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ABSTRACT. Let n0 anZ be a power series, representing an analytic function f(z)

in the disc Izl < R. A characterization for the type of such functions was obtained

by the authors [J. Math. Anal. Appl. 81(1981), I-7] in terms of the maximum term and

rank. It is proved in this paper by means of an example, that a similar relation does

not hold in general for lower type and sufficient conditions have been obtained for

the validity of the corresponding result for lower type. Alternative coefficient

characterization for type and lower type have been given and a necessary and suffi-

cient condition for the analytic function f(z) to be of perfectly regular growth has

been obtained.
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i. INTRODUCTION.

n0 anz n
be an analytic function with radius of convergenceLet f(z)

R(0 < R < ). For 0 r R, we set M(r) max If(z) m(r) max {la Ir and
n

N(r) max{% m(r) la Ir }. Then M(r) m(r) and N(r) are called the maximumn n
n>0

modulus, maximum term and central index respectively. The order 0 of f(z) is de-

ined as
lim sup I$+ I$+ M(r)

0, 0 0 < (I.I)
log x

r+R

where x Rr/(R-r). When 0 , M(r) can be replaced by m(r) in (I.I) [l,Lemma2].

Further for 0 < 0 < =, the type T and lower type t of f(z) are defined as

lim sup log m(r) T (1.2)
r/R inf 0 t

X
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The function f(z) is said to be of regular growth if limit exists on the left hand

side of (I.I). Further, f(z) is said to be of perfectly regular growth if 0 < t

T < . Maclane [2] obtained the following formula for the order 0 of f(z):

lg+ lg+ lanl P (1.3)sup
log p+l

n

Further, Bajpai, Tanne, and Whittier [3] obtained the following coefficient charac-

terization for T and t:

lim sup [log+ (lanl R n)] T (1.4)
n inf B P t

n

where B (p+l)
p+I

(R/p) p. The expression for the lower type t holds under the

loglan/an+ll
conditions that (i) n Xn+l and (ii) (n)

n+l n is a non decreasing

function of n.

In a recent paper of [4], we obtained a formula for the type T in terms of

M(r) and N(r). Thus we have

(p+l-
p+l

pT N(r) x o m(r) (p+l)
---) (-) lim sup -- {I+ N(r) (1.5)

r/R x

In this paper, we show by means of an example that a corresponding result for lower

type t does not always hold. We shall obtain the corresponding result for lower

type under certain conditions. In the process, we also obtain formulae corresponding

to (1.4) without any additional conditions on % or a’s thus improving upon
n n

(1.4).

2. WE PROVE THE FOLLOWING;

nTHEOREM I. Let f(z) n0
a z be analytic in Izl < R and of order
n

type T and lower type t Let {nk} denote the sequence of principal indices of

f and {rk} the sequence of jump points of N(r), i.e.,

N(r) n
k

for r
k

r < rk+ k 1,2,3

Then n

k+lim sup (R--k)[ IOg+ ({ankRp+lk) (p+I)
(2.1)

log m(rk)
lim inf t (2.2)
k (Xk)P

where x
k

R rk/(R-rk)
Before providing the above theorem, we give an example to show that (1.5) does

not always hold for the lower type.
2n 4nEXAMPLE. Let us consider the function f(z) n0

e z Then it can be easily

seen that f(z) is analytic in Izl < I, of order p =I. Further, N(r) 4n

2
n

4
n

m(r) e r for

-I/3(2n-l) -I/3(2n)e < r < e
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Hence, from (2.1) and (2.2) above, we have T I/4, t 2/9. However, in this case

(for R and p I)

lim
N(r) x log m(r) ]p+l 8 (@_ 0.+I (R)

r.+R x- + 7(r) > g P

Hence we see that although limit exists on the right hand side of (1.5), the equality

fails to hold for lower type t The above inequality can be generalized as follows:

THEOREM 2. Let f(z) be defined as before. Then

p+l (p+l)
(0+I) (pt) < lim inf

N(r) x log re(r)+- (2.3)R rr->R

In order to get reverse inequality for t we prove

THEOREM 3. Let f(z) be defined as in Theorem I. Then for any increasing sequence

{r tending to R we have
n

p+l N(rn_ I) x log m(r p+l
0t(0+I) (--) > lira inf p+l

+ n n

0
l (x) rn N(rn)

n

where x R r /(R-r ).
n n n

The following corollaries are immediate consequences of Theorem 3.

COROLLARY I. We have

p+l
ot N(rn-I __n_nX log m p+l

()o+I () max lim inf
p+l

{I +
(rn

r N(r{r n+ x n nn n

(2.4)

where the maximum on the right hand side is taken over all increasing sequences {r
n

such that r R as n =.
n

COROLLARY 2. We have

(p+l)
p+I

P

then

N(rn_() {max lim inf
N(rn{r n-=

n

0+I
{lim inf

N(r) x log m(r) (2 6)
rR

+ 7 N(r)"

where x Rr/(r-r) and {r is as defined above.n

Lastly we state two theorems.

THEOREM 4. If f(z) satisfies the condition of Theorem and there exists an increas-

ing sequence of positive real numbers {r such that r R as n and
n n

N(r N(r as n- =, (2 7)n-1 n

p+lp+l
pt N(r) x lo(r)(-) lim inf - + N(r) (2. 8)

r/R x

THEOREM 5. If f(z) satisfies the conditions of Theorem and is of perfectly regular

growth, then

lim
N(r) x log m(r) (2 9)

r+R
+ N(r)

exists.

Conversely, if limit in (2.9) exists and equals A and N(r) satisfies the con-

(2.5)
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dition (2.7), then f(z) is of perfectly regular growth and

p AR
t T () (-). (2.10)

3. PROOFS OF THEOREMS.
log lank + n

k log r
THEOREM I. Let us set P(r) log m(r)

Then P(r)
[Rr/(R-r) ]0 [Rr/(R-r) ]0

for r
k _< r < rk+ It is clear that P(r) is a differentiable function of r for

r
k _< r rk+ Differentiating, we have

I-0R I-0P’(r) (R_-) r Qk(r) (3.1)

where Qk(r) ()nk -0(loglank + n
k

log r) Since
R-r

log (R/r) as r/R itR

can be easily seen that Qk(r) 0 for

* RI/(0+I) l-0/(0+l)nkr r
k lank (3.2)

Further, for fixed k the function P(r) has an absoute maxima for r r
k

only.

If
k

< r
k

< rk+ then the function P(r) increases for r
k

<_ r <- rk* In

case r
k

r
k

P(r) decreases for r
k

r rk+l, while if r
k

e rk+ I, then P(r) is

a non decreasin function of r for r
k

r rk+ I. In every case, we have for

r
k

r rk+l,

P(r) e e(rk), or (3.3)

P(r) e P(rk+l). (3.4)

Thus (3.3) and (3.4) give

lim inf P(r) lim inf P(rk) (3.5)
rR k-

But we obviously have

lim inf P(r) lim inf P(rk). (3.6)

Thus (3.5) and (3.6) lead to (2.2).

To prove (2.1). we note that for r
k

r < rk+l,
log lank + n

k log r
k

P(r)
)[Rr/ (R-r
k

since for fixed k P(r) has an absolute maxima at r rk. The above inequality,

after simple calculation leads to

T lim sup P(r)
r+R

log(l Rnk) i+I
0 an

k< lira sup (--) 0+k+

The reverse inequality is trivial since

T lim sup P(r) >- Jim sup P(r)
rR k-

(.7)
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l.im sup (,--) [’
0+I

] (3.8)
k-

Thus we gel (2.1) on combining (3.7) and (3.8). This proves Theorem I.

REMARK. The result (2.1) is an improvement over the corresponding resul (1.4) of

Bajpai e.al. [3].

THEOR 2. I is easy o verify ha for 0 > 0 and u O,

(1)p+l"pu ()
The inequaliy (2.3) now follows on making proper substitutions for u and proceeding

TBEOR 3. To prove (2.4), we pu

N(rn x log m(r 0+I
lira inf + n

q
r N(r
n n

n

Then for 0 < E q, we have for n > no(E)

This leads to

N(r R-r log m(r 0+In-I n

r0+l [-- +
N(rn

]

n

log m(rn) > [rn{N(-rn_i)
I (p/ a-r

a n]N(rn)"
From the relation [5,p.196]

log M(r) log m(ro) + fr N(t)d
ro

t o < r
O

we have

Using (3.9) and the fact that

<r R,

log re(r) log m(rn) + r N.(t) dt
tn

-> log m(r + N(rn) log (r/r)
n n

log m(rn) + N(rn){lg(R/rn log(R/r)}.

R-r
log R)( as r-R, we get

1/(p/l)
log m(r) > N(rn)[rn{N(rn_1)} R-r

R

Let {s be a sequence defined by
n

O sR(q-E) .I/(p+l)
R exp[--[, ] n > ns

n o

(3.9)

(3.1o)

/R as n+. If r satisfies s < r < then for
It is clear that s

n n Sn+l’

x Rr/(R-r),

.R-Sn+l]p (p+l)r
n

log(Rlsn) R -sn

lOgxpro(r)- > N(rn) tRn+ oR R

(p+l)rn
(R-sn) R-s

n
N(rn) [R-Sn+. ]P

R Sn+ pR2
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O 0+I R(q-_ (R-sn)

0 o+1 (q-c)R

Proceeding to limits as r R, we get

0 0+1 Ot(0--f) (-) & q

which yields (2.4). The inequality obviously holds if q 0. This proves Theorem 3.

As already mentioned, Corollaries and 2 are direct consequences of Theorem 3.

Theorem 4 follows on combining (2.3) with (2.6) under the condition (2.7). Hence we

omit the proofs.

Lastly we prove

THEOREM 5. Let us suppose that f(z) is of perfectly regular growth, i.e. T t.

Then from (1.5) and (2.3), we have

lira sup
N(r) x log m(r) p+l (o+l.P+l

r/R x-- + 7 N(r) _) (0__)

N(r) x lo$ re(r) 0+1
_< lira inf -.-- l+ 7 N(r)’

r/R x

that is, limit exists in (2.9).

Conversely, let

N(r) x log m(r) 0+1
lim -- +

r N(r)r+R x
=A

and suppose that (2.7) is satisfied for some sequence {r }. Then from (2.8) andn
(1.5), we have

(__) O+ Ot (o+1. o+1 ot(-) -- (-) A,

(0+I- 0+I AR
i.e. T t ---) (-).
ThiF proves Theorem 5.
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