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ABSTRACT. A study is made of local existence and uniqueness theorems for analytic

solutions of nonlinear differential equations of neutral and advanced types. These

results are of special interest for advanced eauations whose solutions, in general,

lose their margin of smoothness. Furthermore, existence of entire solutions is

established for linear advanced differential systems with polynomial coefficients.

KEY WORDS AND PHRASES. Existence and uniqueness of holomorphic solutions, Nonlinear

neutral and advanced differential equations.

1980 AMS SUBJECT CLASSIFICATION CODES. 34AI0, 34A34.

I. INTRODUCTION.

The well-known Izumi theorem [I] states that if in the equation

)w(n-I)
(n)

(z (4 (z)) +...+ a (z)w( (z)) b(z) (L.1)w (z) + a
n n

ai(z) b(z), X(z) are regular in the disk Izl and hi(0) 0, IXI(Z)I< I,

for IzlJ I, there exists a unique solution with he given w(i)(0) regular in the

IzlJ I. In a recent paper, Cooke and Wiener [2] have generalizedclosed disk this

result for linear neutral equations with infinitely many arguments. Pelyukh [3] has

studied some nonlinear neutral equations of the Izumi type.

This paper is concerned with the study of local existence and uniqueness theorems

for analytic solutions of nonlinear neutral and advanced differential equations. A

theorem on entire solutions of linear advanced differential equations is also

provided.
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2. HOLOMORPHIC SOLUTIONS OF NONLINEAR NEUTRAL EQUATIONS.

We consider the equation

w’(z) f(z,w(z), w((z)), w’(X(z))). (2.1)

If (z) has a fixed point Zo, then an initial value problem for (2.1) can be posed

at z
0

in the same manner as for ordinary differential equations. We may always

assume z
0

O, that is, (0) 0 and prescribe for (2.1) an initial value w(O) wO.
Putting z 0 in (2.1) gives the equation

w’(O) f(O, Wo, Wo, w’(O)) (2.2)

for the unknown value w’(O).

THEOREM I. Assuume for (2.1) the following hypotheses:

i) Equation (2.1) has a solution w’(O) w.
(li) The function f(z ,w,w ,w2) is holomorphlc in the region

R:Izl! to, lw Wol! MO’ wl w
0

MO’ w2 wl MI, where M 0 + wO
and satisfies a Lipschltz condition

If(z, w, Wl, w2) f(z, y, YI’ Y2 )I

where L
2 < I.

(iii) The function k(z) is holomorphlc in the disk Izl r
0

and satisfies in

Then in some disk Izl r there exists a unique holomorphic solution of equation

(2.1) with the initial values Wo, w.
PROOF. We replace (2.1) by the integral equation

z
w(z) w

0
+ f(s,w(s), w(k(s)), w’(k(s))) as

0

and introduce the operator

z
rg(z) w

0
+ f(s,g(s), g(l(s)), g’(k(s))) as (2.3)

0

on the space G of all functions g(z) holomorphic in the disk Izl r and satisfy-

ing the conditions.
rM

0l (z) !r--j"
The value of r is to be determined later. Clearly, the first restriction on r is

r ! rO. Since g’(z) w
0

is the derivative of (g(z) Wo) wz, we have

M
0_<r + I ’I0

in Izl r. Taking in hypothesis (il)

M
0

we conclude that the function f(z,g(z), g(k(z)), g’(k(z))) is holomorphic (and
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bounded) in this disk. Let

M(r) max If(z,g(z), g(X(z)), g’(X(z)))l
Then from (2.3),

We choose r such that r M(r) <_ r M0/r0, that is

M(r) <_ M0/r0,
which is always possible to do. Now, we evaluate

In R the function f satisfies a Lipschitz condition

with L
2 < I.

If(z,w,wl,w2) f(z,y,y

We next introduce a metric in the space G by the formula

d(gl,g2) (L
0

+ L I) max Igl(z) g2(z) + L

Then, from (2.3),

and

ITg l(z) Tg2(z) <_ L0r max gl(z) g2(z)l

J (L
0

+ L1)r max g2()l + L2r max (1

max ITg l(z) Tg2(z) <_ r d(gl,g2 ).

Furthermore,

d rg (z)
d

(X(z)), ’(k(z)))dz z Tg2(z)l If(z’gl(z)’gl gl

f(z,g2(z), g2(X(z)), g(X(z))) < d(g I, g2

d
max lz Tgl(z) z Tg2(z) <- d(gl’g2 )"

and

Multiplying (2.5) by (L
0

+ L I) and (2.6) by L
2

and adding yields

d(Tg l,Tg2) < (r(L
0

+ L I) + L2) d(g l,g2 ).

(2.5)

(2.6)
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Finally, the condition

r < (I L2)/(L0 + LI)

shows that T is a contraction of the space G into itself. This proves the theorem.

3. HOLOMORPHIC SOLUTIONS OF NONLINEAR ADVANCED EQUATIONS.

The equation (see Shah and Wiener [4])

w’(z) a0w(kz) + alzw’(kz) + a2z2w’’(kz)
is of considerable interest. If the coefficients are real and 0 < k < I, then for

z > 0 it is of advanced type. Furthermore, it appears that advanced equations, in

general, lose their margin of smoothness, and the method of successive integration

shows that after several steps to the right from the initial interval the solution may

exist. Nonetheless, (3.1) admits analytic solutions. Namely, if 0 < 141 <not even I,

then the Inltial-value problem w(0) w
0

for the complex differential equation (3.1)

with complex constants a. and has a unique holomorphic solution, and it is an
I

entire function of zero order. In fact, substituting the series

w(z) r. w z
n

n=O

in (3.1) yields

n ao An w
n+l

Z (n+l)Wn+iZ E wnzn + (n+l)alxn
n=0 n=0 n=O

n+2+ Z (n+2) (n+l) a2Xnwn+2Z
n=O

and

n-I n-2.
w(n+l)Wn+l (a0kn + nal + n(n-l)a2% n’ n >_ O.

From here, it follows that for large n,

lWn+I/Wnl <-- cqn

with some constant c and q < I.

A nonlinear analogue of (3.1) is the equation

n (n)
w’(z) fCz,w(z),w(,(z)), zw’(,(z)) ,z w (),(z))), (3.2)

w(O) w0.
THEOREM 2. Assume that the function f(z,w,wk,wl,w2,...,Wn) is holomorphic in

: zl <_ o, Iw- ol-.< o, Iw,- -ol <-’o, I,,,., I<_ ., c.-,. .....o.
and (z) is holomorphic in the disk Izl <_ r

0
and satisfies in it the inequality

I,:z) _<
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Then in some disk zl <__ r there exists a unique holomorphic solution of problem
(3.2).

PROOF. Replace (3.2) by the integral equation

i nnw(z) w
0

+ f(s,w(s), w(k(s)), sw’(k(s)) s (k(s))) ds
0

and introduce the operator

z
Th(s) w

0
+ f(s,h(s)) ds

0
(3.3)

whe re

h(s) (g(s), g(A(s)), sg’(i(s)) sng(n)(i(s))),
on the space H of all functions g(z) holomorphlc in the disk zl < r and satisfy-

ing the conditions

g(0) w0, Ig(z) w01 < m, m_< Mi/i! (i 0 n).

The first restriction on r is r < r0. Since g(1)(z) is the derivative of order i

of the functlon g(z) w0, we have

ig(i)Iz (z) < i! m < Mi, (i .....n)
for zl <-- r. Therefore, the function f(z,h(z)) is holomorphlc in this disk. Let

M max If(z,w,wi,w Wn) in R. Then, from (3.3)

ITh(z) w01 __< Mr,

and we choose r such that Mr < M0, that is r < M0/M. Furthermore,

d
i

d
i-I

Th<z)) )zi, f(z,h<z)) < (i-l)’M)dzx r
i-I i>

and

i d
i

z -7 Th<z)l-<
dz

M.
1The requirement (i-l)!Mr _< M

i
gives r <

i-I !M

tion f satisfies a Lipschitz condition

f(’’’wx’wl Wn) f("Y’Y)t’Yl Yn)1
n

i=l

for < i < n. In R the func-

We introduce a metric in the space H by the formula

d(hl,h2) (L
0

+ Lx) max Igl(z) g2(z)
n

+ Z Li max (z g (z)-g
i=l

Then, from (3.3)
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max IThl(z) Th2(z) ! rd(hl,h2)"
Furthermore,

i d
i

max (Thl(Z) Th2(z))
dz

i

i d
i-I

max Iz (f(z,h (z)) f(z h2(z)))dzi-I

< r
i (i-l)!

i- max f(z,hI(z)) f(z,h2(z))l
r

(3.4)

< (i-l)! r d(hl,h2) (i=l ,n). (3.5)

Multiplying (3.4) by (L
0

+ Lk) and (3.5) by L
i

and adding all inequalities yields

n
d(rhl,rh2) <_ [r(e

0
+ El) + Z (i-l)! Li] r d(hl,h2).

i=l

Finally, if

n
(L

0
+ Lk) + I (i-I)! L

i < 1,
i=l

(3.6)

then T is a contraction of the space H into itself, which proves the existence and

uniqueness for (3.2).

REMARKS. Theorem 2 holds true if on the right of (3.2) the terms zJw(j)
kj w(j

are changed to z (X(z)), with k. > j.
3

4. ENTIRE SOLUTIONS OF LINEAR SYSTEMS.

We are concerned with the equation

M N
W’(z) l l Pij(z)W(J)(xijz), W(0) W

0
i=0 j=0

in which Pij(z) and W(z) are d x d matrices.

THEOREM 3. Assume that Pij(z) are polynomials of degree not exceeding p:

P

kzk
P k

Pi0(z) E Pio Pij (z) E Pijkz
k=O kffij-i

(4.2)

(j > I, p > N I),

the complex numbers ij satisfy 0 < Xijl < and the matrices

M N
B (n+l) E E r. (n+l)! n-j+l
n

i=O j=l
(n-j+l)! Xij Pij,j-I

are nonsingular for all n > O, where E is the identity matrix.

Then (4.1) has a unique holomorphic solution
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W(z) r. W z
n--O

and it is an entire function of zero order.

PROOF. From (4.3) and (4.2) we obtain

w(j)(z) r. (n+j)’ n

n=O
n! Wn+jZ

w(J)(ij z Z (n+j) n n

n=O
n! Xl] Wn+jZ
P k m m

Pij (z)W(J)(xij z E
k
z E

k=0
Pij

m=O
m’. Xij Wm+jZ

y. z
n Z n-s

n=O s=O
(n-s) XIj P

ij sWn-s+j

Since (4.2) implies Pijs O, for s _< j-2, the index s in the last sum extends

from j-I to n. Hence, the substitution k=s-j+l leads to the equation

M N n-j+1
Z Z Z (n-k+l)

(n+l)Wn+l
i=0 j=O k=O

(n-k-j+l) lj

From here,

Pij ,k+j-I Wn-k+l.

Wn+1 B- ME NZ n-j+IE (n-k+ kn-k-j+
n (n-k-j+l) ij

i=O jr0 k=l

Let llWnll Cn, then

M N p-j+l
iiB_-lll E E z (n-k+l), n-k-j+l--< (n-k-j+l)’ kij IICn+

if0 j=0 k=l

since Pijk 0 for k > p. Furthermore,

(n-k+l) nj
(n-k-j+ <

Pij ,k+j-IWn-k+l n >0.

PiJ ,k+J-I Cn-k+l

and for large values of n we have

where

(n-k+ n-k-J+ n
(n-k-j+l)! Xijl < q

ijl < q < I. Also,

M N

if0 j=

n!XT;J+l
(n-j+l) Pij ,j-I

)-l’

and for large n,

11"7,’11 _< i.l/(n+l),

with some constant

Therefore,

p+l

n+l -< C q l Cn-k+l’
k=l

C COnSt. (4.4)
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Denote

Mn max Ck, 0 _< k_< n,

then

Cn+l --< C(p+I)qnM"n
n

Since C(p+l)q < for large n, it follows that Cn+ < M and M Mn n+l n
Hence, starting with some natural number m,

M =M n>m.
n m

Successively applying this result to (4.4) yields

Cm+ < C(p+l)q Mm,

Cm+2 < C(p+l)qm+IMm+l < C2(p+l)2qmqm+l M

Cm+n < cn(p+l)n m m+l m+2 m+n-I
q q q ...q M

m

< cn(p+l)n n(n-l)/2
q M

m

This estimate for the coefficients W concludes the proof.

REMARKS. The strict inequalities IXIjl < cannot be replaced by

Indeed, the scalar equation

w’(z) w(z) + (2z z2) w’(z), w(O) w
0

is of type (4.1), with I. However, its solution

z/(1-z)w(z) w
0

e

has a singularity at z I.
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