 = (-3, \sqrt[3]{n})^3 = (3)$ for P.I., so: $3_1 = (-3, \sqrt[3]{n} + 1)$ or $(-3, \sqrt[3]{n}) = 3_1$ is P.I. Then $1/3_1$ also generates a P.I. in 0_6 . In Type II, $(3) = (3_1 \cdot 3_2^2)$, it is dependent on ideals 3_1 and 3_2 ; therefore in this case, a relative basis may exist or may not exist.

But it may be that $3|h_3|$ and again 0_6 has relative basis over 0_3 . For example in $k_3 = Q(\sqrt{213})$, $h_3 = 21$ and $3_1 = (\sqrt{123} - 6)$, so 3|21| and a relative integral basis exists. Therefore the inverse of Theorem 3.1 is not true in general.

bondi has shown in [8] for $k_3 = Q(\sqrt{n})$:

THEOREM 3.2. One of the following statements holds:

DEFINITION 3.3. A number n is called a Honda number if it is a number in the table for Theorem 3.2.

By Theorems 3.1 and 3.2 we have:

THEOREM 3.4. If n is a Honda number in type I, $0_6(\sqrt[3]{n}, \sqrt{-3})$ necessarily has a relative integral basis over 0,(7n).

RELATIVE INTEGRAL BASIS OF $o_{K_6}(\sqrt[3]{n},\sqrt{-3}) / o_{K_3}(\sqrt[3]{n})$.

We proved in Theorem 3.1 that if 3 l h₃, then 3₁ is P.I. only for Type I. Therefore a relative integral basis for $0_6/0_3$ exists, since by the theorem in

[3, p. 201],
$$\operatorname{disc}\left(1, \frac{3+\sqrt{-3}}{2}\right) = \operatorname{d}_{K_6/k_3} = 3_1$$
. Therefore $\left[1, \frac{3+\sqrt{-3}}{2}\right]$ is a relative

integral basis for 0_6 over 0_3 , so:

$$0_{K_6} = \left[1, \frac{\frac{3+\sqrt{-3}}{2}}{\frac{3}{1}}\right] \cdot 0_{k_3}$$

CONSTRUCTION OF RELATIVE INTEGRAL BASIS FOR $O_6(\sqrt[3]{n},\sqrt{-3})/O_2(\sqrt[3]{-3})$. Since $O_2(\sqrt[3]{-3})$ is P.1.D., then by (2.3) $O_6(\sqrt[3]{n},\sqrt{-3})/O_2(\sqrt[3]{-3})$ has a relative integral basis.

THEOREM 5.1. Let $\lambda = \frac{3_1}{\frac{1}{2}(3+\sqrt{-3})}$. For Type I and 3_1 is a P.I., if 3|a| then $0_6 = \left[1, \frac{3ab^2}{\lambda}, \frac{3a^2b}{\lambda^2}\right] \cdot 0_2$

and if 3 b then

$$0_6 = \left[1, \frac{3\sqrt{ab^2}}{\lambda^2}, \frac{3\sqrt{a^2b}}{\lambda}\right] \cdot 0_2$$
.

PROOF. Since $N_{6/2}(\frac{3\sqrt{ab^2}}{\lambda})$ and $N_{6/2}(\frac{3\sqrt{a^2b}}{\lambda^2})$ are in 0_2 , then are integers.

If $d_{6/2} = disc(1, \frac{3}{4}ab^2/\lambda, \frac{3}{4}a^2b/\lambda^2) \cdot 0_2$, then by the theorem in [3, p. 201] $x = [1, \frac{3\sqrt{ab^2}/\lambda}{3\sqrt{a^2}b/\lambda^2}]$ is a relative integral basis of 0.6/0.2, so we are going to compute disc(x).

disc x =
$$\begin{bmatrix} 1, & \frac{3}{\sqrt{ab^2}/\lambda}, & \frac{3}{\sqrt{a^2b}/\lambda^2} \\ 1, & \rho & \frac{3}{\sqrt{ab^2}/\lambda^2}, & \rho^2 & \frac{3}{\sqrt{a^2b}/\lambda^2} \\ 1, & \rho & \frac{2}{\sqrt{ab^2}/\lambda^2}, & \rho & \frac{3}{\sqrt{a^2b}/\lambda^2} \end{bmatrix}^2$$

$$= (ab)^{2} \cdot \frac{(3+\sqrt{-3})^{6}}{3^{4} \cdot 2^{6}} \begin{vmatrix} 3_{1}^{2} & 3_{1} & 1 \\ 3_{1}^{*2} & 3_{1}^{*} \rho & \rho^{2} \\ 3_{1}^{*2} & 3_{1}^{*} \rho^{2} & \rho \end{vmatrix}^{2}$$

$$= \frac{(ab)^{2} \cdot (3+\sqrt{-3})^{6}}{3^{\frac{7}{4}} \cdot 2^{6}} \left\{ 3_{1}^{2} (3_{1}^{\dagger} \rho^{2} - 3_{1}^{\prime} \rho) + 3_{1}^{\dagger 2} (3_{1}^{\prime} \rho^{2} - 3_{1}^{\prime} \rho) + 3_{1}^{\prime\prime 2} (3_{1}^{\prime} \rho^{2} - 3_{1}^{\prime} \rho) \right\}^{2}$$

$$= 3^{2} \cdot a^{2}b^{2}.$$

For "Type I" we have $d_{6/3} = t_0^2 = \operatorname{disc} x$, so $x = [1, \sqrt[3]{ab^2}/\lambda, \sqrt[3]{a^2b}/\lambda^2]$ is a relative integral basis of $0_6/0_3$. See Cohn et al. [7,9,10].

ILLUSTRATION 5.2. For $K_3 = Q(\sqrt[3]{213})$, the ideal $3_1 = (\sqrt[3]{213} - 6)$ is P.I. and $3 \mid ab^2$ (Type I, 3 a), so

$$O_{K_6} = \begin{bmatrix} 1, \frac{3}{\sqrt{213}}, \frac{3}{\sqrt{213^2}} \\ \frac{1}{\lambda}, \frac{3}{\sqrt{213}} \end{bmatrix} \cdot O_2, \text{ where } \lambda = \frac{\frac{3}{\sqrt{213} - 6}}{\frac{1}{2}(3 + \sqrt{-3})}.$$

We have to mention that if $3\frac{1}{1}$ is not a P.1., this is still an open question. THEOREM 5.3. Assume $k_3 = Q(\sqrt{ab})$, $(3) = 3\frac{3}{1} = (\sqrt{ab} + n)^3$, for $3 \neq ab$ and "Type I", then:

$$o_{k_{6}} = \begin{bmatrix} 1 & \frac{3}{\sqrt{ab^{2} + n - \sqrt{-3}}} & \frac{3a^{2}}{\sqrt{ab^{2} + \sqrt{a^{2}b} + t_{1}}} \\ 0 & \frac{3}{1} & \frac{3a^{2}}{1} & \frac{3a^{2}}{1} \end{bmatrix} o_{k_{2}},$$
 (5.4)

where $t_1 = 0$ for a = 3k+1 and b = 3k+2 or conversely and $t_1 = 1$ for a = b = 3k+1 and $t_1 = -1 \text{ for } a = b = 3k+2.$

PROOF. Now
$$\frac{3-2}{\sqrt{ab^2}+n-\sqrt{-3}} = \alpha_1$$
, $\frac{3-2}{\sqrt{ab^2}+\sqrt{a^2b}+t_1} = \alpha_2$

are integrals because $N_{K_6/K_2}(\alpha_1)$ and $N_{K_6/K_2}(\alpha_2)$ are integers. We take $x = [1, \alpha_1, \alpha_2]$ and $t_2 = + n - \sqrt{-3}$:

$$\operatorname{disc}(x) = \begin{vmatrix} 1 & \frac{3}{\sqrt{ab^2} + t_2} & \frac{3}{\sqrt{ab^2} + \sqrt{a^2b} + t_1} \\ 1 & \frac{3}{31} & \frac{3}{\sqrt{ab^2} + t_2} & \rho & \frac{3}{\sqrt{ab^2} + \rho^2} & \frac{3}{\sqrt{a^2b} + t_1} \\ 1 & \frac{-\rho^2 & \sqrt{ab^2} + t_2}{31} & \frac{-\rho^2 & \sqrt{ab^2} + \rho^2 & \sqrt{a^2b} + t_1}{31} \end{vmatrix}^2$$

$$= \frac{1}{3^2} \begin{vmatrix} 3_1 & \frac{3}{\sqrt{ab^2} + t_2} & \frac{\rho^2 & \sqrt{a^2b} + t_3}{\sqrt{a^2b} + t_3} \\ 3_1^2 & \rho^2 & \sqrt{ab^2} + t_2 & \rho^2 & \sqrt{a^2b} + t_3 \\ 3_1^2 & \rho^2 & \sqrt{ab^2} + t_2 & \rho & \sqrt{a^2b} + t_3 \end{vmatrix}^2$$

$$= \frac{1}{3^2} \begin{vmatrix} 3_1 & \frac{3}{\sqrt{ab^2} + t_2} & \frac{3}{\sqrt{a^2b} + t_3} \\ 3_1^2 & \rho^2 & \sqrt{ab^2} + t_2 & \rho & \sqrt{a^2b} + t_3 \\ 3_1^2 & \rho^2 & \sqrt{ab^2} + t_2 & \rho & \sqrt{a^2b} + t_3 \end{vmatrix}^2$$

for
$$t_3 = t_1 - t_2$$
.

$$\operatorname{disc}(x) = \begin{bmatrix} 3_1 \cdot (\rho^2 ab + \rho t_3 \sqrt[3]{ab^2} + t_2 \rho & \sqrt[3]{a^2b} + t_2 \cdot t_3 - \rho & ab - \rho^2 t_2 \cdot \sqrt[3]{a^2b} - t_3 \rho^2 & \sqrt[3]{ab^2} - t_2 \cdot t_3) \\
+ 3_1^* \cdot (\rho^2 ab + t_2 & \sqrt[3]{a^2b} + t_3 \rho^2 & \sqrt[3]{ab^2} + t_2 \cdot t_3 - \rho & ab - t_3 & \sqrt[3]{ab^2} - t_2 \cdot \sqrt[3]{a^2b} - t_2 \cdot t_3) \\
+ 3_1^* \cdot (\rho^2 ab + t_3 & \sqrt[3]{ab^2} + t_2 \rho^2 & \sqrt[3]{a^2b} + t_2 \cdot t_3 - \rho & ab - t_2 & \sqrt[3]{a^2b} - \rho t_3 & \sqrt[3]{ab^2} + t_2 \cdot t_3) \end{bmatrix} \cdot \frac{1}{3^2}$$

$$\operatorname{disc}(x) = \begin{bmatrix} \pm 3 n ab \rho^2 + 3 n ab \rho + 3 ab \rho t_2 - 3 ab \rho^2 t_2 \end{bmatrix} \cdot \frac{1}{3^2}$$
For $t_2 = \pm n - \sqrt{-3}$ we have

$$\begin{aligned} \operatorname{disc}(\mathbf{x}) &= \left[3 \operatorname{nab}(\rho^2 - \rho) - 3 \operatorname{abt}_2(\rho^2 - \rho) \right] = 3 \operatorname{ab}(\rho^2 - \rho) \left(\operatorname{n-t}_2 \right) = 3 \operatorname{ab}(\rho^2 - \rho) \left(\operatorname{n-n} + \sqrt{-3} \right) \right] \cdot \frac{1}{3^2} \\ \operatorname{disc}(\mathbf{x}) &= 1/3^2 + 3^2 + a^2 b^2 + 3^2 \end{aligned}$$

$$disc(x) = 3^2 + a^2b^2$$
, since $d_{K_6/K_2} = f_0^2 = (3ab)^2 = disc(x)$.

Thus (5.4) is a relative integral basis for 0_{K_6} over 0_{k_2} . Also we have the same result for the case $t_2 = -n - \sqrt{-3}$.

ILLUSTRATION 5.5. (1) If $k_3 = 0(\sqrt[3]{2})$, $3_1 = (\sqrt[3]{2} + 1)$ then n = 1 and a = 3k+2, b = 3k+1, so $t_1 = 0$. Therefore:

(1)
$$o_{K_6} = \left[1, \frac{3}{\sqrt{2}} + \frac{1}{3}, \frac{\sqrt{2}}{3}, \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{4}} + 0\right] \cdot o_{k_2}$$

(2) For $K_3 = Q(\sqrt[3]{5})$, $K_3 = (\sqrt[3]{5} - 2)$, $K_3 = -2$ and $K_1 = 0$. We have

$$o_{K_{6}} = \left[1, \frac{\sqrt[3]{3} - 2 - \sqrt{-3}}{3_{1}}, \frac{\sqrt[3]{5} + \sqrt[3]{25} + 0}{3_{1}}\right] \cdot o_{k_{2}}.$$

For all Honda numbers 3, is necessarily P.I. so for such n we can construct a relative integral basis as in (5.4) for $0_{K_6/K_2}$.

THEOREM 5.6. The relative integral basis in "Type II" of O_{K_6} over O_{K_2} is:

$$0_{K_6} = \begin{bmatrix} 1, & \frac{3}{\sqrt{ab^2}} - 1 & \frac{1}{\sqrt{-3}} & \frac{3}{\sqrt{-3}} & \frac{3}{\sqrt{ab^2}} & \frac{3}{\sqrt{a^2}} \\ \frac{3}{\sqrt{-3}} & \frac{3}{\sqrt{-3}} & \frac{3}{\sqrt{a^2}} & \frac{3}{\sqrt{a^2}} \end{bmatrix} \cdot 0_{K_2}$$

PROOF. For "Type II" (i.e. a $\frac{\pm}{2}$ b mod 9), $\theta_0 = \frac{1+\frac{3}{2}a^2}{2} + \frac{3}{2}a^2$ satisfies in equation $\theta_0^3 - \theta_0^2 + \theta_0 \cdot \frac{1-ab}{9} - \frac{1-a+a^2b+ab^2}{27} = 0$, so then it is an integral and also $(\sqrt[3]{ab^2} - 1)/\sqrt{-3}$ is an integral, because: From $(\sqrt[3]{ab^2} - 1)/\sqrt{-3} = t$, we have

 $(\sqrt[3]{ab^2})^3 = (\sqrt[4]{-3} + 1)^3$, so $-3\sqrt[4]{-3} (t^3 - t) = ab^2 - 1 + 9t^2$ and at last we have the equation: $t^6 + t^4 + \frac{(ab^2 - 1)^2}{27} + t^2 \cdot \frac{(1 + 2ab^2)}{3} = 0$ which shows t is an integral. We take

$$\operatorname{disc}(x) = \begin{vmatrix} 1 & \frac{3}{\sqrt{ab^2} - 1} & \frac{1}{1} + \frac{3}{\sqrt{ab^2} + \sqrt{a^2b}} & \frac{2}{\sqrt{a^2b}} \\ 1 & \frac{3}{\sqrt{-3}} & \frac{3}{3} & \frac{3}{\sqrt{a^2b^2} + \rho^2} & \frac{3}{\sqrt{a^2b}} \\ 1 & \frac{\rho^2 \frac{3}{\sqrt{ab^2} - 1}}{\sqrt{-3}} & \frac{1 + \rho^2 \frac{3}{\sqrt{ab^2} + \rho^2} \frac{3}{\sqrt{a^2b}}}{3} & \frac{1}{\sqrt{a^2b^2} + \rho^2} & \frac{3}{\sqrt{a^2b^2} + \rho^2}$$

$$= \left[\frac{\theta_0}{3\sqrt{-3}} \left(\rho^2 \sqrt[3]{ab^2} - 1 - \rho \sqrt[3]{ab^2} + 1 \right) + \frac{\theta_0}{3\sqrt{-3}} \left(\sqrt[3]{ab^2} - 1 - \rho^2 \sqrt[3]{ab^2} + 1 \right) + \frac{\theta_0}{3\sqrt{-3}} \left(\rho \sqrt[3]{ab^2} - 1 - \sqrt[3]{ab^2} + 1 \right) \right]^2$$

 $\operatorname{disc}(x) = \left[\frac{3ab(\rho^2 - \rho)}{2(2\pi)^2}\right]^2 = a^2b^2$. Since $\operatorname{d}_{K_6/K_3} = f_0^2 = (ab)^2 = \operatorname{disc}(x)$, then

 $x = \left[1, \frac{\frac{3}{\sqrt{ab^2} - 1}}{\frac{\sqrt{-3}}{\sqrt{-3}}}, \frac{\frac{3}{\sqrt{ab^2} + \frac{3}{\sqrt{a}}} \frac{2}{3} + 1}{3}\right] \text{ is a relative integral basis of } 0_{K_6}/0_{k_2}.$

TILLUSTRATION 5.7. For $k_3 = Q(\sqrt[7]{10})$, $a = \pm b \mod 9$, so

$$O_{K_{6}} = \left[1, \frac{\sqrt[3]{10} - 1}{\sqrt{-3}}, \frac{\sqrt[3]{10} + \sqrt[3]{10^{2}} + 1}{3}\right] \cdot O_{K_{2}}.$$

Here we will give another theorem for computing a relative integral basis of o_{K_Z} over 0_{K_2} for \pm n = 3t + 1 no matter whether 3_1 is a P.I. in 0_{k_3} or not. THEOREM 5.8. Let n = 3t + 1, m = -n be square-free in k_3 = Q(n) for Type I,

then

or

$$O_{K_{6}} = \begin{bmatrix} 1 + \sqrt{n} + \sqrt{n^{2}} & 3 & 3 & 3 & 3 \\ -\sqrt{-3} & \sqrt{n} & \sqrt{n^{2}} & -\sqrt{n^{2}} \end{bmatrix} \cdot O_{k_{2}},$$

$$O_{K_{6}} = \begin{bmatrix} 1 - \sqrt{n} + \sqrt{n^{2}} & 3 & 3 & 3 & 3 \\ -\sqrt{-3} & \sqrt{n} & \sqrt{n^{2}} & -\sqrt{n^{2}} & -\sqrt{n^{2}} & -\sqrt{n^{2}} \\ -\sqrt{-3} & \sqrt{n^{2}} & -\sqrt{n^{2}} & -\sqrt{n^{2}} & -\sqrt{n^{2}} & -\sqrt{n^{2}} \\ \end{bmatrix} \cdot O_{k_{2}}.$$
PROOF. At first we will show that $t = (1 + \sqrt{n} + \sqrt{n^{2}})/\sqrt{-3}$ is an integral.

$$t = \frac{(1-\sqrt{n})(1+\sqrt{n}+\sqrt{n^2})}{(1+\sqrt{n})\cdot -\sqrt{-3}}, \frac{(1-n)-t\sqrt{-3}}{-\sqrt{-3}t} = \sqrt[3]{n}, \frac{((1-n)-t\sqrt{-3})^3}{3t^3\sqrt{-3}} = n,$$

$$(1-n)^3 + 3t\sqrt[3]{-3} - 3 + \sqrt{-3}(1-n)^2 - 9t^2(1-n) - nt^3 \cdot 3\sqrt{-3} = 0,$$

$$\left[\sqrt{-3}(3t^3 - 3t(1-n)^2 - 3nt^3)\right]^2 = \left[-(1-n)^3 + 9t^2(1-n)\right]^2,$$

or briefly:

$$-27(1-n)^{2}t^{6} - 27t^{4}(1-n)^{2}(2n+1) - 9t^{2}(1-n)^{4} - (1-n)^{6} = 0,$$

$$t^{6} + (2n+1)t^{4} + \frac{(1-n)^{2}}{3} \cdot t^{2} + \frac{(1-n)^{4}}{27} = 0,$$

which shows that t is an integral. Now we take

$$x = \begin{bmatrix} \frac{1 + \sqrt{n} + \sqrt{n^2}}{\sqrt{-3}}, \frac{3}{\sqrt{n}}, \frac{2}{\sqrt{n^2}} \end{bmatrix},$$

$$disc(x) = \begin{vmatrix} \frac{1 + \sqrt{n} + \frac{3}{\sqrt{n^2}}}{\sqrt{-3}}, \frac{3}{\sqrt{n}}, \frac{3}{\sqrt{n^2}} \end{vmatrix}^2$$

$$\frac{1 + \rho}{\sqrt{-3}}, \frac{3}{\sqrt{n^2}}, \frac{3}{\sqrt{n^2}}, \frac{3}{\sqrt{n^2}}, \frac{3}{\sqrt{n^2}}, \frac{3}{\sqrt{n^2}} \end{vmatrix}^2$$

$$= n^2 \left[\frac{1 + \sqrt{n} + \sqrt{n^2}}{\sqrt{-3}} \cdot (\rho^2 - \rho) + \frac{1 + \rho}{\sqrt{-3}}, \frac{3}{\sqrt{n^2}} \cdot (\rho^2 - \rho) + \frac{1 + \rho}{\sqrt{-3}}, \frac{3}{\sqrt{n^2}} \cdot (\rho^2 - \rho) \right]^2$$

= $n^2 \left[\frac{\rho^2 - \rho}{\sqrt{-3}} (3 + 0 + 0) \right]^2 = 3^2 \cdot n^2$ Since $d_{6/2} = f_0^2 = (3n)^2 = disc(x)$, then

$$o_{K_{6}} = \left[\frac{1 + \sqrt[3]{n} + \sqrt[4]{n^{2}}}{\sqrt{-3}}, \sqrt[3]{n}, \sqrt[3]{n^{2}}\right] \cdot o_{k_{2}}.$$

We can apply the same proof for

REFERENCES

- NARIEWICZ, W. Elementary and Analytic Theory of Algebraic Numbers, Pwin, Warsaw,
- BIRD, R.H. and PARRY, C.J. Integral Bases for Bicyclic Biquadratic Fields over Quadratic Subfields, Pacific J. Math. 66 (1976), 29-36.
- 3. RIBENBOIM, P. Algebraic Number Theory, John Wiley & Sons, New York, 1972.
- ARTIN, E. Questions de Base Minimal dans la Theorie Nombres Algebriques, National de la Recherche Scientifique, XXIV (1950), 19-20.

- LONG, R.L. Steinitz Classes of Cyclic Extensions of Prime Degree, <u>J. Reine</u> Angew. Math. 250 (1971), 87-98.
- 6. SEREE, J.P. Corps Locaux, Hermann, Paris, 1963.
- COHN, H. A Classical Invitation to Algebraic Numbers and Class Field Theory, Springer-Verlag, New York, 1978.
- 8. HONDA, T. Pure Cubic Fields whose Class Numbers are Multiples of Three, J. Number Theory 3 (1971), 7-12.
- BARRUCAND, P. and COHN, H. Remarks on Principal Factors in a Relative Cubic Field, J. Numb. Theory 3 (1971), 226-239.
- 10. COHN, H. Second Course in Number Theory, John Wiley, New York, 1962.