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ABSTRACT If R is a ring, the structure of the projective special linear group

PSL2(R) is used to investigate the existence of sum of square properties holding in R.

Rngs which satisfy Fermat’s two-square theorem are called sum of squares rings and

have been studied previously. The present study considers a related property called

square property one. It is shown that this holds in an infinite class of rings which

includes the integers, polynomial rings over many fields and Z n where p is a prime
P

such that -3 is not a square rood p. Finally, it is shown that the class of sume of

squares rings and the class satisfying square property one are non-coincidental.
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I. INTRODUCTION

Fermat’s classical two-square theorem gives the relationship between those

integers n which are sums of two squares and those integers n for which the cyclotomic

x
2

equation + ! 0 can be solved modulo n. Specifically -i is a quadratic residue

mod n if and only if n is expressible as the sum of two relatively prime squares. In

[i] a proof of this was given which involved the group theoretical structure of the

modular group PSL2(Z). Fermat’s theorem is then, in a sense, independent of number

theory in that the structure of PSL2(Z) can be deduced by purely analytic (Fuchsian

Croup) ,thods. (Lehner [2]) TT.is dea was used by Fine [%] to show that Fermat’s
result holds in an infinite class of rings. Such rings were termed sum of squares

rins. In this note we first use a technique similar to 3] to investigate the

structure of" those integers n for which the cyclotomic equation x2+ x + I 0 has

solutions mod n. A square result smmilar to Fermat’s theorem is obtained. It is then

shown that this square property holds in infinitely many sum of squares rings but that
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the two square properties are independent. Finally, some questions that were raised

in 3] are answered. Before beginning, we note that the technique of 3] has been

extended by Kern-Isberner and Rosenberger 4] to consider those integers which can be
2 d,v2expressed in the form n x + where d is a fixed positive integer. In a different

direction, the general situation for which the equation x2+ dx + 1 0 has solutions

rood n was considered by Fine in [5]. A collection of square results was obtained

2. We first prove the following theorem concerning the integers Z.
2

x2_THEORY4 i: The equations x + x + i 0 and x + i 0 have solutions modulo

n if and only if there exist relatively prime integers a and b with

2
b
2

n= a+ +ab

PROOF:

trans formati ons

Consider the modular group M PSL2(Z) consisting of linear fractional

z’ az + b
with a b c d integers and ad-bc i

cz + d

It is well know (Lehner 2], New-man 6]) that M Z2* Z
3

that is group theoretically

M is a free product of a cyclic group of order 2 and a cyclic group of order 3.

If A is the map z’ -i/z and B is the map z’ -i/z+l then M has the presen-

A
2

B3tation <A, B: i> [6] Since in a free product anF element of finite order

must be conjugate to an element of finite order in one of the factors 7] it follows

tat any element of order 3 in M must be conjugate to either B: z’ -i/z+l or to

B
-I

z (-z-l)/z.

If U: z’ (az+b)/(cz+d) is an element of M then conjugating B and B-I

we obtain

U IBU: z’ (dz-b) -i (az+b)-c.+a (z-J-) c-qT"
(ab+cd+bc)z + (b2+ d2+ bd)

2+-(a2+ c ac)z (be + ab + cd)

or

z (dz-b -z-l)(az+b]U-BU: ----g--zz+a)(--q c-qT"

(ad+ab+cd)z + (b2+ d2+ bd)
2-(a2+ c + ac)z- (be + ab + cd)

where multiplicatcn Zs done va .matrix multiplication

by U

(2.2)

Therefore, any element of . of order 3 must have form (2.1) or (2.2).

2Now let a > 0, n Z. Suppose the equation x + x + i 0 has a solution modulo

n. Then there exists integers m and k with

2
m +m+ i nk
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Therefore, the linear fractional transformation

-mz + nz
kz + (m+)

has determinant +! and is thus in M. Further it has trace +i. Elements of M with trace

1 have order 3, [6] so the map in (2.3) has order 3. Therefore, this map must have

either form (2.1) or form (2o2). Thus, n b2+ d2+ bd for some b, de Z. Further,

since U: z’ (az+b)/(cz+d) has determinant i, ad-bc 1 and so b and d are relatively

prime.

Conversely, suppose n b
2

+ d
2

+ bd with (b, d) io Since b and d are

relatively prime, there exist integers a, c with ad bc i. Then there exists a map

U: z’ (az+b)/(cz+d) in M. Conjugating the map B-I by this U give us form (2) that

is

z’ (ad+cd+ab)z + (b2+d2+bd) -mz + n

-(a +c +ac)z- (bc+ab+cd)

b
2 d2+ 2

since n + bd. Since conjugation preserves determinants, we have -m m nk i
2 x2+or m + m + I nlk. Therefore, x + i 0 has a solution modulo n. In an identical

manner, by dealing with traces of -i we get the reufLt concerning the equation
2

x x + i 0 mod n.

2
x
2

By quadratic formula, x + x + i 0 and x + i 0 have solutions rood p

(where p is an odd prime) if and only if -3 is a square mod p. Thus as a corollary we

have

COROLLARY" If p is an odd prime then -3 is a quadratic residue rood p if and
2 2+only if p a + b ab for some relatively prime integers a, b

The structure of the modular group can be used to effectively classify all the

trace classes. This was done in 5]. From this is is obtained that for each d 0

there exist finitely many quadratic forms (depending on d) such that x2+ dx + i 0

has solutions mod n if and only if n is represented by one of these forms. Further,

there exists an effective procedure to write down each of these forms for each d. In

tlis paper we take a different tract and consider those rings for which theorem i is

val i d.

3. Recall from 33 that a sum of squares ring is a commutative ring R with an

identity (not a field) with -i not a square in R which satisfies the following two

square properties:

+
v
2SSi: If re R and -i is a quadratic residue mod(r) then r (u2+

u
2

v
2SS If r + with (u, v) i then -i is a quadratic residue mod (r)

For SS2 a ZCD ring was not required (u, v) ! indicating only that u and v

have no co.on divisors. In 3] it was shown that there are infinitely many sum of

squares rings. Specifically, the following classes of rings were proven to be sum of

squares rings.
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i) Z n where p is a prime, p 3 nod 4 and n > i
P

2) The polynomial rings F x] where F is a field with -i not a square in F and

where PSLo(F) has only one conjugacy class in trace zero. In particular

a) Z Ix] where p is a prime congruent to 3 nod 4
P

b) K Ix] where K is an ordered field permitting square roots of all positive

elements. Examples here are Ix] and A [x] where is the real field and A the

suhfie!l of algebraic numbers

3) General Euclidean domains D with trivial units, of characteristic # 2 and

with a subadditive norm function satisfying 0 # N(b) <- N(a) implies N(a+kb) < N(a) for

some ks Do (The integers Z provide an example of this last type of ring.)

We now consider rings which satisfy the results of Theorem io We say that a

commutative ring with an identity (not a field) satisfies square property one

abbreviated S?I if the ring R satisfies

+
SPIa" if rci and x2+ x + ! 0 has solutions mod (r) then r (u2+ v2+ uv)

for some ring elements u, v.

+ 2 2 2
SPIh" If r -(u + v + uv) for some u, vsR with (u, v) i then x + x + I 0

has solutions nod (r).

As in the case of sume of squares ring (u, v) I indicates that u and v have

no cornon dvisors. A GCD ring is not required. We obtain:

THEOP[ 2: The following classes of rings all satisfy square property one.

a) n wher n>! an’] is a trine such +/-hat -3 is not a square od

b) F Ix] where F is a field of characteristic #2, with -3 not a square in F and every

matric of trace i in PSL2(F)is conjugate within PSL2(F)to either-+(0 -01)Ior
+ (-ii )

c) Euclidean domains D of char # 2 with trivial units and a sub-additive norm function

satisfying 0 # N(b) -< N(a) implies N(a+kb) N(a) for some kDo

PROOF" All of the above rings have the property that the GCD of two elements is

expressible as a linear combination of these elements. Thus if (u, v) I there exist

a, b with au + bv i. Employing the idential formal method as in the second part of

the proof of Theorem i, it is seen that these rings all satisfy SPIb.

Since each of these rings has only trivial idempotents, the center of their special
+

SL2(k) is i with I the identity matrix. Thus PSL2(R) SL2(R)/-+ Ilinear grou}s

for any of the above rings. It follows that any element of PSL2(R) can be considered

as + or a matrix in SL2(R). Modeled on the first part of Theorem i, it is seen

that these rings w=i! satisfy SPIa if every matrix of trace i is conjugate within
+ -i I+ 0 -!) or -( We will show in turn that this is true forPSL2(I{) either to -(i i -i 0

each of the above classes.

a) If -3 is not a square in Z then -3 is not a square in Z n for all n > io
p P

!nerefore, there exists no solutions to x2+ x + I 0 in Z n Since n > i, Z n is
P P

not a field By a result of D L. McQuillan [8] if APSL2(Z n) and tr(A) i then A
p
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0 -i). Thus Z n satisfies square property one.is conjugate to
+

(I i p

b) if F is a field with char F # 2 and -3 not a square to F, we show that every

matrix of trace 1 in PSL2(F [X])every matrix of trace one is conjugate to either
_+ (0-1) + i-i) the result follows as above

"l l"
or- (1 0

Suppose TPSL2(F[x]) with T -+ (-f Let S be the set of all conjugates of
h +l

T in PSL2F [x]) and suppose VS with V + (-u v
w v+l

and with the degree of u minimal

among all the conjugates of T. If v 0 or W 0 then -u(u+l) 1. Then u2+ u + 1 0

has a solution in F (u must be in F since the only units in F x] are in F) contrac-

dicting -3 not being a square in F. Therefore, v # 0 and w # O. If ueF then since
2

-u u _(wT) + i, it follows that deg v + des w 2 deg u, and thus v and w are also

in F.

Assume dec u->l. Since des v + deg w 2 deg u then deg v _< des u or des w _< deg u.

By the division algorithm a polynomial q can be determined so that det (u + qv) < des u.
1 q) gives a matrix

+ (u+qv *Conjugating the matrix V by (0 1 , ,). This matrix is in S

being a conjugate of V But this contradicts the minimality of des u among the elements

of S since des (u+qv) < des u. Therefore deg u < 1 and so ugF From the argument

giv=n tefore *hen v and must also be in F and thus VePSL2(F). Therefore, every
matrix in PSL2(F [x]) of trace one in PSL2(F).

c) Finally in a Euclidean domain the stated conditions on the subadditive norm

functions are exactly what is necessary to allow the proof of theorm 1 to go through.

As a corollary, we obtain

COROLLARY 2

i) If -3 is not a square mod p, then Z [x] satisfies square property one.
P

2) If F is an ordered field where every positive element has a square root, then

F x] satisfies square property one. In particular if R is the real field and A
the subfield of algebraic numbers when both R Ix] and A [x] satisfy square property

one.

The proofs of the two statements in the corollary consist in showing that over

there fields the conjugacy conditions on matrices of trace one hold. In fact, over
0 l) 3] 8]these fields every matrix of trace one is conjugate to _+ (-i 1

3. Each of the rings discussed in the previous section, except for the conditions on

primes, are sum of squares rings. There are trivial examples of sum of squares rings

which do not satisfy square property one for example Z
3
[x] which is a sum of squares

ring but does not satisfy square property one since -3 is a square in Z3. In this

section, we give a non-trivial example of a ring which satisfies square property one

but which is not a sum of squares ring. The example will lead us to pose a question

about smm of squares rings.

Let I denote the ring of integers in the quadratic imaginary number field
2

Then ;e get
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THEOR’! 3: 12 satisfies square property one but is no___t a sum of squares ring.

PROOF: An integral basis for 12 is (1, iW-)so then this ring can be considered

as Z i WT] Heither x2+ 1 0 nor x2+ x + 1 0 have solutions in 12. Further 12
is Euclidean 9], so that both SS2 and Splb hold in 12. We now show that SPla holds

in I but that SS1 does not.
2

From Fine [9], it iz known that the projective special linear group over 12-PSL2(i2)
is an HIIN extension (-ee [9] for terminology) of a base K

2
which is in turn a free

product with amalgamation. The structure of this base group can be described as

K
2

(Z
2

x Z2) Ah.

That is i’1 is the free product of a Klein h-group Z2x Z
2
with the alternating group

on symbols h amalgamated over a subgroup H which is cyclic of order 2.

The !inear fractional transformation M: z’ -i/z+l which represents the matrix

+ (!0 -i)i is in the factor Ah. This has order 3 and in Ah every element of order 3
must be conjugate to this or its inverse.

In an HNN extension, every element of finite order must be conjugate to an element

of finite order in the base group. Further, in a free product with amalgamation

elemcmts of finite eraser arc conjate to elements of finite order in the factors,

Now suppose T + (a b
c -a+l

is an element of PSL2(I2) of trace _+ i. Elements of trace

_+ ! have order 3 in th base K2 Since K
2

is a free product with amalgamation, T

in turn must be conjugate to an element of order 3 in one of the factors of K2. Since
2 2

x Z haz no elements of order 3, T then must be conjugate to an element of order

3 in Ah. Tus T must be conjugate to either M or M-I. From this, as in the proofs of

theorem ! and 2, it fo]lows that S?ib holds in 12.

We show, however, that SS2 does not hold in 12 Consider v 1 + i/--. Then
2

v + 1 -I + 2 i/--- + 1 2i/-- Therefore -i is a quadratic residue mod (i/--)
is not a sum of two squares. If u2+ v2= _+ i/--with u a+ib/-- v A + iB2W-.. a, b, A, B Z then

2
A
2

B
2

a + 2(b2+ + 2(ab + AB)/--i + i/-

or

2(ab + AB) + !

which is impossible.

%at led to this example was that PSL2(I2) has several conJugacy classes in trace

zero. In 3] it was shown that certain conditions on theconjugacy classes in PSL2(R)
for R a ring implied t. at R was a sum of squares ring. Combining these, we ask the

following question.

QUESTION: If R is a sum of squares ring, must PSL2(R) have only one conJgacy

class in trace zero?

In [3] the following two questions were posed

i) If R is both an intecral domain and a sum of squares ring must it be a UFD?
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2) Is Z Ix] the polynomial ring over the integers a sum of squares ring?

Both turn out to be false. The following elegant example showing that I) is false

is due to R. Keith Dennis !0] As a first step, he needs the following lemma whose

proof is straightforward

LH:C..A: The direct limit of a directed system of sum of squares rings is again a

sr. of quarez rin.

Now suppose that for each positive integer n, A is the ring of p-adic integersn
with the 2n-the root of p adjoined. Let A be the direct limit of the system A If

n
p=3 mod h each A will be a sum of squares ring and therefore A will be a sum of

n
squares ring. However, A will not be a UFD since there are no primes in A.

g!owing that Z x] is not a sum of squares ring is rather direct and was pointed

out first by E. Me,doza (n’ong others). Consider p(x) x2+ 4. This is a sum of two

relatively prime squares i:. Z Ix] Suppose -i was a quadratic residue rood (p(x))

so that

(g(x)) 2 + 1 p(x)-f(x)

Evaluating at zero gives (g(0)) 2 + 1 4.f(0). Since these are integral polynomials,

this would make -1 a quadratic residue mod 4 which is false.
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