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ABSTRACT. The maximum number of pairwise edge disjoint forests of order five in the

complete graph Kn, and the minimum number of forests of order five whose union is

Kn, are determined.
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i. INTRODUCTION

Graphs in this paper are fiite with no multiple edges or loops, leineke [I]
defined the general covering (respectively, packing) problem as follows"

For a given graph G find the minimum (maximum) number of edge disjoint

subgraphs of G such that each subgraph has a specified property P and the union

of the subgraphs is G.

Solutions of these problems are known only for a few properties P, when G is

arbitrary. In most cases G is taken to be the complete graph Kn or the complete

bipartite graph Km, n (for particular references one may look at Roditty [2]).
DEFINITION" The complete graph Kn is said to have a GT.decomposition if it is the

union of edge disjoint subgraphs each isomorphic to G. We denote such a decomposi-

tion by G Kn-
The G-decomposition problem is to determine the set N(G) of natural numbers

such that Kn has a G-decomposition if and only if n N(G). Note that G-decomposi-

tion is actually an exact packing and covering. In the proof of our problems of

packing and covering, we make great use of the results obtained for the G-decomposi-

tior, problem in cases when G has five vertices. As usual [x] will denote the

largest integer not exceeding x and {x} the least integer not less than x.
tWe will let e(G) denote the number of edges of the graph G and H U G.

i=I
will show that the graph H is the union of t edg disjoint graphs Gi,i=1,2 t.

The Theorem of this paper solves variations of the covering and packing problems
for the four graphs below-

x y z u v
!i) F o- o----o denoted [(x,y,z)(u,v)]

x y z u v
(ii) F2 denoted [(x,y,z,u,v)]
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v

o

(iv) F4 y

u

denoted (x,y,z; u,v)

denoted (z; x,y,u,v)

Our theorem may now be states as THEOREM (Packing and Coveri,g).
et F be F 1, F2 or F3 and n > 5 or F be F4 and n > 7 then

(i) The maximum number of edge disjoint graphs F which are suhgraphs of the

complete graph Kn is

[e(Kn)/e(F)].

(i i) The minimum number of graphs F whose union is the complete graph Kn is

{e(K )/e(F)}.n

2. PROOF OF THE THEOREM

We give a separate proof for each choice of F.
F 1" Froving the Theorem true for n_> 5 is a straightforward exercise. Bermond et

al. [3] show that

N(FI) {nIn O,l(mod 3) n > 6} (2.1)

Thus we have to consider only n 3m + 2, m > 2. Observe that

K3m+2 K3m U K2,3m U K2 m > 2 (2.2)
by (2.1) K3m has an Fl-decomposition. Since K2,3m mK2, 3 and K2, 3 can be

decomposed easily into two graphs F1, it follows that K2,3m has an Fl-decomposi-
tion. Only K2 in (2.2) is left non-packed. Hence, the Theorem is proved in this

case.

F2" The proof will examine several cases depending on the value of n. The follow-

ing table summarizes the cases n 5,6,7,8m, and 8m + I for m 1.

n packing remains for covering

8m,8m+1

(0,1,2,3,4);(1,3,0,4,2)
(0,I,2,3,4);(0,5,4,1,3) ;(0,4,2,5,3)
(0,I,2,3,4);(0,2,4,6,1);(1,3,5,0,4)
(1,4,5,6,0);(1,5,2,6,3)

F2 decomposition [4]

(0,2);(1,4)
(0,3) ,(0,2),(1,5)

(0,3)

Table



PACKING AND COVERING OF THE COMPLETE GRAPH 279

We still have to prove the theorem for the cases"

r 8m + k k 2 7

k 2.

Let

Ksm+2 Ksm U K2,8m U K2 (2.3)

The graph K8m has an F2-decomposition. since K2,8m 2mK2,4
dec,.,.posed easily into two graphs F 2, it follows that K2,8m
tion. Only K2 in (2.3) is left non-packed.

K= 3.

Let

and K2,4 can be

has an F2-decomposi-

K8m+3 K8m+l U K2,8m+l U K2 (2.4)

The graph K8m+1 has an F2-deconposition K2,8m+1 K2,8m U K2, and K2,sm has

an F2-decomposition as we saw above. This decomposition of K2,8m can be done in

such a way that the edge (8m-I, 8m+2) is at one end of the 2 which includes it

and the point 8m-i is an end-point of that F2. Thus we can replace the edge

(Sm-1,Sm+2) with the edge (Sm, 8m+2). Only the edges (8m,8m+l), (8m+l,8m+2),
(81r.-l,8m+2) now remain non-packed, and they can be included in one more F2.
k =4.

Note that

K8m/4 K8m U K4,8m U K4. (2.5)

The graph K8m F, as an F2-decomposition. Now

K4,8m U K4 2(2m-l)K2,4 U 2K2, 4 U K4 (2.6)

and the 2K2, 4 s carl be selected to be vertex disjoint. Since K2, 4 has an

F2-decomposition, so does 2(2m-1)K2, 4. We need only to show that 2K2,4 U K4 can
be packed by 5 F 2 graphs, leaving two non-packed edges.
Let V(2K2, 4) {1,2 8,a,b,c,d} V(K4) {a,b,c,d}

Then, the 5 graphs of the packing of ?K2, 4 U K4 are"

(a,3,b,c,8);(l,a,d,7,c) ;(4,b,d,c,5) ;(a,c,6,d,8) ;(l,b,2,a,4).

The edges (d,5) and (a,b) are left non-packed.
k =5.

Let

K8m+5 K8m+l U K4,8m U K4,1 U K4 (2.7)

The graph K8m+l has an F2-decomposition. In the case K 4 we saw that K4,sm U
K4 has an F2-packing leaving two non-packed edges.
Let V(K4) {a,b,c,d} and V(K8m+I) Z8m+l. Denote the non-packed edges by (a,b)
and (Sm-l,d). We show that G K4, U {(a,b),(8m-l,d)} has an F2-packing leaving
two non-packed edges. The F2 of this packing is (8m-l,d,8m,a,b). The non-packed
eges are- (c,8m) and (8m,b).
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k 6.

Write

k8m+6 K8m U K6,8m U K6.

The traph K8m has and F2-decomposition. Observe that K6,8m 3K2,8m. In the case

k 2 we saw that F21K2,8m. Table shows that K6 has F2 packing leaving

three non-packed edges as required, and these three can be icluded in one more F2.
k 7.

Let

K8m+7 K8m+l U K6,8I U K7.

The graph ’8m+] has an F2-decomposition, and F21K6,8m, as was shown above. By
Table we know that the graph K has an F2-packing leaving one non-packed edge.

lhe Theorem has now been proved for F2 since all cases have been considered.

F3- The proof will consider the same cases as the proof for F2.

n packing remains for covering

8nl,gm+l

(0,I,2;3,4);(1,4,0;2,3)
(0,i,2;3,4) (3,4,5;0,2) (0,3,1;4,5)

(3,2,0;1,6);(5,4,i;2,3);(1,6,3;4,5)
(2,4,0;3,5) ;(1,5,6;2,4)
F3 decomposition [4]

(1,3),(3,4)
(0,2) ,(0,4),(3,5)

(2,5)

Table 2

.e now have to prove the theorem for the cases:

n 8m+k k 2 7, I
k= 2.

Let K8m+2 be as in (2.3). The graph K8m has an F3-decomposition. Since K2,8m
2mK2, 4 and K2, 4 can be decomposed easily into two F3 graphs, it follows that

K2,8m has an F3-decomposition. Only K2 in (2.3) is left non-packed. Hence, the

Theorem is proved in this case.
k= 3.

Let K8m+3 be as in (2.4). K8m+l has an F3-decomposition. K2,8m+l K2,8m U K2, I.
The graph K2,8m has an F3-decomposition as was shown above. Replace the edge

(8m-4, 8m+2) which appears in some F3 in the decomposition of K2,8m, with the

edge (8m,8m+2). Then the edges (8m-Z, 8m+2), (8m+2, 8m+l), (8m+l, 8m) remain

non-pdcked, but could be included in one additional F3.
k=4.

Let K8m+4 be as in (2.5). The graph K8m has an F3-decomposition. Let, K4,8m U

K4 be as in (2.6). Since K2, 4 has an F3-decomposition, so does 2(2m-l)K2, 4
We show that 2K2, 4 U K4 can be packed by five F3 graphs, leaving two non-packed

edges.



PACKING AND COVERING OF THE COMPLETE GRAPH 281

Let V(2K2,4) {1,2 8,a,b,c,d} and V(K4) {a;b,c,d}
Then the five graphs F3 are"

(c,6,d;7,8), (d,5,c;7,8), (4,a,c;d,b), (l,a,b;4,d), (a,3,b;1,2).

The ud(.]es (a,2) and (a,d) are !eft non-packed.

k 5,

Let K8m+5 be as in (2.7). The graph K8m+l has an F3-decomposition. In the case

k 4 we saw that K4,8m U K4 has an F3-packing leavina two non-packed edges. Let

V(K4) {a,b,c,d} and V(Ksm+I) Z8m+1. Denote the non-packed edges by (a,d) and

(a,&,-]). The F 3 graph in K4, U {(a,d,), (a,8m-1)} is (b,8m,a;d,8m-1). The

edges (d,8m) and (c,8m) remain non-packed.

The roofs for k 6,7 are accomplished in the same ways as for F2.
Once again all cases have been considered and the proof is complete for F3.

F4: iS is easy to see that the theorem does not hold for n 5 and n 6. For
K7 the graphs F4 of the packing are: (0;1,2,3,4), (1;2,3,4,5), (2;3,4,5,6),
(5;4,3,0,6), (6;0,1,3,4). The edge (3,4) is left non-packed. Hence, the theorem

is proved for n 7. For n=Sm, 8m+I we have an F4-decomposition [5,6]. Hence, we

again have to prove the theorem for the cases:

n 8m + k, k 2 7, m 1.

k 2,

Let k8m+2 K8m+1 U K1,8m+1. The graph K8m+1 has an F4-decomposition. KI,8m+1
is a star that can easily be packed by 2m stars F4, leaving one nol-packed edged.

k= 3.

Let K8m+3 K8m U K3,8m U K3. The graph K8m has an F4-decompositior.. Let K3,8m
3Ki,8m. Since the graph Ki,8m can be decomposed into 2m stars F4, it follows

that K3,8m also has an F4-decomposition. Let V(K3)={a,b,c}, and create a decompo-

sitin of K3,8m which includes the three stars (a ;x,y,z,u) ,(b;x,y,z,u),
(c;x,y,z,u). Replace the edge (a,u) by (a,b), the edge (b,u) by (b,c), and

the edge (c,u) by (c,a). We did not spoil any star of the decomposition of K3,8m
and the star (u;a,b,c) of three branches is left non-packed.

k =4.

Let K8m+4 Ksm U K4,8m U K4. The graph K8m has an F4-decomposition. Let

The graph K1,8m car. be decomposed into 2m stars F4 so K4,8mK4,8m 4KI ,8m"
has an F4-decomposition. Let V(K4)={a,b,c,d}, and consider the subgraph K4, 4 of

K4,sm whose vertices are given by V(K4, 4) {a,b,c,d} U {8m-1, 8m-2, 8m-3, 8m-4}.

The F4 decomposition of K4,8m can be arranged in such a way that our K4, 4 is

made up of the four F4 graphs (a;8m-1,8m-2,8m-3,8m-4), (b;8m-1,8m-2,8m-3,Sm-4),
(c;Sm-1,8m-2,8m-3,8m-4) and (d;8m-].8m-2,Sm-3,8m-4). Replace the edges (a,8m-1),
(b,Sm-1), (c,8m-I), (d,Sm-1) with the edges (a,c), (a,b), (b,c), (c,d), respectively

we now have a new F4 graph, namely (Sm-1;a ,b ,c ,d The edges (a,d) an( (b,d)
re the only one which remain non-packed.
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k 5,

Let K8m+5 K8m U K5,8m U K5. As before K8m and K5,8m have F4-decompositions.
Now K5 K4 U KI, 4 so we can complete the proof in the same way as in the case k

4.

Let K8m+6 K8m U K6,8m U K6. The graphs K8m and K6,8m have F4-decompositions.
Let V(K6) {Vl,V2,V3,V4,V5,V6}. Graph K6 can be packed with the two F4
{vl;v2,v3,v4,v5} and {v2;v3,v4,v5,v6}. The induced graph on {v3,v4,v5,v6} is K4.
Hence, we can complete the proof here as in the case k 4, leaving the edges

(v5,v6), (v4,v6) non-packed. Those edges together with the non-packed edge (Vl,V6)
accomplish the proof of the theorem in this case.

k 7.

Let K8m+7 K8m U K7,8m U K7. The graphs K8m and K7,8m have F4-decompositions
and we apply the F4-packing shown for K7 at the beginning of this case.
This completes the proof of the theorem for F4. F1
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