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ABSTRACT. For certain flow regimes, the nonlinear differential equation

Y F(Y) G, Y > 0, G 0 and constant,

models qualitatively the behaviour of a forced, fluid dynamic, harmonic oscillator which

has been a popular department store attraction. The device consists of a ball oscil-

lating suspended in the vertical jet from a household fan. From the postulated form of

the model, we determine sets of attraction and exploit symmetry properties of the system

to show that all solutions are either initially periodic, with the ball never striking

the fan, or else eventually approach a periodic limit cycle, after a sufficient number

of bounces away from the fan.
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I. INTRODUCTION.

Our intent is to study the behaviour of solutions to the non-linear, second order

equation

" F(Y) G, Y 0, G constant, (1.1)

with the function F(Y) positive, continuous, monotone non-increasing, and bounded;

where

lim F(Y) 0
y/ (1.2)

We assume further that the equation

F(Y) G 0 (I.3)

has a single root located at Y YS’ and that F(Y) assumes its maximum for the last

YM’ YM > 0time, as Y increases, at Y where YS
ELASTIC COLLISION:

As the system (I.I) is unnaturally restricted in solution domain, we need to consider

the behaviour of solutions which approach Y 0 from above. We assume elastic behav-

iour at this boundary, with coefficient of restitution 0 < C
F

< I. i.e., a trajectory
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having velocity V will reverse its direction, and assume new velocity -C*FV. For

the forced, fluid dynamic oscillator this corresponds to the ball striking the fore-

shield of the fan and rebounding with reduced velocity.

PHASE SPACE:

It becomes helpful to write equation (I.I) in the reduced form

V (1.4)

F(Y) G (1.5)

where (’) denotes the time derivative, and where (V,Y) are phase-plane variables. It is

always assumed that F(Y) has adequate continuity properties to guarantee existence and

uniqueness of solutions for any initial values considered and that the solutions may be

continued for all time. We observe that (O,YS) is the only singular point of the

system (1.4) and recall that separate trajectories of the autonomous system (1.4) can-

not cross each other. We shall denote by Z(Vo,Yo) the trajectory which assumes the

initial values indicated by the subscripts. From equation (1.3) and the monotonicity of

F(Y), we see that V must increase with time if Y0 < YS’ and decrease for Y0 YS’
as the trajectory is traversed.

MOTIVATION:

The purpose of this note is to study the periodic solutions of the above nonlinear

system. We consider certain sets of attraction in the phase space and show that any

trajectory leaving such a set must return to it in finite time. Trajectories which re-

turn to the same point are then, of necessity, periodic [I]. The symmetry properties of

the system in conjunction with a non-contractive Picard iteration are used to show that

an infinite family of such solutions exist. Indeed, trajectories having sufficient

momentum to penetrate to the locus Y=0 after sufficient dissipation of energy by

boundary collisions will all approach arbitrarily near to a limiting periodic trajectory,

FL. We prefer to call such behavior eventually periodic motion. Our main result con-

cerns the limit cycle, FL, and may be stated as follows:

Theorem I: The trajectory F
L Z(0,0) is a periodic limit cycle which separates the

trajectories of system (1.4) into two classes:

I. All trajectories emanating from initial points exterior to F
L are eventually

periodic, approaching the limit cycle F
L

as t increases without bound.

II. All trajectories emanating from points interior to F
L close upon themselves

in finite time and represent periodic motions.

2. PRELIMINARY CONSIDERATIONS.

We shall defer the proof of our central result, Theorem I, until we have estabilish-

ed some useful supporting results:

Lemma i. For V
0

> 0, the mapping

T(y) V/(2G) + YO + ! fY F(S)ds (2.1)
G Y0

has at least one fixed point Y* Y0"
Proof: Due to the monotonicity of F(Y), the sequence

{YN YN+I T(YN)’ N 1,2,3 }, (2.2)

with I Yo (whence, Y2 Y1 is monotone increasing and bounded. Thus, the Picard
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iteration (2.2) must converge toa fixed point of (2.1). Monotonicity of the sequence guar-

antees that the fixed point is greater than the starting value. Q.E.D.

Comment I. By integrating (1.5), we may interpret the fixed poing, Y*, as a crossing of

the Y-axis for a trajectory of equation (I.i) which emanates from Z(Vo,Y0) with V
0

positive.

Comment 2. It has been pointed out [2] that the monotonicity of F(Y) and the positive-

ness of G, together with the peculiar functional form of system (1.4), are in themselves

sufficient to guarantee, independently of Lemma I, that all trajectories of the set

S {F:F ZI(Vo,Y0), V
0

0} must eventually return to the Y-axis.

Lemma 2: Any portion of a trajectory of (1.4) which penetrates both half-planes Y 0

and Y < 0, forms a connected set, and does not intersect the V-axis.

Proof: This result follows from Lemma of Kotin [3].

3. EXISTENCE OF PERIODIC SOLUTIONS.

The Soviet school of trajectory analysts have brought to bear on the study of phase

plane trajectories the weapons of topological dynamics [4], featuring the ideas of wand-

ering points, recurrent sets and central motions. Although we shall have no need for

such generalities here, we borrow the following useful notions:

Definition I: S is a set attraction for system (1.4) if any trajectory emanating initial-

ly from a point in S either remains in S, or else returns to S in finite time.

The finding of sets of attraction is a precusor to the determination of periodic

solutions, as any trajectory whose initial point belongs to a set of attraction and

which subsequently returns to the same point is, of necessity, periodic.

Theorem 2: The sets S {(O,Y):O < Y <Ys and $2 {(V,O):V arbitrary} are sets of

attraction for system (1.4).

Proof: (i) Set S is attractive: Consider the trajectory with initial values in S I.
Since V is initially positive, it penetrates the top half-plane, to some point Z(vo,Yo),
with V

0 nonvanishing. By Lemma 2, this trajectory must later intersect the Y-axis, at

Y YS’ where V is negative. As it must now penetrate the other half-plane, by Lemma

I, it closes on itself, representing a periodic oscillation. (ii) Set S
2

is attract-

ive: The proof parallels that of statement (i). However, now a trajectory Z(Vo,O)
does not close on itself, but after bouncing at Y 0 achieves the new starting values

Z(CF x VO,0). Hence, no trajectory of S
2

is periodic.) Theorem 2 follows.

Proof of Theorem i. I. Eventually Periodic Motions As in the proof of Theorem 2, we

recall that no trajectory of S
2

is periodic. Since any point exterior to FL is even-

tually contained in the stream-tube formed by trajectories having initial point in S 2,
no trajectory having initial point exterior to FL is periodic. Consider a stream-tube

emanating from initial set S
R {Z(V0,O) 0 < V

0
R}. This stream-tube defines a one-

to-one, continuous map

H Z(V0,O Z(CF x Vo,O
with the association obtained by following each trajectory through one bounce. After N

bounces, from

HN(sR) C
F

x S
R

we see that

lira HN(SR {(0.0)}
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i.e., every trajectory in S
2 approaches F

L
as a limit cycle. However, Risarbltrary.

II. Periodic Motions By Theorem II, every trajectory emanating from S is periodic.

The stream-tube formed by such trajectories sweeps out FL and its interior, with the

exception of the singular point, which is thus a center. Theorem I follows.

4. APPLICATIONS.

We now briefly consider a potential application of the previous abstract mathemat-

ical development. Returning to the ball suspended-in-fan problem, we shall obtain an

approximation to the equation of motion. In the absence of a fan, the drag force on the

ball can be determined from Reynolds principle of similarity. However, when the fan is

blowing, two characteristic velocities for the flow exist, and it becomes difficult to

model the drag forces in a simple way. However, we take the following approach: From

cursory examination of the flow from a household hairdryer, we observe that the jet

provides a fairly constant force in the immediate vicinity of the exit plane. Due to

spreading of the jet this force rapidly diminishes, becoming negligible several dia-

meters away. Schlichting [5] derives an inverse Y-dependency for the normal component

of velocity of an infinitesmal circular jet. This leads to an inverse Y-square depend-

ency for an effective instantaneous drag force resulting solely from the fan, of the form

2FFan Constant* K(Y) (4.1)

where YM YN and

Constant, Y < YM
K(y) (4.2)

I/(Y-YN), Y YM
The basic forces on the ball are jet-induced form drag, gravity, buoyancy, and add-

ed mass [6] due to acceleration. Without solving a full three-dlmenslonal fluid dynamics

flow problem numericlly, the exact drag interaction is uncertain. However, a qualita-

tive approximation might be obtained by employing a force of the form [4.2], where we

are now postulating such aneffective drag force from the fan as a first approximation to

reality. We thus obtain an equation of motion of the form in equation (I.I).

For flow regimes in which no vortex shedding occurs on the back of the sphere, it

would appear that an uncoupled fan drag force of the form required by equation (4.2) is

plausible. The singular point of system (I.I) represents releasing the ball with zero

velocity at a point in the flow where the forces from the jet balance the other forces

represented by G.

Of course, whenever additional damping of any sort is present in system (1.1), no

periodic solutions can exist; the motion eventually damps to the equilibrium position.

However, in the case of near-inviscid fluids such as air, for vibrations of small ampli-

tude the damping becomes almost negligible; over short periods of observation the motion

then appears essentially periodic. Hence, system (I.I) affords a qualitative model of

motion, assuming that the ball is spherically symmetric and homogenous in material makeup.

Otherwise, spinning motions coupled with small processions can lead to angular momentum

vector having nonvanishing component perpendicular to the primary direction of flow.

Clearly, the affects of non-negligible Magnus forces leads to a problem which can no

longer be considered essentially one-dimensional.
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