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ABSTRACT. The study of lincarized interface wave problems for two superposed fluids
often involves the consideration of different types of singularities in one of the two
fluids. 1In this paper the line and point singularities are investigated for the case
when each fluid is of finite constant depth. The effect of surface tension at the

surface of scparation is included.
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1. INTRODUCTION,

The study of internal waves in two fluids problems has attracted many authors in
recent years. It is found useful to permit singularities of ome type or another to
occur as an idealisation of, or an approximation to certain physical situations. Pro-
blems dealing with the generation of waves at the interface of two non-mixing fluids
involve the consideration of singularities of different types in the fluids. In the
case when bodies are present, waves may either be generated by the movement of the body
or reflected from it. The two cases are essentially the same and the resulting motion
can be described by the use of these singularities in a suitable way. For example,
Gorgui [1] has investigated into these waves using a distribution of sources on the
surface of the body.

The different types of singularities that can be used in two fluids problems have
been presented by Gougui and Kassem [2] and Kassem [3] ; in both the effects of surface
tension are neglected. 1In [2] , the authors considered the cases when the lower fluid
is of finite constant depth and the upper fluid is of infinite height. While in 31
the author considered the cases when the two superposed fluids are both of finite
thickness and obtained the potentials for motions resulting from multipoles submerged
in one of the two fluids.

In this paper we give a complete survey for the basic line and point singularities
when the superposed fluids are as in [3] of finite constant thickness confined between

two rigid horizontal planes but we here take surface tension into consideration.
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In the two dimensional motion, the line singularitics considered are wave sources
and multipoles singularitics. Restriction is made to symmetric (or vertical) multi-
poles, but the corresponding antisymmetric (or horizontal) multipoles can be found
similarly. For axisymmctric motion, the point singularities considered are multipole
singularities. These time harmonic singularities are described by harmonic potential
functions which satisfy two linearised conditions at the surface of separation, and
uniquencss is ensured bv requiring that there are only outgoing waves in the far field.
The method used is an extension of that used in [2] or [3] . The results obtained by
Rhodes-Robinson [4], Gorgui and Kassem [21] and Kassem [3] can be deduced as special
casces.

2. STATEMENT OF THE PROBLEM.

We are concerned with the irrotational, incompressible and inviscid motion of the
two superposed non-mixiny fluids under the action of gravity and surface tension. Each
fluid is of infinite horizantal extent. Taking the oriuin O at the mean level of the
interface and the axis Oy pointing vertically downwards into the lower fluid, let the
two fluids be confined between rigid horizontal planes y = h, y = =h'" . The motion is
simple harmonic with a small amplitude and angular frequency o ; it is due to an os-
cillating singularity in one of thc two fluids. In two dimensional motion we consider
the singularity is eithcr a line wave source or multipole and in axisymmetric motion

it is a point multipole. In each case, the velocity potentials of the lower and upper
tluids arce simple harmonic with period §£~ and it is morec convenient to use the com-

t

plex valued potentials ﬂe—l N , 0 e—i ot

of which the actual velocity potentials

’
are the real parts.

These potentials satisfy a boundary value problem in which

v2 =0, V29" =0 (2.1)
in the recsions occupied by the fluids, except at the singularity;
ap _ _
Y 0 on y = h, (2.2)
L]
%% =0 on y = -h', (2.3)

and the linearized boundary conditions

20 _ op'
’
dy 3y ony=20 (2.4)
] v, 00 33p
== + —) + =
K$ + ay s (K@ ay) M 5y 0
2 o
where K = & , M= ll , g is the gravity, T 1is the surface tension, p and sp
ok

(s < 1) are the densities of the lower and upper fluids respectively. These conditions
arc applied for each singularity considered. They are supplemented by the two general
limiting conditions that @ or @' behaves like a typical singular harmonic function
near the singularity and the radiation condition that both functions represent outgoing

waves in the far field.

3. SUBMERGED LINE SINGULARITIES.
Without loss of generality, the line singularity is place at the point (o, * n)

We consider only singularities symmetric in x - namely, a wave source and vertical
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multipoles. We define polar coordinates (R, 6) in the xy - plane based at the singu-
larity position by the equations
Xx =R sin® , y* n=Rcos 6

according as the singularity is in the lower or upper fluid, so that R denotes the
distance from the singularity.
(i) Wave source singularities

llere ¢ and @' arc solutions of the boundary - value problem stated above
with @ having a logarithmic singularity at the source. If the source is at (o, n)
then

§~1logR as R=1[x? + (y - n)? ]l/2 > 0 (3.1)

Let

= log R +a log R' + ['[sf(k) + {A cosh k(h - y) + B sinh ky} cos kxldk,
P'= o' log R + éw[f(k) + {A'" cosh k(h' + y) + B' sinh ky} cos kxJdk,

where R' = [x? + (y + n)? ,Q is the distance from the image point ( o, -n) . It is
obvious that @, @' as given above are harmonic. We choose a« , a' , f(k) , A(k) ,
B(k), A'(k) , B'(k) such that the two integrals converge and the boundary conditions
on y=h, y=<-h" and y = o are satisfied.

Under suitable conditions concerning differentiation under the integral sign and

using the relations

ém e—k(y - n)cos kx dk , ¥y > n ,

) cos 0 _
3y (g R) = S ==

2 KO =)

! cos kx dk, y < n ,

the conditions (2.2) , (2.3) are satisfied if

e-k(h =n) o e-k(h +n) ' e-k(h' +n)

= - . R
B k cosh kh > B

and the interface conditions are satisfied if
l+a-sa'=o,

' -1 -kn

e X e+ (B -8,

A sinh kh + A' sinh kh' = =--

a
k
kn

cA cosh kh -A' [sc cosh kh' - k(1 + B k?) sinh kh'] = (1 + 8 k2)(a' e ' - k B") ,

from which we have

AA = o' (1 + & K2) ¢ ™ sinh? kh' sech kh + [§§ cosh kh' - (1 + B k2) sinh kh']EgéE)kh,
BA' = - a'(1 + 8 k2) e X" ginh kh tanh kh' + 9—££El ,
where

F(k) = (@ + a' = 1) e—kn cosh kh - e_k(h - a e-k(h +m

- 1
-a' ¢ k(' +n) cosh kh sech kh'

A(k) = c(cosh kh sinh kh' + s cosh kh' sinh kh) - k(1 + B k?) sinh kh sinh kh' ,(3.2)

K M

c=y- PTT/g
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Since F(o) = -2, therefore, the integrals involved in the assumed expressions
for A, A' converge if we choose f(k) such that k A f(k) = 2c + 0(k?) 1in the
neighbourhood of k = o and if Qgéﬂl = o,

i.e., h(l +a) + h' a' =0
Hence
a' = o s @ =-1

F(k) = -2 cosh k(h - n) ,

e—kﬁ_sinh kn

B=-25Coshwn °

B'=o0,

cosh k(h = n)

_ 2 v _ S¢c '
A = 2[(1 + 8 k%) sinh kh' - = cosh kh'] ===t ’

cosh k(h - n)

v - o
A' = =2c K B

The condition imposed on f(k) does not specify it completely. This introduces
no difficulty since it is the velocities in which we are really interested. It is
2¢
A"

Now, A(k) has a simple zero at k = m, say, on the real axis of k . This intro-

found convenient to take f(k) =

duces simple poles for the integrals in @, 9' . Below this pole we make an indenta-
tion of the contours of the integrations. Substituting in the above assumed forms for
A, A", B, B' we get

9 = log %,—+ 2 £S5 + [{k(1 + 8 K2)sinh kk' - sc cosh kn'}*

-kh

cosh k(h - y) - e sinh kn

, cosh k(h - n) & __sinn kn
k cosh kh

K& cosh Kb sinh ky] cos kx]dk,
9 = 2¢ £ L1 - cosh k(h - n) cosh k(h' +y) cos kx] dk.
Two other alternative forms which will be useful in the subsequent work are

9= log R+ (25 - 1) log R' + 2 §° %(1 + 8 k2)sinh?kh' cosh k(k - n) X

o ] -kh'
X cosh k(h - y) cos kx dk + 2s £ i [§ - +
=k(y +n) _ cosh kh' _
[ e §cosh k(h - n) cosh kh cosh k(h - y)] cos kx ] dk
-kh
_ © e sinh kn sinh ky
2 é © cosh Kkn cos kx dk , (3.4)

p' = 2 log R - 2 gw %(l + B8 k2) sinh kh sinh kh' cosh k(h - n) %
- ’ - -
»x cosh K(h' + y)cos kx dk + 2 éw % [6 - e kn' le k(n -y} _

- & cosh k(h - n) cosh k(h' + y)] cos kx ]dk , (3.5)

where 6-! = cosh kh sinh kh' + s cosh kh' sinh kh . (3.6)

In the above expressions we neglected the constants

2s log ' + 25 [~ %(1 + 8 k2)sinh kh' sinh kh dk and

o §
2 log h' + 2 é K{l + B8 k?)sinh kh sinh kh' dk in @, @' respectively.
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ik -ik|x . ;
By putting 2cos kx = e IXI + e I I , ana rotating the contours in the indented
integrals in # , @' into contours in the first and fourth quadrants so that we must

include the residue term at k = m , these integral tend to

cosh m(h - y) eim|x] , C(o3h,h") cosh m(h' + y) eim|x|

- . '
Closh,h") m sinh mh m sinh mh'

as |x] +> » , where

C(n;h,h') = wic o fe_m(h - n) + (D" em(h - n)]sinhzmh' sinh mh (3.7
"' (1 + 3 ¢ n?)sinh2mh sinh?mh’ + c(h sinh?mh' + h' s sinhZmh) '
When the source is at (o, -n) in the upper field, we have
@' ~log R as R = [x2 + (y + n)z]% > 0 (3.8)

Assume the forms

® =oa log R + éu [s f(k) + {A cosh k(h - y) + B sinh ky!} cos kx] dk,

®' = log R + o' log R' + ém [f(k) + {A' cosh k(h' + y) + B' sinh ky}*

» cos kx] dk,

where R' = [x2 + (y - n)21% is the distance from the image point (o, n) and proceed

as above to get the potentials

® = 2cs [1 - cosh k(h' - n) cosh k(h - y) cos kx] dk ,

=l
k8

-
o

S S 2y eton uh cosh k(h' - n)

[1] log X + 2 g [kA + [(k(1 + B k%)sinh kh - ¢ cosh kh) % A cosh Kb »

-kh' sinh kn
k cosh kh'

*» cosh k(h' +y) + e sinh ky] cos kx Jdk ,

and the other two alternatives forms are
$® = 2s log R - 2s g? g (1 + B k?)sinh kh sinh kh' cosh k(h' = n) =

oo

-kh'
» cosh k(h - y)cos kxdk + 2s é

% (5 - e ) +

+ [e-k(y +m o § cosh k(h' - n)cosh k(h - y)] cos kx dk , (3.9)

P' = log RR' + 2s %“ % (1 + B k?)sinh?kh cosh k(h' - n)cosh k(h' + y) %

oo - ' - -
« cosh k(h' + y)cos kx dk + 2 [ i[(e - ek 4 7k y)
h kh
- & cosh k(h' - n)ggggjaﬁ cosh k(h' + y)] cos kr ]dk +
o ~kh' sinh kn sinh ky
+ —rte——————— e
2 £ e K cosh kn’ cos kx dk . (3.10)

These potentials have the outgoing waves

s cosh m(h = y) 1 m|x]

- . ’ -
Closh',h) it b R

]
Closh' s cosh m(h' +y) i m]xl
(o5h",h) m sinh mh' € ’
as |x| » » where C(n;h,h') 1is given by (3.7).
(ii) Multipoles singularities
Here § , #' are harmonic in the regions occupied by the two fluids except at the

singularity. 1In the neighbourhood of this point
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g ~ cos(n + 16

R" + 1

s, n=o0,1, 2, ... (3.11)

We consider first the case when the singularity is at (o, n) in the lower fluid.
We try as solutions
cos(n + 1)

]D +1

P = + gm [A cosh k(h - y) + B sinh ky] cos kx dk,

p' = éw A' cosh k(h' + y) cos kx dk,
and use the representations

[ DI YO

o L cos kx dk, y < n ,

%? gm K" e-k(y - cos kx dk, y > n .

Conditions (2.2) - (2.4) are satisfied if

. kne-kSE - )
n! cosh kh ’
n+1
A sinh kh + A" sinh kh' = B +(11—)-n—'— ek,
(_l)n +1 X
-cA cosh kh + [ sc cosh kh' - k(1 + 8 k2)sinh kh' JA' = —r ck” e7FN |

These determine A, B, A', which when substituted in the above assumed forms, give

p=costn*t D6 L [ k(- m) sinh ky ok

~

Rn + 1 n! cosh kh
f Lo KL cos kx di (3.12)
o T3 n) cos kx , .
n
0= et PR g gk kht 4 y) cos kx dk,  (3.13)

where

P(n) = (<D™ * 1[c(s cosh kh' - sinh kh') - k(1 + 8k2)sinh kh'] e KD
-k(h - n)
cosh kh  °

(0]

+ [cs cosh kh' - k(1 + Bk2)sinh kh'] (3.14)

and A 1is given by equation (3.2).

As |x| + =, we have the outgoing waves

- . ' cosh m(h - y) im|x| ,
(] (n+1)c(n+1,h,h)m————~sinhrnh e

¢ - —(n+l) C(n+l; h, h') Sosh m(h'+y)  im|x|

m sinh mh'
where C(n; h, h') is given by equation (3.7).

If the singularity is at (o, -n) in the upper fluid we try as solutions
¢ =/ A cosh k(h-y) cos kx dk ,
0
cos(n+l1)6
Rn—l
+ (y+ n)zli.

$'=
2

o
+ / [A" cosh k(h'+y)+B' sinh ky] cos kx dk;
o

where R = [x
Proceeding as above leads to

o 1N ] '
¢ = E% z %r[ek(h -y (-1)n+l ok(h' - n)] cos k(h-y)cos kx dk, (3.15)
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1 -k(h'- n)
v cos(ntl)g _ (-D™! w0,
¢ ] — —osh T sinh ky cos kx dk
1 2K '
+ o i Y Q(n) cosh k(h'+y) cos kx dk, (3.16)
where
Q(n) = [c(cosh kh - s sinh kh) - k(l1+ 8 k%)sinh kh] e~K"
-k(h' - n)
n+l - 2 e
+ (-1) [c cosh kh k(1+ B h“)sinh kh] osh T (3.17)

The contours of the integrals in (3.15), (3.16) are indented below the simple pole
at k = m to give the outgoing waves
cosh m(h-y) eim | x|
n sinh mh

cosh m(h' +y)
n sinh mh'

¢ ~ s(n+l) C(ntl), h', h)

¢' - -s(n+l) C(nt+l; h', h) eim|x| )

as |x| » =.
4. SUBMERGED POINT SINGULARITIES.

We now define cylindrical polar coordinates (r, ¥, y) with the origin 0 at the
surface separating the two fluids and the y-axis pointing vertically downwards. We

also define spherical polar coordinates (R, 6, ¥) based at the singularity taken at

+

n) by the equations
R sin 6

(o,

r » Y3 n=Rcosb
We consider only point singularities for which Oy is an axis of symmetry so that the
velocity potentials ¢, ¢' are independent of ¥.

When the singularity is at (o, n) in the lower fluid the boundary value problem
for ¢, ¢' is given by (2.1) - (2.4) supplemented by the limiting condition

Pn(cos 8) a

_ .2 2 -
¢ - —goFr— %° R = (£2 + (y=n)21} > 0, n=0,1,2,...

@.1)

If we try as solutions

©

Pn(cos 6)
—— 57— + / [A cosh k(h~y) + B sinh ky] Jo(kx)dk,
0

Rn+1

#' = ] A" cosh k(h'+y) J, (kr) dk,

and using the representations

n
(—iv £w knek(y-n)Jo(kr)dk, y <n,
Pn (cos 6) )
Rn+1
© <k(y-
L T O ek, y >,

conditions (2.2),

(2.4) are satisfied if

p o KO
" nlcosh kh °
n
A sinh kh + A' sinh kh' = B + ('2 K" ek,

-c A cosh kb + [sc

-kn

n
cosh kh' — k(1 + Bk?)sinh kh'JA' = i:i%— ck” e .

Solving these equations and substituting, we obtain the expressions
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P (cos 8) .
1 ~k(h=n) h k
$ 5T ot 4K e T Y Jetkn)dk,
Lo K i yeosh K(hoy) J (kr)dk (4.2)
o Ion n-1)cos -y o (kr , .
oo n - — - '
6! = & k [e h(h-n) + (_l)nek(h n)] cosh k(h'+y)J, (kr)dk, (4.3)

where 4 is given by (3.2), P(n) 1is given bv (3.14) and as before the contour of inte-
gration is indented below the simple root k =m of A = o on the positive real k-axis,

which en<ures that the radiation conditions are satisfied. For, by putting
2 Jo(kr) = Hgl)(kr) + Hsz)(kr),

rotating the contours in each integral into contours in the first and fourth quadrants

(1)

(where H, 7 (kr), HSZ)(kr) are respectively small) and including the residue term at

k = m , we obtain the diverging waves

6 ~ C(n; h, ht) Soshmlhoy) (D)

sinh mh

- . vy cosh m(h'+y) .. (1)
¢ C(n; h, h") sinh mh' Ho

(mr),
as r » » , where C(n; h, h') is given by equation (3.7) .
In a similar manner we calculate the velocity potential when the multipole singu-

larity is at (o, -n) 1in the upper liquid. These are

o 10 v o —k(h' - -
6 - E% g EE [ek(n n) + (=) k(h n) Jcosh k(h-y)J, (kr)dk (4.4)
P (cos 8) n n_-k(h' - n)
won T 77 (=) o ke
’ RO+ YRS ~osh kh' sinh ky J, (kr)dk
1o
+ ol g %N Qfn-1) cosh k(h' + y)cosh k(h' + y)Je(kr)dk, (4.5)

1
where R = [r2 + (v+n)2]6 and Q(n) 1is given by (3.17). This motion has the diverging

cylindrical waves

s rosh h- (1
4~ Cn; n, ) SLoshmboy) (D)

, L s cosh m(h' +y) (1)
¢" ~ C(n; h', h) sinh mh Ho

(mr),

as r > «®,

5. SUBMERGED SINGULARITIES; THE LOWER FLUID IS OF FINITE CONSTANT DEPTH AND THE UPPER
IS UNBOUNDED.

A statement of the boundary-value problems for the velocity potentials ¢, ¢' for
the different types of singularities can be easily written down. These of the present
case are similar to the corresponding ones treated in sections 3 and 4 with condition
(2.3) replaced by

V¢'> 0 as y > -
and the radiation condition taking the simplet forms

¢ ~ C cosh m(h - y) eim lxl,

s e o™ oo x|

as lx] > @ for line singularities, and the forms
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¢ ~ C cosh m(h - y) H(l) (mr),
o'~ —C ™ H(l) (mr),
as r > » for point singularities, where C is a constant multiplier and m is a

simple root of the equation A = 0 where now

A = ¢ (cosh kh + s sinh kh) - k(1 + Bk?) sinh kh. (5.1)
The determination of ¢, ¢' for each singularity can be carried out independently.
This was done by the second author [5], where he assumed ¢, ¢' to have the appro-
priate forms. They may also be determined by letting h' > = in the formulae obtained
in the above sections. The velocity potentials for the different cases are as follows:
(a) Line singularities

(i) For a wave source at (o, n) 1in the lower fluid,

© §

¢ = log R+(2s - 1) log R' + 2 # — (1 + Bk%) cosh k(h - n) cosh k(h - y) *
o A

® 2 -k(y + n) _ -kh sinh kn sinh ky
x cos kx dk + £ k[s e e cosh b

~s8 cosh k(h - n)cosh k(h - y)
cosh kh

] cos kx dk, (5.2)

¢' =2 log R - 2 %w—%— (1 +Bk?) sinh kh cosh k(h - n) ekycos kx dk

©

+ / ~kn
[e]

- Scosh k(h - m] < cos kx dk, (5.3)

fall ]

[ e

where now 87! = cosh kh + s sinh kh . The path of integration is along Im(k) = o

o to ©, indented below the simple pole at k = m.
These potentials have the outgoing waves
. my .
e~ cosh m(h - y) 1m|x| e 1m|x|
(o) m sinh mh € » Clo) m ’

as |x| + « , where

Cn) = Tic = [e_m(h -m + (—1)n em(h - n)] sinh mh , (5.4)
n! he + (1 + 3Bm?) sinh? mh

The above velocity potentials can be written in slightly different forms suitable

for use in the next section. These are

= _1l-s ' >
[ log R T+s log R' + 2 g

-kh
2 = e . .
+ 1= g " [s%- &(sinh kn + s cosh kn)(sinh ky + s cosh ky) cos kx]dk (5.5)

s
3 (I 8k?)cosh k(h - n)cosh k(h - y)cos kx dk

o' = —li log R - 2 7 $(148K2) sinh kh cosh k(h-n)eVcos kx dk + —2— 1° Gl
s o A I+s © k
* [s - §(sinh kn + s cosh kn)eky cos kxIldk. (5.6)
When the wave source is at (0, -n) in the upper fluid,
@ § -—kn w o KR
b = 28 log R - 2s g n e (1+8k?)sinh kh cosh k(h-y)cos kx dk + 2s é E—k— r

_ky

A [e - Scosh k(h-y) lcos kx dk, (5.7)
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©

$ k(n

¢' = log R R' + 2s g” Z(1+Bk2) sinh? kh e~ eos kx dk + 2s L -% sinh kh x
x KO ) os kx dk. (5.8)
or as in the previous case,
2 § k 2s e_kh
- 25 _ 9 Tkn AP - £5_ & _x
b = el log R 2s é 7 e (14+8k¢)sinh kh cosh k(h-y)cos kx dk + 143 é i
Als = Ge_kn(sinh ky + s cosh ky) cos kx] dk, (5.9)
1-s S k(y-n) 2s e-kh
At = o 473 [ > 2 - . 2 L5 m__x
¢ log R + 145 log R' + 2s g A (14Rk“)e sinh“kh cos kx dk + 1+3 é
2 (1= 55 s k) dk (5.10)

These potentials have the outgoing waves

im]xl

. my
cosh m(h-y) elmlxl , C'(0) §m._ e R

-C"'
€' () & sinh mh
as le » = | where
o7 i n & mn sinh?mh
=22 Lsen (5.11)

1
n: he + (1+38m2)sinh?mh

C'(n)

(ii) Multipoles singularities

When the singularity is at (0,n) in the lower fluid,

n
_cos(ntl)b 1 = n -k(h-n) sinh ky 1_ ok, 0+l
M tar b ke sinh kh C0S kx dk - g LD A
-kn e_k(h—n)
[K + k(1 + Bk2)] e - [sc-k(1+8k2) ] Esgﬁ-iﬂrl cosh k(h-y) cos kx dk, (5.12)
n
o' = E;'g %— [e_k(h—”) + (—1)n+1 ek(h—n)Jekycos kx dk, (5.13)

which have the outgoing waves

e im|x|
e

cosh m(h-y) eimlxl ., —(n+l) C(n+l) &
m

(n+1) ClntD) om s b mh

as |x[ > © , where C(n) is given by (5.4), and when the singularity is at (o, -n)
in the upper fluid,

n

_2sc >~k -kn cosh k(h-y) cos kx dk, (5.14)
¢ = : f — e
n! o} A
, _ cos(n+l)8 1 o K ~kn[c(cosh kh - s sinh kh) - k(1+Bk2) sinh kh] »
P = =+ — f — e
n+l n! ©°o A
R
x e cos kx dk, (5.15)

and have the outgoing waves
. my .
' cosh m(h-y) 1m|x| _ ' e im|x|
(n+1) C'(n+l) & sinh mh e . (n+1) C'(n+l1) e ,
as |x| > ©, where C'(n) is given by (5.11).
(b) Point singularities

For a singularity in the lower fluid,

P_(cos 8) . n
__n 1 @ n -k(h - n) sinh ky _ 1 ok _q\D 2
¢ n+l + n! é ke cosh kh J (kr) dk n! % A [CEDUK + k(1489 ]

R
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—k(h-n)
- [sc - k(1+Bk?)] £ oo ) cosh k(h-y) Jo(kr) dk, (5.16)
n
=S ¥ = e kh=n) oy k) kY ey dk, (5.17)
with the outgoing waves
cosh m(h-y) (1) _ NeY)
€M) —Iinh mh H," (mr), -C(n) == H "’ (mr)

as r >« , C(n) being given by (5.4).

When the singularity is in the upper fluid,

2 sc waE -kn

® = on ¢ cosh k(h-y) J (kr) dk, (5.18)
P (cos 6) w LD _
o' = s lT F L e kn [c(cosh kh - s sinh kh) - k(1+Bk2?) sinh kh] ¥
Rn+1 n! o A
v MY g (ke dk, (5.19)

and as r >, ¢ , ¢' have the outgoing waves

oY
cr(my Loshmlhey) y (D oy, o) &= B (an),

C'(n) being given by (5.11).

6. SUBMERGED SINGULARITIES. BOTH FLUIDS INFINITE.

Here also the boundary value problem for the velocity potentials ¢ , ¢' is similar
to the corresponding ones in sections 3,4 except that conditions (2.2) and (2.3) are
replaced by Vo >0 as y =,

Vé'> 0o as y > -®
respectively, and the radiation condition takes the forms

-my eim[x[’ oMY eimlxl

$' ~ -C
as |x| - = , for line singularities, and the forms

b ~ce ™ Hfl) (mr), o'~ -ce™ Hgl) (mr)

¢ ~ Ce

as r > », for point singularities, where C 1is a constant multiplier and m is now

the simple zero of the equation

k(1 + Bk?) - c(l +s) =
The evaluation of ¢ , ¢' for each singularity can be carried out independently
(see [5]). They may also be evaluated by letting h 1in the results of the previous
section tend tormally to infinity. The velocity potentials for the different singu-
larities are as follows:
(a) Line singularities.
(i) Wave source.

The velocity potentials are

~k(y + n)
- ™ 2
¢ = log R - %1§ log R' - T%E b (1 * Bk%)e cos kx dk, (6.1)
% k(1 + 8k2) - c(l+s)
o & . ,_2» - 2 k()’ - n)
4 l+s log R + I+s ¥ (_+ Bk9e cos kx dk, (6.2)

© k(1 + BK2) - c(l+s)

for a wave source in the lower fluid and
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sy ~k(y +n)
- 2
o= %f; log R + %f:; §° (Lt BkT)e cos kx dk, (6.3)
® k(1 + Bk?) - c(l+s)
‘ k(y = n)
"= oo 1-s v_ 25 m L +rkPe 7T T
¢'= log R + s log R 7 ¥ cos kx dk, (6.4)

k(L + Bk?) - c(l+s)
for a wave source in the upper fluid.
(ii) Multipoles singularities.

The velocity potentials are

N _yn+l - 2 n -k(y + n)
o = et;it;.t@ﬁ + Ll.z;' ¥ [k(1 + k%) + Kk e ~ cos kx dk, (6.5)
R : k(1 + Bk2) - c(l+s)
k(y = n)

n n
$'= 2GD ¢ £ k e — cos kx dk, (6.6)

1
n k(1 + 2k?) - c(l+s)

if the singularity is in the lower fluid and

w 0 mk(y + 1)
¢ = -EE% f k e cos kx dk, (6.7)
: k(1 + Bk?) - c(l+s)
w K0 2y _ -
precoslone Lo e k L 2 Bk - KT kO = meog pex ax, (6.8)
R ; k(1 + Bk2) - c(l+s)

if the singularity is in the upper fluid.
(b) Point singularities

If the singularity is in the lower fluid

P (cos 8) PR B 2 n -k(y + n)
o = __1'1_}_‘_".l ( :‘3 7; [k(1 + Bk?) + K]k e 3, (ke)dk, 6.9)
R : k(1 + Bk?) = c(l+s)
_ n+l w 11 k(y - n)
o= ZL[(I_!U %'. kie 7 ~ Jo (kr)dk (6.10)

k(1 + BK?) - c(l+s)
and if it is in the upper fluid,
-2 sc = k° e—k(y )

b = = f Jo(kr) dk, (6.11)
n! 0 2
k(1 + Bk*) - c(1l+s)

P_(cos 6) » 1.0 2y - -
n Lok (k@ + 8kT) = K1 k(Y = )y (ypygi, (6.12)

n+l n! ©°

¢'=
R k(1 + 8k2) - c(l+s)

7. SINGULARITIES AT THE SURFACE OF SEPARATION.

Clearly the results of the previous sections are not valid for n = o. Here we use
coordinates based on the singularity at the crgin. Then it may be shoen that the poten-
tials are as follows

(a) Line singularities
(i) Wave source

Both fluids of finite depth

¢ =¥ = l2cs + (k(l + Bk?)sinh kh' - 2cs cosh kh')cosh k(h-y)cos kxldk,
o kA } 7.1
¢ = gm &K [2c + (k(1 + Bk?)sinh kh - Zc cosh kh)cosh k(h' + y)cos kxldk

where A is given by (3.2).
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Lower fluid of finite depth

¢ = 2s log R + g? %(1 + Bk ') (cosh kh - s sinh kh)cosh k(h-y)cos kx dk

+2s [ l[e KY _ §cosh k(h-y)Jcos kx dk,
© (7.2)
8'= 2 log R - ¥ %(1 + 8K?) (cosh kh - s sinh kh)sinh kh e cos kx dk
+ 2s gm % sinh kh eky cos kx dk
where 6-1 = cosh kh + s sinh kh, and A 1is given by (5.1).
Both fluids infinite
-k
© 2 y
¢ = %%é log R = I%% ¥ (1 + Bk e cos kx dk,
k(1 + Bk?) - c(l+s)
(7.3)
o,, 2
¢'= log R +(l+s a+ Bk )e - cos kx dk,
© k(1 + Bk?) - c(l+s)
(ii) Multipoles
Both fluid of finite depth
For multipoles corresponding to n = 1, 3, 5, ... (even multipoles)
1 mk2m+l
¢ = ———— ¥ ——— [2sc cosh kh' - k(1 + Bk?)sinh kh']cosh k(h-y)cos kx dk,
(2m+1)! © A (7.4)
1 k2m+1
L > ‘ — 2 s ]
¢ Gur )1 g T [2c cosh kh - k(1 + Bk?)sinh khlcosh k(h'+y)cos kx dk,
and for the multipoles corresponding to n = 0, 2, 4, ...(odd multipoles)
2m
o = C(”?) %'”L— sinh kh' cosh k(h-y)cos kx dk,
(2m) (7.5)
2m
v —c(l+s) =k . . ' _
¢'= —am1 g —E—»51nh kh cosh k(h'+y)cos kx dk, (m = 0, 1, 2,...)
where A is given by (3.2).
Lower fluid of finite depth
Similarly for even multipoles (m = 0, 1, 2, ...)
1 - k2m+1
= - 2 -
¢ Ity g A [2sc - k(1 + Bk?)]cosh k(h-y)cos kx dk, .6
+
o= 1 ﬁm kzm 1 [2c cosh kh - k(1 + Bk2)sinh kh]ekycos kx dk,
(2m+l)! o A
and for odd multipoles
2m
o = %éi§$) g EZ_ cosh k(h-y)cos kx dk,
’ (7.7
2m
v —c(l+s) ® k y
¢ 2m) 1 g 7 sinh kh e “cos kx dk

where A 1is given by (5.1).

For multipoles corresponding to n =1, 3, 5, ... (even multipoles), we have

2m+l 2y _ ky
b= iy £ SO S Bl os kx ak, 1
k(1+8k?) - c(l+s) (7.8)
2m+1
N T+ BK2) - 2cle™ j
¢'= 1y g ——— cos kx dk,

1k(1+sk2) - c(1+s)
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and for odd multipoles
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o, 2, 4, ...(even multipoles)

— [2sc cosh kh' - k(1+Bk2)sinh kh']lcosh k(h-y) J_(kr) dk,

2m -ky
T s
™9 K (148Kk2) - c(l+s)
. - 2m ky
¢'= %%LtTZ 'g LS cos kx dk, (m
n k(148k2) - c(l+s)
(b) Point singularities
Both fluids of finite depth
For multipoles corresponding to n =
. e f? E?m
2m)! o &
. 1 o k2" [2sc cosh kh - k(1+8k2)sinh khlcosh k(h'+y) J_(kr) dk,
¥t 3 ;

and for multipoles corresponding to n =

cits) Lo k™ .
¢ = D)1 g sinh kh' cosh k(h-y) J_(kr)dk,
pro ze(t9) o K™D sinh kb cosh k(h'4y) I, (kr)dk, (m = o,
(2m+1)! 0 A
where A 1is given by (3.2).
Lowernf}uld of finite depth
For even multipolesrig 0,1,2,...)
1 - kZm
¢ =G § 5 [2sc - k(1+8k?) Jcosh k(h-y) J_(kr)dk,
! @ 10 ) ky
¢'= T ? e [2¢c cosh kh - k(1+Bk?)sinh khle “cos kx dk,

and for odd multipoles

_ c(l+s) © k

2m+1

¢ = OmDt T T2

-c(l+s) o Kk

2m+1

¢l_

T m+D)! o A

where A is given by (5.1).

Both fluids infinite

For multipoles corresponding to n =

o = L B Lelreid) - 2516
1
(2mt o K(1+8Kk2) - c(l+s)
w1 e o2m [k(148K?) - 2cJe XY
¢ Gmt §Ok
: k(14+8k2) - c(l+s)
and for odd multipoles
s = Cl4s) = bl e
(2mtl) o K(1+8Kk2) - c(l+s)
pro CUFS) = 2wkl o
(2m+1) o

k(1+8k2) ~ c(l+s)

cosh k(h-y) J,(kr)dk,

sinh kh eky Jo (kr) dk,

Jo (kr) dk,

J, (kr) dk,

Jo(kr) dk,

Jo(kr) dk.

1, 3, 5, ...(odd multipoles)

1, 2,

ced)

o, 2, 4, ... (even multipoles), we have

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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It should be noted here that there is a non-uniqueness for B > o to the extent
that any multiple of a slope potential may be added. The forms given above correspond
to a continuous interface slope 1t the orgin, where the interface elevation is always
finite.

8. CONCLUSION.

A complete survey for all the basic singularities that can be used in two fluids
problems with surface tension is presented. Results of Gorgui and Kaseem [2] and
Kaseem [3] can be recovered by putting B8 = o in the appropriate forms and also those

of Rhodes-Robinson [4] can be obtained by putting s = o.
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