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ABSTRACT. T], study f linearzed interface wave problems for two superposed fluids

often lnw) Iv,s the co)siderti,)n of dil-ferent types of singularities in one of the two

fluids. In [his paper the line and poLnt singularities are investigated for the case

when each fluid is of finit constant depth. The effect of surface tension at the

surface of separation is i)luded.
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1. INTRODUCI’ION.

The study of internal waves in two fluids problems has attracted many authors in

recent years. It is found useful to permit singularities of one type or another to

occur as an idealisation of, or an approximation to certain physical situations. Pro-

blems dealing with the generation of waves at the interface of two non-mixing fluids

involve the (’onsideration of singularities of different types in the fluids. In the

case when bodies are present, waves may either be generated by the movement of the body

or reflected from it. The two cases are essentially the same and the resulting motion

can be described by the use of these singularities in a suitable way. For example,

Gorgui [1] has investigated into these waves using a distribution of sources on the

surface of the body.

The different types of singularities that can be used in two fluids problems have

been presented by Gougui and Kassem [21 and Kassem [3] in both the effects of surface

tension are neglected. In [12] the authors considered the cases when the lower fluid

is of finite constant depth and the upper fluid is of infinite height. While in [3]

the author considered the cases when the two superposed fluids are both of finite

thickness and obtained the potentials for motions resulting from mu|tipoles submerged

in one of the two fluids.

In this paper we give a complete survey for the basic line and point singularities

when the superposed fluids are as in [3] of finite constant thickness confined between

two rigid horizontal planes but we here take surface tension into consideration.
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In tle two dimensiona| motion, the line singularities considered are wave sourcL,s

and multiloles singulariti,s. Restriction is made to symmetric (or vertical) multi-

pol,s, bu the corresponding antis>mmetric (or horizontnl) multipoles can be found

similarly. For axisymm.tric motion, the point singularities considered are multipole

sin.ul,lril ies. These tme hnrmoni singularities are described by harmonic ptential

functins which satisfy tw inearised conditions at the surface of separation, and

uniquenes. is ensured bv rcq,iring that there are only outgoing waves in the far field.

ThL, methoI used is an extension of that used in [2] or 131 The results obtained by

Rhles-RI,inson [4], Gru ,nd Ka.sem [21 and Kassem [31 can be deduced as special

2. STA[’E,IENT OF THE PROBLEM.

Wc, a,e concerned wth tl,e irrotational, incompressible and inviscid motin of the

two, supcrlosed non-mix,., liquids under the action of gravity and surface tension. Each

fl[d is f infinite horizanal extent. Takin the ori.;{n 0 at the mean level of the

intc, rf,ce and the axis Ov pointing vertically downwards into the lower fluid, let the

two, fluid, be confined betwe,n rigid horizontal planes y h, y -h’ The motion is

simple ha-monic with a small amplitude and angular frequency o it is due to an os-

cillatin singularity in one of the, two fluids. In two dmensional motion we consider

the singularity is eithc, r a line wave source or multipole and in axisymmetric motion

it is a p,int multipole. In each case, the velocity potentials of the lower and upper

luids are simple harmonic with period
2

and it is more convenient to use the corn-

plex valued potentials e i o t -i o t

’ e of which the actual velocity potentials

arc, the real parts.

These potentials satisfy a boundary value problem in which

V 0, V ’ 0 (2.1)

in the reqions occupied by the fluids, except at the singularity;

D-- 0 on y h, (2.2)
Dy

---’--- 0 on y -h’, (2.3)
by

and the linearized boundary conditions

8Y DY on y 0 (2.4)

K + - s(K’ + y + M -Ty 0

o T
where K M g is the gravity, T is the surface tension, 0 and so

g

(s I) are the densities of the lower and upper fluids respectively. These conditions

are applied for each singularity considered. They are supplemented by the two general

limiting conditions that or ’ behaves like a typical singular harmonic function

near the singularity and the radiation condition that both functions represent outgoing

waves in the far field.

3. SUBMIIRGED LINE SIN(’ULARIT[ES.

Without loss of generality, the line singularity is place at the point (o, _+

We consider only singularities symmetric in x namely, a wave source and vertical
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multipoles. We define polar coordinates (R, 0) in the xy plane based at the singu-

larity positi()n by the equations

x R sin 0 y +_ R cos 0

according as the singularity is in the ;ower or upper fluid, so that R denotes the

distance from the singularity.

(i) Wave source singularities

lere and ’ arc solutions of the boundary -value problem stated above

with having a logarithmic singularity at the source. If the source is at (o, )

then

l,g R as R [x + (y- n) ]1/2- (3.1)

Let

log R + c log R’ + f’[sf(k) + {A cosh k(h y) + B sinh ky} cos kx]dk,
o

’= ’ log R + f If(k) + {A’ cosh k(h’ + y) + B’ sinh ky} cos kx]dk,o

where R’ [ + (y + )2 is the distance from the image point o, -) It is

obvious that , ’ as given above are harmonic. We choose c ’ f(k) A(k)

B(k), A’(k) B’(k) such that the two integrals converge and the boundary conditions

on y h, y -h’ and y o are satisfied.

Under suitable conditions concerning differentiation under the integral sign and

using the relat-ions

cos 0(l(g R)ay R

-k(y- n)

--t of e cos kx dk y

k(y n)_foo e cos kx dk, y no

the conditions (2.2) (2.3) are satisfied if

-k(h n) -k(h + n) -k(h’ + n)
e + e ’ e

B B’
k cosh kh k cosh kh’

and the interface conditions are sa[isfied if

I+(- s( O,

A sinh kh + A’ sinh kh’ c + ’k e + (B- B’)

cA cosh kh -A’ [sc cosh kh’ k(l + B k2) sinh kh’] (i + B k2)(’ e
-kn k B’)

from which we have

B k2) e-k sinh kh’ sech kh + [s__ cosh kh’ (I + B k2) sinh kh’]F()---AA (I +
cosh kh’

AA’ ’(l + k2) e-k sinh kh tanh kh’ + c F(k)
k

where

-kn -k(h n) -k(h + n)
F(k) ( + ’ I) e cosh kh e e

-k(h’ + n)
cosh kh sech kh’O.

k(k) c(cosh kh sinh kh’ + s cosh kh’ sinh kh) k(1 + B k2) sinh kh sinh kh’ ,(3.2)

K M
l-s’ l-s
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iee.,

Hence

Since F(o) =-2, therefore, the integrals involved in the assumed expressions

for A A’ converge if we choose f(k) such that k A f(k) 2c + 0(k2) in the

neighbourhood of k o and if
dF(o)
d-- o,

h(l + a) + h’ a’ o

t O CL --]

F(k) -2 cosh k(h- )

-kh
B -2

e sinh k B’ o
k cosh kh

sc cosh k(h- )A 2[(I + 8 k2) sinh kh’ -- cosh kh’]
cosh kh

cosh k(h )A’ -2c
kA

The condition imposed on f(k) does not specify it completely. This introduces

no difficulty since it is the velocities in which we are really interested. It is

2c
found convenient to take f(k) .

Now, A(k) has a simple zero at k m, say, on the real axis of k this intro-

duces simple poles for the integrals in , ’ Below this pole we make an indenta-

tion of the contours of the integrations. Substituting in the above assumed forms for

A A’ B B’ we get

log + 2 + [{k(l + 8 k2)sinh kh’ sc cosh kh’}

-khcosh k(h )
cosh k(h- y) e sinh k

k cosh kh k cosh kh
sinh ky] cos kx]dk,

’ 2c I-A-[I cosh k(h n) cosh k(h’ + y) cos kx] dk.

Two other alternative forms which will be useful in the subsequent work are

6 k2log R + (2s I) log R’ + 2 o (I + S )slnh2kh cosh k(k )

-kh’
cosh k(h y) cos kx dk + 2s f 6 e +

-k(y + )
e 6cosh k(h ) co__sh kh____’cosh k(h y)] cos kx dk

cosh kh
-kh

2 fo
e ksinhcoshkkhsinh ky cos kx dk

6 k20’ 2 log R 2 (I + 8 sinh kh sinh kh cosh k(h ) x

cosh K(h’ + y)cos kx dk + 2 f=o [ 6el-kh’ + [e-k(n y)

(3.4)

cosh k(h n) cosh k(h’ + y)] cos kx ]dk (3.5)

where 6 -I cosh kh sinh kh’ + s cosh kh’ sinh kh
In the above expressions we neglected the constants

6 k22s log h’ + 2s (I + 8 )sinh kh sinh kh dk and

6 k22 log h’ + 2 (1 + )sinh kh sinh kh’ dk in , ’ respectively.

(3.6)
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By putting 2cos kx e + e ,ana rotating the contours in the indented

integrals in 0’ into contours in the first and fourth quadrants so that we must

include the residue term at k m these integral tend to

C(o’h h’) cosh m(h y) imlx imlx
m sinh mh

e C(o;h,h’) cosh m(h’ + y) e
m sinh mh’

n -m(h- ) n m(h- )C(n;h,h’) .ic m [e + (-I) e ]sinh mh’ sinh mh
n (I + 3 mP)sinh2mh sinh2mh + c(h sinh2mh + h’ s sinh2mh)

(3.7)

When the source is at (o, -) in the upper field, we have

’ log R as R [x + (y + )2]1/2 o

Assume the forms

(3.8)

log R + fo [s f(k) + {A cosh k(h y) + B sinh ky} cos kx] dk,

’ log R + a’ log R’ + f If(k) + {A’ cosh k(h’ + y) + B’ sinh ky}"

cos kx] dk,

where R’ [x + (y )2]L Ks the distance from the image point (o, n) and proceed

as above to et the potentials

2cs -[i cosi k(h’ n) cosh k(h y) cos kx] dk

0’ tog - + [(k(1 + B )sinh kh c cosh kh)
k A cosh kh’

-kh’ sinh kcosh k(h’ + y) + e
k cosh kh’ sinh ky3 cos kx Jdk

and the other two alternatives forms are

2s log R 2s (1 + B k2)sinh kh sinh kh’ cosh k(h’ n)

-kh’
cosh k(h y)cos kxdk + 2s (6 e +

+ [e-k(y + )
cosh k(h’ )cosh k(h- y)] cos kx dk

’ tog RR’ + 2s o (I + 8 k2)sinh2kh cosh k(h’ n)cosh k(h’ + y)

-kh’ -k(n-y)cosh k(h’ + y)cos kx dk + 2 f [( e + [e

cosh kh
cosh k(h’ n)S---- cosh k(h’ + y)] cos k dk +

-kh’ snh kn sinh ky+ 2 f e cos kx dk
o k cosh kh’

These potentials have the outgoing waves

-C(o;h’,h) s cosh m(h Y)
e

m sinh mh

s cosh m(h’ + y) i mlx]C(o’h’,h)
m sinh mh’ e

as Ixl where C(n’h,h’) is given by (3.7).
(ii) Multipoles singularities

(3.9)

(3.10)

Here ’ are harmonic in the regions occupied by the two fluids except at the
singularity. In the neighbourhood of this point
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0 cos(n + 1)0
n o, 1, 2 (3.11)Rn+

We consider first the case when the singularity is at (o, n) in the iower fluid.

try as solutions

0 cos(n + I)._ + f=o [A cosh k(h y) + B sinh ky] cos kx dk,Rn+ o

, fo A’ cosh k(h’ + y) cos kx dk,o

and use the representations

cos(n + 1) 0

Rn+

n+
(-1) f k

n
e
k(y n)cos kx dk y n

k
n -k(y n)

! o
f e cos kx dk, y n

Conditions (2.2) (2.4) are satisfied if

kne-k(h- o)
B

n cosh kh
n+

A sinh kh + A’ sinh kh’ B +(-I) k
n

en!

-cA cosh kh + sc cosh kh’ k(l + B k2)sinh kh’ ]A’ (-I)
n+l

n! ck
n e-kO

These determine A, B, A’, which when substituted in the above assumed forms, give

0 _co__s(n + I)0
k
n -k(h O) sinh k cos kx dk

R
n + + . f e

o cosh kh

(3.12)
k
n

P(n) cos kx dk+o-
k
n -k(h- n) )n + k(h rl)O ? ; -- [e + (-1 e cosh k(h’ + y) cos kx dk, (3.13)

where

P(n) (-I)
n + l[c(s cosh kh’ sinh kh’) k(l + 8k2)sinh kh’] e"kO

-k(h n)
+ [cs cosh kh’ k(l + gk2)sinh kh’] e

cosh kh (3.14)

and A is given by equation (3.2).

As xl , we have the outgoing waves

cosh m(h y) imlx(n + I) C(n + h, h’)
m sinh mh

e

0 ~-(n+l) C(n+l; h h’) cosh m(h’+y) eimlxl
m sinh mh’

where C(n; h, h’) is given by equation (3.7).

If the singularity is at (o, -D) in the upper fluid we try as solutions

0 f A cosh k(h-y) cos kx dk
o

,= cos (n+l) 0

Rn-I
+ fo [A’ cosh k(h’+y)+B’ sinh ky] cos kx dk;

where m [x2 + (y+ q)2].
Proceeding as above leads to

sc 7 kn k(h’ D) n+l e-k(h’ )] cos k(h-y)cos kx dk (3.15)--[e + (-i)
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where

cos(n+l)e (-1) n+l kn e-k(h’- )
Rn+l n o cosh kh’ sinh ky cos kx dk

+ Q(n) cosh k(h’+y) cos kx dk, (3.16)

Q(n) [c(cosh kh s sinh kh) k(l+ B k2)sinh kh] e-kn

-k(h’ )
+ (-l)n+l[c cosh kh k(l+ 8 h2)sinh kh] e

cosh kh’ (3.17)

The contours of the integrals in (3.15), (3.16) are indented below the simple pole

at k m to give the outgoing waves

cosh m(h-y) im Ixs(n+l) C(n+l), h’, h)
n sinh mh

e

cosh m(h’ +y) eim[x[@ -s(n+l) C(n+l; h’, h)
n sinh mh’

as Ixl +.
4. SUBMERGED POINT SINGULARITIES.

We now define cylindrical polar coordinates (r, , y) with the origin 0 at the

surface separating the two fluids and the y-axls pointing vertically downwards. We

@iso define spherical polar coordinates (R, 0, ) based at the singularity taken at

(o, +/- ) by the equations

r R sin 0 y R cos

We consider only point singularities for which Oy is an axis of symmetry so that the

velocity potentials , ’ are independent of .
When the singularity is at (o, ) in the lower fluid the boundary value problem

for , ’ is given by (2.1) (2.4) supplemented by the limiting condition

en (cs ) 2 2]1/2 ,1,2 (4.1)as R [r + (y-n) o, n=o
Rn+l

If we try as solutions

Pn(COS O)

Rn+l
+ f

o
[A cosh k(h-y) + B sinh ky] Jo(kX)dk,

’ A’ cosh k(h’+y) Jo (kr) dk,

and using the representations

(-1)
n

knek(Y-n)
n! o

P (cos O)
n

Rn+l I ’I of kn e-k(Y-n)J (kr)dk, y > n,

conditions (2.2), (2.4) are satisfied if

kne-k y-n
B=

n!cosh kh

A sinh kh + A’ sinh kh’ B + (-I) k
n -kn

n!
e

-c A cosh kh + [sc cosh kh’ k(l + Bk2)sinh kh’]A’ (-l)nn.
Solving these equations and substituting, we obtain the expressions
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(cos 0
k
n -k(h-) sinh ky

n+l
+ f e

n s’ kh
J (kr) dk,

k
n

! --P(n-l)cosh k(h-y Jo(kr)dk, (4.2)- [ekn -h(h-) nek(h-n)] cosh k(h’+y)J (kr)dk (4 3)’:,:- o +(-)

where A is given by (3.2), P(n) is given by (3.14) and as before the contour of inte-

gration is indented below the simple root k m of A o on the positive real k-axis,

which en=ureq that the radiation conditions are satisfied. For, by putting

2 Jo(kr) Ho(1)(kr) + Ho(2)(kr),
rotating the contours in each integral into contours in the first and fourth quadrants

(where H(1)(kr),, Ho(2)(kr) are respectively small) and including the residue term at

k m we obtain the diverging waves

C(n; h h’) cosh m(h-y__) Ho(1)(mr)
sinh mh

cosh m(h’+y) H!I)-C(n; h, h Sinh m’- (mr),

as r where C(n; h, h’ is given by equation (3.7)

In a similar manner we calculate the velocity Dotential when the multiDole singu-

larity is at (o, -) in the upper liquid. These are

k
n.sc f - [ek(h ) + (-l)ne-k(h’ )]cosh k(h-y)Jo(kr)dk (4.4)

P (cos 8) kne-khn (-I)
n n,

Rn+l n--F-. fOOo osh kh’ .inb ky Jo (kr)dk

k
n

+ nl-.T o --Q(n-]) coh k(h’ + y)rosb k(’ + y)J:(kr)dko (4.5)

where R [r 2 + (V+)]1/2
and O(n} is iven by (3.17). This motion has the diverging

cylindrical waves

C(-; h’ h) _s rosb m(h_-,__)_ Ho
(1)

(mr),inh mh

’ C(n; h’ h) s cosh m(h’ + y) HI) (mr)
s inh mh

as r+.

5. SUBMERGED SINGULARITIES; THE LOWER FLUID IS OF FINITE CONSTANT DEPTH AND THE UPPER

IS UNBOUNDED.

A statement of the boundary-value problems for the velocity potentials , ’ for

the different types of singularities can be easily written down. These of the present

case are similar to the corresponding ones treated in sections 3 and 4 with condition

(2.3) replaced by

V’+ o as y

and the radiation condition taking the simplet forms

im IxlC cosh m(h y) e

im Ix[’~ -C e
my

e

as Ixl for line singularities, and the forms
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C cosh m(h y) H
(I) (mr),

’ -C e
my H

(I) (mr),

as r for point singularities, where C is a constant multiplier and m is a

simple root of the equation A 0 where now

A c (cosh kh + s sinh kh) k(l + Bk2) sinh kh. (5.1)

The determination of 4#, 4#’ for each singularity can be carried out independently.

This was done by the second author [5], where he assumed 4#, ’ to have the appro-

priate forms. They may also be determined by letting h’ in the formulae obtained

in the above sections. The velocity potentials for the different cases are as follows:

(a) Line singularities

(i) For a wave source at (o, n) in the lower fluid,

log R +(2s i) log R’ + 2 =o A (I + Bk2) cosh k(h- n) cosh k(h- y)

2. -k(y + n) -kh sinh kn sinh ky
cos kx dk + f -Is e e

o k cosh kh

s6 cosh k(h n)cosh k(h- Y)I kx dk,cos
cosh kh
___

k2log R 2
o A (I +B sinh kh cosh k(h ) ekYcos kx dk

(5.2)

2 e-kn ky+ 7o 6cosh k(h- q)] e cos kx dk, (5.3)

where now 6-I cosh kh + s sinh kh The path of integration is along Im(k) o

o to =, indented below the simple pole at k m.

These potentials have the outgoing waves

-C(o)
cosh m(h y) eimlxl, C(o)

emy eimlxl,
m sinh mh m

as Ixl where

-m(h n) n em(h n)
ic n [e + (-i) sinh mh

C(n) m
hc + (i + 3Bmz) sinh2 mh

(5.4)

The above velocity potentials can be written in slightly different forms suitable

for use in the next section. These are

l-s
log R- -+ log R’ + 2 (i + 8k2)cosh k(h- )cosh k(h- y)cos kx dk

-kh
+ ]-s o

f --k- Is2- 6(sinh kq + s cosh kn)(sinh ky + s cosh ky) cos kx]dk (5.5)

-kh6 2 elog R 2 o (|+Bk2) sinh kh cosh k(h-)ekYcos kx dk + ls k

ky* Is 6(sinh kn + s cosh kn)e cos kx]dk.

When the wave source is at (0, -) in the upper fluid,

(5.6)

-kh
4# 2s 1o R 2s -kn e

o
e (1+Bk2)sinh kh cosh k(h-y)cos kx dk + 2s f

o k

[e-ky cosh k(h-y) ]cos kx dk, (5.7)
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-k(n -y)
log R R’ + 2s (l+Bk2) sinh2 kh e cos kx de + 2s ; sinh kh m

-k(n -y)
A e cos kx dk. (5.8)

or as in the previous case,

-kh
2s -kn e x4 I--- h,g R 2s

2s
L

e (l+Bk2)sinh kh cosh k(h-y)cos kx dk / 7+ o k

Is 6e-k(sinh kv + s cosh ky) cos kx] dk, (5.9)

-kh
1-s ek(y-n) 2s e

__
’ l,g R + 7+7 log R’ + 2s o A

(l+Bk2) sinh kh cos kx dk + 7+7 o
f -k

a (l 6ek’Y-n’cos kx) dk

These potentials have the outgoing waves

my
-C’(o) _cosh m(h-y) imlx e imlx

m sinh m e C (o) -m-- e

as Ix where

-m sinh2mhn
-2 sc m eC’ (n) n!

hc + (l+3Bm2)sinh2mh

(5.10)

(5.1)

(ii) Mul tipoles singularities

When the singularity is at (0,n) in the lower fluid,

_cos(n+l)Rn+l
+ i foo k

n e-k(h-) sinh ky_ k
n

n+l
o sinh kh

cos kx dk
n. A-- [(-I) a

-k (h-n)
[K + k(l + Bk2)] e-kn [sc_k(l+Bk2) e__]doshkh

cosh k(h-y) cos kx dk, (5.12)

k
n, c e-k(h-rl) n+l k(h-.)n.o -[ + (-1) e jekYcos kx dk, (5.13)

which have the outgoing waves

(n+l) C(n+l)
cosh re(h-y) im Ixl my

m sinh mh
e (n+l) C(n+l)

e im Ixe
m

as Ix where C(n) is given by (5.4), and when the singularity is at (o,

in the upper fluid,

k
n

2 sc -k cosh k(h-y) cos kx dk (5 14),= e

Rn+l
ky

e cos kx dk,

and have the outgoing waves

(n+l) C (n+l)
cosh m(h-y) eimlxl (n+l) C (n+1)

emY imlxle
m s inh mh m

as Ixl , where C’(n) is given by (5.11).

(b) Foint singularities

For a singularity in the lower fluid,

k
n

-kn[c(cosh kh- s sinh kh) k(l+Bk2) sinh kh]cos(n+l)0 + _. o - e

(5.15)

P (cos
n

Rn+l
kn -k(h n) sinh ky k

n
+ fo e

cosh kh Jo(kr) dk o -- [(-l)n[K + k(l+Bk2)]
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-k(h-)
e

[sc k(l+Bk2)] osh kh

k
n

c -k(h-n). o -[e + (-I)

cosh k(h-y) Jo(kr) dk

n ek(h-) ekY Jo(kr)dk,

(5.16)

(5.17)

with the outgoing waves

cosh m(h-y) H
(I)

C(n)
m sinh mh

(mr), -C(n) --emY H I) (mr)
m

as r C(n) being given by (5.4).

When the singularity is in the upper fluid,

k
n

2 sc -kn
n! fo - e cosh k(h-y) Jo(kr) dk, (5.18)

P (cos 0)
k
n, n -kq

Rn+1
+ . - e [c(cosh kh- s sinh kh) k(l+k2) sinh kh]"

ky
e J,(kr) dk, (5.19)

and as r , ’ have the outgoing waves

C’(n)
cosh m(h-y)H(1) (mr) -C(n)

emy
H (I) (mr)

m s inh mh m

C’(n) being given by (5.11).

6. SUBMERGED SINGULARITIES. BOTH FLUIDS INFINITE.

Here also the boundary value problem for the velocity potentials ’ is similar

to the corresponding ones i’n sections 3,4 except that conditions (2.2) and (2.3) are

replaced by V o as y ,

’ o as y

respectively, and the radiation condition takes the forms

ce-mY imlx iml xle -Ce
my

e

as xl for line singularities, and the forms

Ce
-my H! I) (mr), ’~-Cemy H! I) (mr)

as r o, for point singularities, where C is a constant multiplier and m is now

the simple zero of the equation

k(1 + Bk2) c(l + s) o

The evaluation of ’ for each singularity can be carried out independently

(see [5]). They may also be evaluated by letting h in the results of the previous

section tend formally to infinity. The velocity potentials for the different singu-

larities are as follows:

(a) Line singularities.

(i) Wave source.

The ve]ocity potentials are

1-s 2 .(l + Bk2)e-k(y + n)
cos kx dk, (6 I)lo R $ log R’

l+s o
k(1 + 8k2) c(l+s)

2 2 k(y- n)’= -l+-. ] R + -[-$- c (I + Bk2)e
0

k(l + ,k2) c(1+s)
cos kx dk, (6.2)

for a ave source in the lower fluid and
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-k(y + n), 2s 2s (i + Bk2)e
]-7 log R + - o

k(l + gk2) c(l+s)
cos kx dk,

I--S’= log R + ]-+ log R’
k(y n)

_2_s__ ,o (I + p, k2)e
l+s o

k(l + Bk2) c(l+s)

for a wave source in the upper fluid.

(ii) Hultipoles singularities.

The velocity potentials are

(6.3)

cos kx dk, (6.4)

(_ln+l, -k(y + n)
b

[k(l + Bk2) + K]k
n

e+ cos kx dk, (6.5)Rn+I n! o
k(l + Bk2) c(l+s)

k
n k(v- n), 2(-1)nc e

cos kx dk,n! o k(1 + .k2) -c(l+s)

if the singularity is in the lower fluid and

k
n -k(y + n)

-2sc F e
=---i cos kx dk,

k(1 + Bk2) c(1+s)

,= cos(n+1)0 + .I f
kn[k(1 + Bk2) K]

R
n+l b

k(1 + Bk2) c(1+s)

if the singularity is in the upper fluid.

(b) Point singularities

If the singularity is in the lower fluid

(6.6)

(6.7)

k(y- n)
e cos kx dk, (6.8)

(cos 0) -k(y + n)(-I)
n

#[k(l + Bk2) + K]k
n

e
Jo(kr)dk, (6.9)

Rn+l +---.F- o
k(1 + Bk2) c(l+s)

qb’
2c(-1)n+1 k

n k(y n)

n! F e
Jo (kr)dk (6.10)

k(1 + Bk2) c(l+s)

and if it is in the upper fluid,

k
n -k(y + q)

-2 sc oo e Jo(kr) dk, (6.11)
n! o

k(l + Bk2) c(l+s)

(cos 0
k
n k2[k(l + B K] k(y n)

e Jo (kr)dk. (6.12)
Rn+1

+ . o
k(1 + k2) c(l+s)

7. SINGULARITIES AT THE SURFACE OF SEPARATION.

Clearly the results of the previous sections are not valid for o. Here we use

coordinates based on the singularity at the urgin. Then it may be shoen that the poten-

tials are as follows

(a) Lie singularities

(i) Wave source

Both fluids of finite depth

, -- 2cs + (k(1 + 8k2)sinh kh’ 2cs cosh kh’)cosh k(h-y)cos kx]dk, (7.1)

!- [2c + (k(l + k2)sinh kh 2c cosh kh)cosh k(h’ + y)cos kx]dk

where A is given by (3.2).
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Lower fluid of finite depth

2s log R + (i + Bk )(cosh kh s sinh kh)cosh k(h-y)cos kx dk

+ 2s f -ky
o [e 6cosh k(h-y)]cos kx dk,

ky
’= 2 log R (I + k2)(cosh kh s sinh kh)sinh kh e cos kx dk

+ 2s I
o

sinh kh e
ky

cos kx dk

where
-1

cosh kh + s sinh kh, and & is given by (5.1).

Both fluids infinite

2s 2 (i + Bk2)e-ky
% T log R- 9 cos kx dk,

o k(1 + 8k2) c(1+s)

2 l-sl f(l + k2)kY’= cos kx dk,-+- log R
k(1 + Bk c(l+s)

(ii) Multipo]es

Both fluid of finite de_

For multipoles corresponding to n I, 3, 5, (even multipoles)

(7.2)

(7.3)

(2m+l)!

(2re+l)

ook
2m+l

A’ [2sc cosh kh’ k(l + Bk2)sinh kh’]cosh k(h-y)cos kx dk,I (7.4)

ook
2m+l

[2c cosh kh k(l + 8k2)sinh kh]cosh k(h’+y)cos kx dk, .
and for the multipoles corresponding to n 0, 2, 4, ...(odd multipoles)

c (l+s) =k
2m

(2m)! o ---sinh kh’ cosh k(h-y)cos kx dk, )
-c (l+s) ook

2m j(2m)! ---sinh kh cosh k(h’+y)cos kx dk, (m O, I, 2

(7.5)

where A is given by (3.2).
Lower fluid of finite depth

Similarly for even multipoles (m O, I, 2

k
2m+l

(2m+l)! o A
[2sc k(l + Bk2)]cosh k(h-y)cos kx dk,

,= k
2m+l [2c cosh kh k(l / gk2)sinh kh]ekYcos kx dk,

(2m+l) o A

(7.6)

and for odd multipoles

c(l+s) f k
2m

(2m)! ---cosh k(h-y)cos kx dk,

2m
,= -c(l+s) k

(2m)! -- sinh kh ekycos kx dk,

(7.7)

where k is given by (5.1).

Both fluids infinite

For multipoles corresponding to n I, 3, 5 (even multipoles), we have

k2m+ k? ky
qb T}n-71-j-! " tk(l+ 2 sc]e

cos kx dk,
o

k(l+Bk2) c(l+s)

k
2m+l

k[k(l+ B 2c ]e
my

cos kx dk,q
(2m+l)! o

lk(l+Bk2) c(l+s)

(7.8)
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and for odd multipoles

2m -ky
e-c(l+s) / k

=-G)F- o k(]+k2) c(1+s)
’os kx dk,

c (l+s) k2m ky
cos kx dk,

(2m)’
e

o
k(l+lk2) c(l+s)

(m o, 1,

(b) Point singularities

Both fluids of finite depth

For m,ltipoles corresponding to n o, 2, 4 (even multipoles)

k
2m

-;!- F --&--- [2sc osh kh’ k(l+Bk2)sinh kh’]cosh k(h-y) 3o(kr) dk,

k
2m

[2sc cosh kh k(l+Bk2)sinh kh]cosh k(h’+y) Jo(kr) dk,’= 2-mb-i o A

and for multipoles corresponding to n I, 3, 5, ...(odd multipoles)

c(1+s) k
2m+l

(2m+l)! o A
sinh kh’ cosh k(h-y) Jo(kr)dk,

-c +s k2m+ sinh kh cosh k(h’+y) Jo(kr)dk, (m o, I, 2
(2m+l) o A

where A is given by (3.2).

Lower fluid of finite depth

For even multipoles" (m o,i,2,...)

k
2m

(2m)! F -- [2sc k(1+Sk2)]cosh k(h-y) Jo(kr)dk,

k
2m

(2m)! f--[2c cosh kh- k(l+Bk2)sinh khJekYcos kx dk,

and for odd multipoles

c +s k2m+
(2m+l)! cosh k(h-y) Jo(kr)dk,

-c +s) k2m+’= (2m+l)! F A
sinh kh e

ky
Jo (kr) dk,

where A is given by (5.1).

Both fluids infinite

For multipoles corresponding to n o, 2, 4, (even multipoles), we have

2m [k(l+Bk2) 2sc]ekY
k

(2m)! o
k(l+Bk2) c(l+s)

(2m)! k
2m [k(l+Bk2) 2c]e-ky

o
k(l+Bk2) c(l+s)

J (kr) dk,

Jo (kr) dk,

and for odd multipoles

-c ([+s) k2m+l(2m+l) o

c(l+s) ’k2m+l(2m+l) o

ekY
k(l+Sk2) c(l+s)

e-kY
k(l+k2) c(l+s)

Jo (kr) dk,

Jo (kr) dk. (m o, I, 2 ).

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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It should be noted here that there is a non-uniqueness for B o to the extent

that any multiple of a slope potential may be added. The forms given above correspond

to a continuous interface slope t the orgin, where the interface elevation is always

finite.

8. CONCLUSION.

A complete survey for a|l the basic singularities that can be used in two fluids

problems with surface tension is presented. Results of Gorgui and Kaseem [2] and

Kaseem [3] can be recovered by putting B o in the appropriate forms and also those

of Rhodes-Robinson [4] can be obtained by putting s o.
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