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ABSTRACT, If Kk is a ring, the structure of the projective special linear group
PSLe(R) is used to investigate the existence of sum of square properties holding in R.

Rings which satisfy Fermat's two-square theorem are called sum of squares rings and

have been studied previously. The present study considers a related property called

square property one. It is shown that this holds in an infinite class of rings which

includes the integers, polynomial rings over many fields and an where p is a prime
such that -3 is not a square mod p. Finally, it is shown that the class of sume of

squares ringc and the class satisfying square property one are non-coincidental.
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1. INTRODUCTION

Fermat's classical two-square theorem gives the relationship between those
integers n which are sums of two squares and those integers n for which the cyclotornic
eguation x2 + 1 = 0 can be solved modulo n. Specifically -1 is a quadratic residue
mod n if and only if n is expressible as the sum of two relatively prime squares. In
[1] a proof of this was given which involved the group theoretical structure of the
modular group - PSLQ(Z). Fermat's theorem is then, in a sense, independent of number
theory in that the structure of PSLQ(Z) can be deduced by purely analytic (Fuchsian
rroup) methods, (Lehner [21) This idea was used by Fine [ 3] to show that Fermat's
result holds in an infinite class of rings. Such rings were termed sum of squares
rings. In this note we first use a technique similar to [ 3] to investigate the
structure of those integers n for which the cyclotomic equation x2+ x +1 = 0 has
solutions mod n. A square result similar to Fermat's theorem is obtained. It is then

shown that this square property holds in infinitely many sum of squares rings but that
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the two square properties are independent. Finally, some questions that were raised
in [ 3] zre answered. Before beginning, we note that the technique of [ 3] has been
extended by Kern-Isberner and Rosenberger [ 4] to consider those integers which can be
expressed in the form n = x2+ dy2 where d is a fixed positive integer. In a different
direction, the general situation for which the equation xg# dx + 1 = 0 has solutions

mod n was considered by Fine in [5]. A collection of square results was obtained,

2. We first prove the following theorem concerning the integers Z.
THECREM 1: The equations x2+ x + 1 =0 and x2- x + 1 = 0 have solutions modulo
n if and only if there exist relatively prime integers a and b with

n = a2+ b2+ ab

PRUOF: Consider the modular group M = PSLQ(Z) consisting of linear fractional

transformations
+
'= %%—;—% with a, b, ¢, 4 integers and ad-bc = 1.
It is well know (Lehner [ 2], Newman [6]) that M = Z_* Z_ - that is group theoretically

2 3
M is a free product of a cyclic group of order 2 and a cyclic group of order 3.

If A is the map z' = -1/z and B is the map z' = -1/z+1 then M has the presen-
tation <A, B: A2 = B3 = 1> ., [6]. Since in a free product any element of finite order
must be conjugate to an element of finite order in one of the factors [ 7] it follows
tﬁat any element of order 3 in M must be conjugate to either B: 2z' = -1/2+1 or to

B-l: 2' = (-2z-1)/z.

If U: z' = (az+b)/(cz+d) is an element of M then conjugating B and Bt vy U
we obtain

1

v lmy: 2t = (dz-b ) -1 az+b)

-cz+a’ "2+l cz+d
(ab+cd+be)z + (bo+ d°+ bd)
-(a2+ 2+ ac)z - (bc + ab + cd) (2.1)

or

-1... _y _ (9z=b y,-2-1,,82+b
UTBU: 2t = () (S )(cz+d)

(ad+ab+cd)z + (b + d°+ bd)
-(a2+ c®+ ac)z - (be + ab + cd) (2.2)

2

where rmultiplicaticn Iz done via matrix rultiplication -
da -b 0 -1 a b -b\ (-1 - a b
(‘C a) (l 1 ( ) . ( ) 0) (
Therefore, any element of !t of order 3 must have form (2.1) or (2.2).

Now let a > 0, ne Z. Suppose the equation x2+ x + 1 =0 has a solution modulo

n. Then there exists integers m and k with

m2+ m+ 1 =nk
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Therefore, the linear fractional transformation

_ —-mz + n

z' =
kz + (m+1) (2.3).

has determinant +1 and is thus in M. Further it has trace +l1. Elements of M with trace
1 have order 3, [6] so the map in (2.3) has order 3. Therefore, this map must have
either form (2.1) or form (2.2). Thus, n = b2+ d2+ bd for some b, de Z. Further,

since U: z' = (az+b)/(cz+d) has determinant 1, ad-bc = 1 and so b and d are relatively

prime.

Conversely, cuppose n = b2 + d2 + bd with (b, d) = 1, Since b and d are
relatively prime, there exist integers a, c with ad - bc = 1. Then there exists a map
u: z2' = (az+b)/(cz+d) in M., Conjugating the map 57t by this U give us form (2) - that

is

(ad+cd+ab)z + (b2+d2+bd) _-mz +n
kz+(m+1)

z' =
-(a2+c2+ac)z - (bc+ab+cd)

since n = b2+ d2+ bd. Since conjugation preserves determinants, we have -m2- m-nk =1

or m2+‘m + 1= nlk. Therefore, x2+ x + 1 = 0 has a solution modulo n. In an identical
manner, by dealing with traces of -1 we get the result concerning the equation

X -x +1 =0 mod n.

By quadratic formula, x2+ x +1 =0 and x2— x + 1 = 0 have solutions mod p
(where p is an odd prime) if and only if -3 is a square mod p. Thus as a corollary we
have

COROLLAKY: If p is an odd prime then -3 is a quadratic residue mcd p if and

only if p = 32+ b2+ ab for some relatively prime integers a, b.

The structure of the modular group can be used to effectively classify all the
trace classes. This was done in [ 5]. From this is is obtained that for each 4 > O
there exist finitely many gquadratic forms (depending on d) such that x2+ dx +1 =20
has solutions mod n if and only if n is represented by one of these forms. Further,
there exists an effective procedure to write down each of these forms for each d., 1In
this paper we take a different tract and consider those rings for which theorem 1 is

valid.

3. Recall from [ 3] that a sum of squares ring is a commutative ring R with an

identity (not a field) with -1 not a square in R which satisfies the following two
square properties:

+ 2

I (P VR

SS1: If re R and -1 is a quadratic residue mod(r) then r = u+ v

2 2 . . . .
S2: If r = u” + v with (u, v) = 1 then -1 is a quadratic residue mod (r)

For 5S2 a 5CD ring was not required - (u, v) = 1 indicating only that u and v
have no cornon divisors. In | 3] it was shown that there are infinitely many sum of
squares rings. Specifically, the following classes of rings were proven to be sum of

squares rings.
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1) Z._n where p is a prime, p = 3mod b and n > 1
2) The polynomial rings F [ x] where F is a field with -1 not a square in F and

where PSLo(F) has only one conjugacy class in trace zero. In particular
a) Zgﬁx] where p is a prime congruent to 3 mod U

b) K [x] where K is an ordered field permitting square roots of all positive
elements. Examples here are TR [x] and A [ x] where R is the real field and A the

sutfield of algebraic numbers.

3) General Euclidean domains D with trivial units, of characteristic # 2 and
with a subadditive norr function satisfying 0 # N(b) < N(a) implies N(a+kb) < N(a) for

some k& D. (The integers Z provide an example of this last type of ring.)

We now consider rings which satisfy the results of Theorem 1. We say that a

cormutative ring with an identity (not a field) satisfies square property one

atbreviated SP1 if tne ring R satisfies

+
SPla: If rek and X+ x + 1 = 0 has solutions mod (r) then r = - (u2+ v+ uv)

for sore ring elements u, V.

+
SPit: If r = -(u2+ e uv) for some u, veR with (u, v) = 1 then X x + 1=0

has solutions mod (r).

As in the case of sume of squares ring (u, v) = 1 indicates that u and v have
nc common divisors. A GCD ring is not required. We obtain:
THECOFE! 2: The following classes of rings all satisfy square property one.

a) T v. where n>! a=1 p iz a rrime such that -3 is not a square mod v

b) F [x] where F is a field of characteristic #2, with -3 not a square in F and every

. . +(0 -1 + (-1
matric of trace 1 in PSLE(F) is conjugate within PSLZ(F) to either - ; O)or -\ é)

¢) FBuclidean domains D of char # 2 with trivial units and a sub-additive norm function

satisfying 0 # N(v) < N(a) implies N(a+kb) < N(a) for some keD.

PROOF: All of the above rings have the property that the GCD of two elements is
expressible as a linear combination of these elements. Thus if (u, v) = 1 there exist
a, b with au + bv = 1. Employing the idential formal method as in the second part of

the proof of Theorerm 1, it is seen that these rings all satisfy SPlb.

Since each of these rings has only trivial idempotents, the center of their special
lineur grours SLQ(R) is T I - with I the identity matrix. Thus PSLE(R) = SL2(R)/: I
for any of the avove rings. It follows that any element of PSL2(R) can be considered
as + or - a matrix in SL2(R). Modeled on the first part of Theorem 1, it is seen
that these rings w:1ll satisfy SPla if every matrix of trace 1 is conjugate within
PSL, (1) either to f(g 'i) or f(j é) . We will show in turn that this is true for
each of the above classes.

a) If -2 is not a square in Zp then -3 is not a square in an for all n > 1.

2 . . .
Therefore, there exists no solutions to x + x +1 =0 in Zn . Sincen >1, an is
not a field. By a result of D. L. McQuillan [8] if AePSL2(an) and tr(A) = 1 then A
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-1
l)'
b) If F is a field with char F # 2 and -3 not a square to F, we show that every

+
is conjugate tc - (g Thus , an satisfies square property one.

matrix of trace 1 in PSLQ(F [¥])every matrix of trace one is conjugate to either
+ -2 + -
PO Y or? (i é) the result follows as above.

1 1
Suppose TEPSLZ(I?[x]) with T = £ (—i %+l) . Let S be the set of all conjugates of
T in PSL2F [ x]) and suppose VeES with V = + (_: z+l) and with the degree of u minimal

among all the conjugates of T. If v =0 or W = 0 then -u(u+l) = 1. Then u2+ u+l=0
has a soluticn in F (u must be in F since the only units in F [ x] are in F) contrac-
dicting -3 not being a square in F. Therefore, v # O and w # 0. If ueF then since
-u2- u=-(vw) + 1, it follows that deg v + deg w = 2 deg u, and thus v and w are also

in F.

Lssume dez u21l. Since deg v + deg w = 2 deg u then deg v < deg u or deg w < deg u.
By the division algorithm a polynomial q can be determined so that det (u + qv) < deg u.
Conjugating the matrix V by (é %) gives a matrix ¥ (u:qv :). This matrix is in S
being a conjugate of V., But this contradicts the minimality of deg u among the elements
of S since deg (u+qv) < deg u. Therefore deg u < 1 and so ueF . From the argunient
riven tefore then v and v must also be in F and thus VePSLE(F). Therefore, every

matrix in PSL2(F [ x]) of trace one in PSL2(F).

c) Finally in a Euclidean domain the stated conditions on the subadditive norm

functions are exactly what is necessary to allow the proof of theorm 1 to go through.

As a corollary, we obtain
CORULLARY 2:

1) If -2 is not a square mod p, then ZJ:x] satisfies square property one.

2) If F is an ordered field where every positive element has a square root, then
F [ x] satisfies square property one. In particular if R is the real field and A
the subfield of algebraic numbers when both R [x] and A [x] satisfy square property

one.

The proofs of the two statements in the corollary consist in showing that over
these fields the conjugacy conditions on matrices of trace one hold. In fact, over

0
these fields every matrix of trace one is conjugate to + (_1 i), [3] [8].

3. FEach of the rings discussed in the previous section, except for the conditions on
primes, are sum of squares rings. There are trivial examnles of sum of squares rings
which do not satisfy square property one - for example Z3 [ x] which is a sum of squares
ring but does not satisfy square property one since -3 is a square in Z3. In this
section, we give a non-trivial example of a ring which satisfies square property cne
but which is not a sum of squares ring. The example will lead us to pose a question

about sum of squares rings.

Let 12 denote the ring of integers in the quadratic imaginary number field Qv-2 .

Then we get
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THESRI! 3: I satisfies square property one but is not a sum of squares ring.

PROCF: An integral basis for I, is (1, i/ 2 )so then this ring can be considered
as 2[iv/ 2 1 . Heither x2+ 1 =0 nor x2+ x + 1 = 0 have solutions in I2. Further I2
is Euclidean [ 9], so that both SS2 and Splb hold in 12. We now show that SPla holds

in I2 but that SG1 does not.

From Fine [ 9], it is known that the projective special linear group over 12-PSL2(I2)
- is an HIi extension (cee [9] for terminology) of a base K2 which is in turn a free
product with amalgamation. The structure of this base group can be described as
= (2 LAV
Ky = (2, x 205 Ay
That 1is Kg is the free product of a Klein L-group sz Z2 with the alternating group

on % cymuvols Ah amalgamated over a subgroup H which is cyclic of order 2.

The linear fractiornul transformation M: z' - -1/z+1 which represents the matrix
+ (O —l)
-1 1
muct be conjugate to this or its inverse.

is in the factor Ah' This has order 3 and in Ah every element of order 3

In an HIN extension, every element of finite order must be conjugate to an element
of finitc order in the base group. Further, in a free product with amalgamation

elements of finite orier are conjurate to elements of finite order in the factors.

low suppose T = + (i Ea+l) is an element of PSL2(12) of trace + 1. Elements of trace
+ 1 have order 3 in the base K2° Since K2 is a frec product with amalgamation, T
in turn must be conjugate to an element of order 3 in one of the factors of K_.. Since

72 X Z2 has no elementc of order 3, T then must be conjugate to an element ofgorder
3 in Ah' Tus T must be conjugate to either I or M-l. From this, as in the proofs of
theorem 1 and 2, it follows that S”1b holds in 12.

We show, however, that SS2 does not hold in 12. Consider v =1 + i/ 2 . Then
v+ 1=-1+2i/ 2 +1=2i/7 . Therefore -1 is a quadratic residue mod (iv 2 )
is not a sum of two squares, If u2+ v2= + i/ 2 with u = a+ib/ 2 , V=4 +i8/2 .
wit:. a, b, A, B € Z then

a2+ 1%- 2(0%+ B°) + 2(ab + AB) T i = +i/2
or
2(ab + AB) = + 1

which is impossible.

What led to this example was that PSL2(12) has several conjugacy classes in trace
zero. In [3] it was shown that certain conditions on the conjugacy classes in PSL2(R)
for R a ring implied t.at R was a sum of squares ring. Combining these, we ask the
following question,

QUESTION: If R is a sum of squares ring, must PSL2(R) have only one conjgacy

class in trace zero?

L. In [3] the following two questions were posed.

1) If R is both an interral domain and a sum of squares ring must it be a UFD?
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2) Is Z[x] - the polynomial ring over the integers - a sum of squares ring?

Both turn out to be false. The following elegant example showing that 1) is false
is due to R. Keith Dennis [10] . As a first step, he needs the following lemma whose

proof is straightforward.

LEITAA: The direct limit of a directed system of sum of squares rings is again a

sur of cauares ring,

liow suppose that for each positive integer n, An is the ring of p-adic integers
with the 2"_the root of p adjoined. Let A be the direct limit of the system An. If
p=3 mod 4 each A will be a sum of squares ring and therefore A will be a sum of
n

squares ring. However, A will not be a UFD since there are no primes in A.

Chowing that Z [ x] ic not a sum of squares ring is rather direct and was pointed
out first by E. Mei.oza (wrong others). Consider p(x) = x2+ L. This is a sum of two
relatively prime squares i:. 2 [x] . Suppose -1 was a quadratic residue mod (p(x))
so that

(g(x))2 + 1 = p(x)+f(x)

Evaluating at zero gives (g(O))2 + 1 = L4+f(0). Since these are integral polynomials,

this would make -1 a quadratic residue mod L which is false.
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