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ABSTRACT. Our main theorem establishes the uniqueness of the common fixed point of two
set-valued mappings and of two single-valued mappings defined on a complete metric space,
under a contractive condition and a weak commutativity concept. This improves a theorcm

of the second author.
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1. BASIC PRELIMINARIES.
Let (X,d) be a complete metric space and let B(X) be the set of all nonempty,
bounded subsets of X . As in (1], let &(A,B) be the function defined by
§(A,B) = sup {d(a,b) : a€ A, b € B}
for all A, B in B(X).
If A consists of a single point a we write
6(A,B) = §8(a,B)
and if B also consists of a single point b we write
§(A,B) = d(a,b) .
It follows immediately from the definition that
§(A,B) §(B,A) > 0, &(A,A) = diam A,
§(A,B) < 8(A,C) + 6(C,B)
for all A, B, C in B(X).

We say that a subset A of X is the limit of a sequence fAn} of nonempty sub-

sets of X 1if each point a in A is the limit of a convergent sequence {an}, where
a_ is in An for n =1,2, ... , and if for arbitrary € > 0, there exists an integer

N such that An < A for n > N, where A, is the union of all open spheres with
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centres in A and radius e .

LEMMA 1. If {An} and {Bn} are sequences of bounded subsets of (X,d) which con-
verge to the bounded sets A and B respectively, then the sequence {6(An,Bn)}

converges to G(A,B).
This lemma was proved in [2].
Now let F be a mapping of X into B(X) . We say that F 1is continuous at the

point x in X if whenever {xn} is a sequence of points in X converging to x ,
the sequence {Fxn} in B(X) converges to Fx in B(X). If F 1is continuous at

each point x in X, we say that F 1is a continuous mapping of X into B(X). A
point z in X 1is said to be a fixed point of F if 2z 1is in Fz.
For a selfmap I of (X,d), the authors of [3], extending the results of [2] and [4],

defined F and I to be weakly commuting on X if

§(FIx,IFx) < max{68(Ix,Fx), diam IFx} (1.1)
for all x in X. Two commuting mappings F and I clearly commute, but two weakly
commuting mappings F and I do not necessarily commute as is shown in the following
example.
EXAMPLE 1. Let X = [0,1], let & be the function induced by the euclidean metric d
and define

Fx = [0, x/(x+ah)], Ix = x/a
for all x in X , where h >1 and a > 2. Then for any non-zero x in X we have

FIx = [0, x/(x + ah+1)] # [0, x/(ax + ah+l

but for any x in X we have

)] = IFx

§(FIx, IFx) = x/(x + ah+l) < x/a = §(Ix, Fx) .

Note that if F 1is a single-valued mapping, then the set {IFx} consists of a
single point and therefore diam {IFx} = 0 for all x in X. Condition (l.1) therefore
reduces to the condition given in [5], i.e.

d(FIx, IFx) < d(Ix, Fx) (1.2)
for all x in X.

An extensive literature exists about (common) fixed points of set-valued mappings
satisfying contractive conditions controlled from non-negative real functions f from
[0,#) into [0,®). Suitable properties of f guarantee the convergence to the
(common) fixed point of the sequence of successive approximations: see for example the
papers of Barcz [6], Chen and Shih [7], Guay, Singh, and Whitfield [8], Miczko and
Palezewski [9], Nhan [10], Papageorgiou [11], Popa [12], Sharma [13] and Wegrzyk [l4].
In this paper we consider the family F of functions f from [0,*) into [0,®)
such that
(a) f 1is non-decreasing,

(aa) f 1is continuous from the right,

(xaa) f(t) <t for all t > 0.

LEMMA 2. For any t > 0 , lim £°(t) = 0.
n>o

The proof of this lemma is obvious but see also [15].
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Further details about the usage of functions with properties similar to (a), (aa),
and (aaa) can be found in the papers of Benedykt and Matkowski [16], Browder [17],
Conserva and Fedele [18], Hegediis and Szildgyi [19], Hikida [20], Park and Rhoades [21],
Rhoades [22], and Singh and Kasahara [23].
2. RESULTS IN COMPLETE METRIC SPACES.

Let F, G be two set-valued mappings of X into B(X) and let I , J be two
<elfmaps of X such that

F(X) = I(X), G(X) = J(X) . (2.1)

lLet X, (Resp. yo) be an arbitrary point in X and define inductively a sequence {xn}

(resp. {yn}) such that, having defined the point x__, (resp. yn-l)’ choose a point

4 (resp. yn) with Ixn (resp. Jyn) in Fxn_1 (resp. Gyn-l) for n=1,2,... .

This can be done since the range of I (resp. J) contains the range of F (resp. G).
Further, assume that

sup{é(Fxn,Gyo), 6(Cyn,Fx0) : on=1,2, ...} <=, (2.2)

REMARK 1. IF X 1is bounded then (2.2) will always be satisfied for all x, y in X.
We consider the following conditions:

(Yl) 1 continuous,

F continuous and IFx < FIx for all x in X .

(Al) J continuous,
G continuous and JGx S GJx for all x in X .

Modifying the proof of theorem 1 of [l1] we are now able to prove the following:
THEOREM (. Let F, G be two set-valued mappings of X into B(X) and let I, J
be two selfmaps of X satisfying (2.1) and
§(Fx,Gy) < f(max{d(Ix,Jy), 8(Ix,Gy), 8§(Jy,Fx) }) (2.3)
for all x, y in X , where f is in F . Further let F and G weakly commute

with I and J respectively. If there exist points X and Yo in X satisfying

(2.2) and if the conditions (Yi) and (Aj) with i, j = 1,2, hold, them F , G, I

and J have a unique common fixed point 2z . Further, Fz = Gz = {z} and =z is the
is the unique common fixed point of F and I and of G and J .
PROOF. Since

G(Fxr,GyS) < 6(Fxr,Gy0) + G(GyO,FxO) + 6(Fx0,Gys),

it follows from (2.2) that
M = sup {G(Fxr,Gys) : r, s =0,1,2, ...}
is finite.

1f M > 0, then for arbitrary ¢ > 0, we can choose an integer p such that

fp(M) < € by lemma 2. If M = 0, then fP(M) =0 < ¢ for any integer p.
As in the proof of theorem 1 of [24], we have on using inequality (2.3) p times
and property (a):

A
2}
A

m;

n})

P . -
6(Fxm,Gyn) < f (max{G(Fxr,qu) : m-p<

A

n-p=<q
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for m , n > p. Thus
6(Fxm,Fxn) < G(Fxm,Gys) + G(Gys,Fxr) < 2e
for m , n > p . The sequence {zn} is therefore a Cauchy sequence in the complete

metric space X and so has a limit Z in X , where =z is independent of the particu-

lar choice of each z . It follows in particular that the sequence (Ixn} converges
to z and the sequence of sets {Fxn} converges to the set {z} .

Similarly, it can be proved that the sequence {Jyn} converges to a point w and
the sequence of sets {Gyn} converges to the set {w} .

Using (2.3) we have
é(Fxn,Gyn) < f(max{d(lxn,.]yn), G(Ixn,Gyn), 6(Jyn,Fxn)})
Letting n tend to infinity and using lemma 1 and properties (oca) and (aaa) , it is

seen that w = z.

Now suppose that (Y,) holds. Then the sequence {I2x_ } and {IFx_} converge
P 1 n n

to Iz and {Iz} respectively. Let LA be an arbitrary point in FIxn for

n=1,2, ... . Then since I weakly commutes with F we have on using (l.1)

d(wn,Iz) < 6(F1xn,Iz)

|A

G(FIxn,IFxn) + G(IFxn,Iz)

IA

max{G(Ixn,Fxn), 26 (12%x IFxn)} + G(IFxn,Iz) .

n+l’

Letting n tend to infinity and using lemma 1 we see that the sequence {wn) converges
to Iz . But 1z is independent of the particular choice of L in FIxn and this
means that the sequence of sets {FIxn} converges to the set {Iz} .
Using inequality (2.3) we have
2 2
6(FIxn,Gyn) < f(max{d(I xn,Jyn), §(1 xn,Gyn), 6(Jyn,FIxn)}) .

Letting n tend to infinity and using lemma 1 and property (ca), we have
d(Iz,z) < £(d(Iz,z))
which implies Iz = z by (aca).
Since

6(Fz,Gyn) < f(max{d(Iz,Jyn), §(1z, Gyn),G(Jyn,FZ)})

we have on letting n tend to infinity and using lemma 1 and property (aa)
§(Fz,z) < £(8(z,Fz))
which gives Fz = {z} by (aca).
Similarly, the weak commutativity of G and J and condition (Al) implies
Jz =z and Gz = {z} .

Now assume that (Yz) holds. Then the sequence {FIxn} converges to Fz and

using inequality (2.3) we have
2 2
G(len,Gyn) < f(max{d(1 xn,Jyn), §(1 xn,Gyn), G(Jyn,FIx“)})

[

f(max{G(FIxn,Jyn), 6(FIxn,Gyn), 6(Jyn,FIxn)})

since f 1is non-decreasing and Ix is in Fx and so 1%x is in IFx < Flx .
n n-1 n n-1 n-1



FIXED POINTS OF WEAKLY COMMUTING AND SET-VALUED MAPPINGS 327

Letting n tend to infinity and using lemma 1 and property (aa) , we have
§(Fz,z) < £(8(Fz,z))
which implies Fz = {z} by (aaa) . Thus by (2.1) there must exist a point u in X
such that 1Iu = z,
Using inequality (2.3) we have
5(Fu,Gyn) < f(max{d(Iu,Jyn), G(Iu,Gyn), 6(Jyn,Fu)}).

Letting n tend to infinity and using lemma 1 and property (aa), we obtain the ine-
quality
§(Fu,z) < f(max{d(lu,z), 8(z,Fu)}) = £(8(z,Fu)) .

Thus Fu = {z} by (eaa) and since F and I weakly commute, we have
{z} = Fz = FIu = IFu = {Iz}.

It follows that Iz = z.

Similarly property (Xz) assures that Gz = {z} and Jz = z.

We have therefore shown that if the conditions (Yi) and (Aj), with 1, j =1, 2,
hold then Iz = Jz = z and Fz = Gz = {z}.

That 2z is the unique common fixed point of F and I and of G and J
follows easily. This completes the proof of the theorem.

COROLLARY 1. Let F, G be two set-valued mappings of X into B(X) and let
I, J be two selfmaps of X satisfying (2.1) and

8§ (Fx,Fy) £ c.max{d(Ix,Jy),8(Ix,Gy),8(Jy,Fx)} (2.4)

for all x, y in X, where 0 £ ¢ < 1. Further, let F and G commute with I and
J respectively. If F or I and G or J are continuous, them F, G, I and J
have a unique common fixed point z. Further, Fz = Gz = {z} and 2z is the unique
common fixed point of F and I and of G and J.

PROOF. As in the proof of theorem 1 of [1], it is proved that (2.2) holds for any
Xg» Yo in X. Since F and G commute with I and J respectively, we have
FIx = IFx and GJx = JGx for all x in X. The thesis then follows from theorem 1
if we assume that f(t) = ct for all t 2 O.

The result of this corollary was given in [1].

We now give an example in which theorem 1 holds but corollary 1 is not applicable.

EXAMPLE 2. Let X = [0,1] with 6 induced by the euclidean metric d and let

Fx = [0,x/(x + 4)], Gx = [0,x/(x + 8)], Ix = Jx = %x

for all x in X.

By example 1, F and G weakly commute with I. Further, we have

FOO = [0,1/5] < [0,3] = I(X),
GO0 = [0,1/9) < [0,3] = J(0,
IFx = [0,x/(2x + 8)] ¢ [0,x/(x + 8)] = FIx
JGx = [0,x/(2x + 16)] € [0,x/(x + 16] = GJx

for all x in X.

Since

8 (Fx,Cy) = max{x/(x+4), y/(y+8)}

max{x/(x+4), y/(y+4)}

IA
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A

imax{}x, 3y}
{ 16(Ix,Gy), if x 2>y,
QG(JY)FX)r if x < y

and since X is bounded all the hypotheses of theorem 1 are satisfied if we assume

f(t) = 3t for all t > 0. Clearly f is in F and 0 4is the ‘unique common fixed
point of F, G and I .
Theorem 1 is a stronger result than corollary 1, even if the mappings under consid-
eration are commutative, as is shown in the following example.
EXAMPLE 3. Let X be the reals with ¢ induced by the euclidean metric d , let
{o}, if x<0,

Fx = [0, x/(1 +3x)], if 0 <x <1,
[0, 1/4], if x>1
{0}, if <0,
Gx = [0, x/(1 + 2x)], if <x<1,
{1/3}, if x> 1,
0, if x <0, 0, if x <0,
Ix= { x, if 0<x <1, Jx =

Lif x> 1, x, if x > 0,

for all x in X and let f in F be given by

t/(1 + 2t), if 0<t<1l,
f(t) =
t/3, if t>1.

We have

§(Fx,Gy) = 0 = £(d(Ix,Jy)), if x,y <0,
8(Fx,Gy) = y/(1+2y) = f(y) = £(d(Ix,Jy)), if x
8§(Fx,Gy) = 1/3 < y/3 = f(y)= f(d(Ix,Jy)), if x <0 and y > 1,
§(Fx,Gy) = x/(1+3x) < x/(1+2x) = f(x) =f(d(Ix,Jy)), if 0 <x <1 and y < O,
8(Fx,Gy) = max{x/(1 + 3x), y/(1 + 2y)}

< max{x/(1 + 2x), y/(1 + 2y)}

f(y) = £(86(Fx,Jy)), if x<y,

0 and 0 <y <1,

1A

f(x) = £(8(1x,Gy)), if x>y, and if 0 <x, y <1,
§(Fx,Gy) = 1/3 < y/3 = £(y) = £(8(Jy,Fx)), if 0<x<1 and y > 1,

8§(Fx,Gy) = 1/4 < 1/3 = £(1) = £(d(Ix,Jy)), if x>1 and y <0,
§(Fx,Gy) = max{1/4, y/(1 + 2y)} < 1/3 = f(1) = £(8(Ix,Gy)), if x > 1 and
0O<y=<1,
§(Fx,Cy) = 1/3 < y/3 = f(y) = £(8§(Jy,Fx)), if X,y > 1 .
Condition (2.3) therefore holds in every case since f 1is non-decreasing. Further
F(X) = [0,1.4] < [0,1] I(X) ,
G(X) = [0,1/3] < [0,=] = J(X)
and F and G commute with I and J respectively. Since Fx < [0,1/4]) and

Gx € [0,1/3) for all x in X, it is easily seen that M < 1/3 and so (2.2) holds

for any Xq and Yo chosen in X. As I and J are continuous, theorem 1 is appli-

cable. However, the conditions of the corollary are not satisfied. Otherwise for x=0
and 0 <y <1, condition (2.4) should imply
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=3 Yy =
8§ (Fx,Gy) T+ 2y < c.max{y, T+ 2y y} = cy

and so 1/(l1 + 2y) < c¢ which as y tends to zero, gives ¢ > 1, a contradiction.
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