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ABSTRACT. The aim of this article is to unify a large part of present knowledge about

the behaviour of Fourier series of functions of generalized bounded variation. The

connections between various concepts are discussed, particular attention being payed

to those due to Waterman and Chanturiya. Exploiting the existing interactions and

utilizing the power of one or another approach to some typical questions of the Fourier

theory, a number of previously unnoticed results are obtained in the course of this

exposition.
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I. INTRODUCTION.

One of the features which distinguish Jordan’s class BV among the other standard

classes of functions in analysis is that the Fourier program can be carried out in it in

the "most classical sense": the Fourier series of any function of this class is every-

where pointwise convergent; in case of a continuous function the convergence is uniform;

continuity of a function may be characterized in terms of its Fourier coefficients, etc.

(As it is well known, the Fourier program in its "original sense" failed dramatically

already in 1876, when du Bois-Raymond constructed a continuous function whose Fourier

series diverges at a point.) Another interesting occurrence is that already in order

to characterize continuity, Wiener came out of the class BV and introduced the concept

ol variation of a higher order. Later investigations in Fourier analysis on the one

h,,d, and a mathematician’s always present desire for more elegance and/or more gen-

erality in treating a particular problem on the other hand, have lead to further inter-

estig generalizations and new classes of functions. Domains of validity of many

classical theorems were extended, sometimes to their "natural borders". After the sec-

tion on notation, we survey some of these concepts and relationships between them in

sections 3 5. In I0 sections which follow thereafter we try to picture the present

state of the Fourier theory of functions of generalized bounded variation, treating
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topics as: pointwise, uniform, and absolute convergence, summability, order of magnitude

of Fourier coefficients, continuity, determination of a jump, Gibb’s phenomenon, conju-

gate series, Parseval’s identities.

It is often indicated how to derive some recent results from each other and from

the older ones, usually enriching their substance. However what is being said in this

direction is, as a rule, a sample rather than a detailed account of such possibilities.

2. OTATION AND CONVENTIONS.

2.1. We consider real-valued 2-periodic functions. If I is an interval with the

endpoints a, b (a<b) we write f(1) f(b) f(a) For bounded functions, m(f)

inf f, M(f) sup f

2.2. a
n an(f) (b

n bn(f)) denotes, as usual, the n-th cosine (sine) Fourier coeffi-

cient of a function f and On (a + b2)i/2n S(f) is the Fourier series of f and

(f) is its conjugate series. Partial sums of S(f) are denoted by Sn(f), Sn(x,f)
or simply S (x) and those (f) analogously- (f) n(X,f) or (x).

n n n

2.3. The modulus of continuity of f is

f(6) (6,f) sup If(x+h) f(x) I.
0 h

Given an arbitrary nondecreasing continuous function m defined on [0,], m(O) 0

and subadditive, we set

H {f e C: f(6) 0((6)) as 0}.

If (6) 6a, 0 < a ! I, this class is denoted Lip

{f g C: f(6) o(a)}. The norm of f g C is

llfll sup
0x2

2.4. Integral moduli of continuity of f Lp are given by

(,f) sup (2 if(x+h f(x) iPdx)I/p 0 <p <
P 0

For 0 a ! I, Lip (a,p) {f LP: m (6,f) O(a)}
P

lip (a,p) {f LP: (6,f) o(6a)}.
P

2.5. The best approximation of order n to f g Lp in Lp is

E (n,f) inf f2 if(x T (x) IPdx) I/p
P 0 n

where the infimum is taken over all trigonometric polynomials T of degree not higher
n

than n, n 1,2,

2.6. (C,a), a -i, denotes the Cesro summability method of order a ([I], pp. 96-97;

[2] p.76) and 6a(f) (a(f)) the corresponding Cesro means of S(f) ((f)).
n n

2.7. A is the class of functions with absolutely convergent Fourier series. W is the

class of regulated functions (Dieudonn [3], p. 139), i.e. unctions possessing the one-

sided limits at each point. For f g W we always suppose f(x) (f(x+O) f(x-0))/2

W is actually the universal class of this paper.
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2.8. Symbols for the classes of generalized bounded variation and related notions are

to be found in Sections 3 and 5.

3. GENERALIZATIONS DUE TO N. WIENER, L.C. YOUNC, D. WATERMAN AND Z.A. CHANTURIYA.

The classes of functions of bounded variation of higher orders were for the first

time introduced by Wiener in his paper [4]. Various definitions of this notion appear

in the literature, but they all yield the same classes of functions, [5]. We choose

DEFINITION 3.1. A function f is said to be of bounded p-variatlon on I0,2I, pit and

to belong to the class V if
P

V (f) sup Z ..If(li)IP}I/P ,
P i

where the supremum is taken over all finite collections of nonoverlapping subintervals

I of [0,2] The quantity V (f) is called the p-variation of f on [0,2].
P

For a detailed study of p-variation see also [6-12].

Wiener’s concept has been genralized by Young [13] in the following way.

DEFINITION 3.2. Let be a continuous function defined on [0,) and strictly in-

creasing from 0 to . The -variation of a function f on [0,2] is the supremum

V(f) of the sums

Z (If(l )I)
i i

over all systems {I.}i of nonoverlapping subintervals of [0,2]. V ={f: V(f)<=}
Clearly, (u) u gives the Jordan’s class BV and (u) up gives Wiener’s

V It is customary to consider convex functions satisfying the conditions:
P

(0) O, (x)/x 0 (x/O+) and (x)/x (x+) Such a function is necessarily

nonnegative, continuous and strictly increasing from the point x inf {x: (x)> 0}=
o

sup {x: (x) 0} on. We suppose that is nondegenerate, i.e. x 0. The function
o

@ complementary to in the sense of Young is defined by @(y) max{xy (x)}.
xZO

It is also convenient to suppose that satisfies the condition 42: There exist posi-

tive constants x and d (d 2) such thato

(2x) ! d(x) for 0 x ! x
o

since this condition is necessary and sufficient for the space V to be linear.

The classes V have been thoroughly studied in Musielak and Orlicz [14] and

Lesniewicz and Orlicz [15].

Another type of generalization, directly influenced by the convergence problems in

the theory of Fourier series, appeared in Waterman’s paper [16] in 1972.

DEFINITION 3.3. Let A {% be a nondecreasing sequence of positive numbers tendingn

to infinity, such that Z I/% diverges. A function f is said to be of A-boundedn

variation on [0,27] (or to belong to the class ABV) if

Z If(In)I/n
for every choice of nonoverlapping intervals I [0,2]. The supremum of these sumsn

is called the A-variation of f In case A {n} one speaks of harmonic bounded
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variation and the class HBV.

Let Am {An+m}, m 0,1,2, A function f e ABV is said to be continuous

in A-variation (to belong to AcBV) if VAm(f) O, as m ([17]).

Properties of functions of the class ABV, properties of A-variation function, A BV,
C

ABV as Banach space, etc., have been investigated in [18],[19], [20], [21]. Perlman,

e.g., has shown in [18] that BV is precisely the intersection and W the union of all

ABV spaces and that no one of these results can be improved by taking countable inter-

sections or unions of ABVs.

If and are Young’s complementary functions, it follows directly from the

inequality xy < (x) + (y) (Young’s inequality) that V# cHBV if I (I/n)

Actually, more can be said.

THEOREM 3.1. Z (I/n) < implies V HcBV.
PROOF. There exists a decreasing sequence of positive numbers e tending to 0 so

n

slowly that Z @(__I)n ([22]). Let f V# and {I be sequence of nonover-
nn

lapping subintervals of [0,27]. For every m 0,1,2 one has

If(In) If( I )I
nZ < I _<

m+l n n+m n (n+m)en+m

-< nZ (If(In) l) +Zn ((n+m)len+m) _< V(f) + C.

Hence

nZ n+m -< em+l(V(f)+C) 0 (m ),

implying f H BV.
C

Recently Schramm and Waterman [23] have combined concepts of and A variation

into

DEFINITION 3.4. A function f is said to be of A-bounded variation (f #ABV) if

for every system {I of nonoverlapping subintervals of [0,27]n

n n

The supremum of these sums, V#A(f), is called the #A-variation of f on [0,27].

An intermediate step was Shiba’s [24] introduction of the classes ABV (p)

(#(u) u
p

p > 1).

Finally, Chanturiya’s generalization [25], whose connections with that of Waterman

are going to play the central role in the course of our narrative, is described in

DEFINITION 3.5. The modulus of variation of a bounded function f is the function f
with domain the positive integers, given by

n
f(n) np k=Zl

where Nn {Ik: k=l,...,n} is an arbitrary finite collection of n nonoverlapping

subintervals of [0,2hi.
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The modulus of variation of any function is nondecreasing and concave. Given a

function of an integral argument with such properties, then by VIii one denotes

the class of functions f for which f(n) 0((n)) (n ). We note that

Vc V[n-l(I/n)] and W {f: vf(n) o(n)} ([25]).

4. RELATIONSHIPS BETWEEN WATERMAN’S AND CHANTURIYA’S CONCEPTS.

Using a simple averaging argument the possibility of which lies in the heart of

Definition 3.3 (Independent permutations of {In and {Ik} are admissable!) we have

pointed out in [26] the following inclusion relation between Waterman’s and Chanturiya’s

classes.

THEOREM 4.1. ABV V
n

n

i11/x.
Analogously we obtain for the new classes given by Definition 3.4.

THEOREM 4.2. CABV Vine-l(
n

i )]
Z 1/I.

i=l l

PROOF. Let {Ii} be an arbitrary collection of n overlapping intervals I
i [0,2]

and f 6 CABV By Jensen’s inequality we have

n If(Ii) I/I n (If(Ii) l)/l.
(i--E1 n i--El n n

k=El i/kk Z i/lk
Z i/lkk=l k=l

This yields

n If(li) n
i--El I. -< C-I(

n )" kZ=l 1/1
k

kl /k
and in the next step, proceeding as in Theorem 4.1.,

n

i If(li) ! Cn-l(
n

k I/I
k

The result in the opposite direction we shall need in a slightly more precise form

than it was stated in [26].

THEOREM 4.3. If kl A(I/Xk)f(k) < ’ then f is continuous in A variation, i.e.,

f e A BV.
c

PROOF. By Abel’s partial sunation and the facts that vf is nondecreasing and A / ,
n

one obtains

n If(Ik) I k
kl Ik+m (A. illf(li) + -- kl If(Ik) <

Ak-t n-I-

CA. )9 (k) + (n) A- <
Ak+m f f k--Zn+m I

k

-< kZl Ak+m )f(k+m) + k__Zn+m (A )f(k) im+ (A .)f(i) o(I)

as m
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COROLLARY I. i)
k--El v(k)/kl+a < (R), 0 < a < I, implies V[v]c {na} BV;

C

ii) k__El (k)/k2 < implies V[]c HcBV

COROLLARY 2. i) If II dx < , 0 < a < I, then V. {na} BV
0 l-a(x c

ii) If I log--7--Cx] dx < then V#c HcBV0

PROOF. i) /I dx
yields l I(I

0 l-a(x n=l - ) < Now the assertion follows

from Corollary I. i), since Vc V[n-l(I/n)].

ii) Follows in a similar way from Corollary I. ii).

COROLLARY 3. i) If f C and k=El A(l/k)kmf(I/k) < , then f AcBV;
ii) Lip a {n BV for 6 > l-e, 0 < a <

C

PROOF. i) Follows from Theorem 4.3 and the fact that f(k) o(kf(I/k)) ([25],Th. 4).

ii) Immediately from i).

An especially interesting case is given by

THEOREM 4.4. For 0 < a 6 < one has

a
BV{na}BV Vl/(l_a V[n {nB}c

All inclusions are strict. In particular, Lip (l-a) {na}BV

PROOF. i) Let f E {na}BV and let {Ik} be an arbitrary finite collection of nonover-

lapping subintervals of [0,2w]. We may suppose that they are denumerated so that the

mm
it follows Cml-ad < d k -numbers d

k f(Ik) descend. From k
k
a l-a m m

m d
k l-a

dkl= ka
< Vrna(f)t for every m Hence m < K for every m and the constant

m

K is independent of the choice of intervals {Ik} For p =I/(l-a) one has

dp
k k(l-a)(p-l)d dk

__kadk KP-IV{naTherefore I d < Kp-I I < (f) what implies
k
a

f V
P

ii) The inclusion Lip(l-a) Vl/(l_a is obvious. Let us show that Lip(l-s)#

{n }BY. In the interval [0,] we shall take the points x O, x s /s, where
o n n

n
S k=l

klog (k+l) n/
nn I/(l-a) s lim s The function f is defined by

f (0) O,

l-a n k+l
f(Xn (/s) k=El (-I)

kl-alog(k+l
l-a k+lf() (/s) k__Zt (-1)

kl-alog(k+l
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and to be linear on each I
k [Xk_l,Xk], k 1,2 f is extended to [0,2] by

f(x+) f(-x) for 0 < x _< Now

If(Ik) (/s)l-c llkll-kl-log (k+l)

Figure

n
n [f(Ik) l-a (n m) so that f {na}BV. However,

(/s) kl klog(k+l)Hence k ka
Lip(I-a). Really, for any two points x’, x" [0,2], not contained in the same

interval I
k

one can always find I
k

such that IIk ! x’ x"l and f(x’),
O O

f(x") ({f(x) x I
k

(Geometrically it is obvious. See Figure I.) Since

O

f Lip(l-a) on I
k

(with the Lipschitz constant independent of k), the assertion

follows.

iii) Vl/(l_a V[ na] follows straightforwardly from the Hider inequality. An

example that the inclusion is strict is provided by the function f: f(I/2 i-l) I/i
l-a

f(3/2i+l) f(O) f(2) 0 and f linear on the intervals [I/2 i 3/2 i+l] [3/2 i+l

I/2 i-I and [1,2], where i=1,2

iv) V[nU]{n} BY follows from Theorem 4.3. This inclusion is obviously strict,
C

since the values of B lie in the open interval.

5. BANACH INDICATRIX.

In 1925 Banach [27] introduced, for a continuous function f the function Nf:
[m(f),M(f)] [0, m] setting Nf(y) equal to the number of values of x [0,2] for

which f(x) y, if this number is finite, and Nf(y) otherwise. He proved that

f BV if and only if /M(f) N (y)dy < (see also Natanson [28], p. 253 ff., who called
m(f) f

Nf the Banach indicatrix of f). If f W there exist an increasing function on

[0,2] and a continuous function F on [(0),(2)] such that f F- (Sierpiski

[29]; rediscovered in Tsereteli [30]). Defining Nf N
F

one obtains that the Banach

theorem is also valid for f since that variation of a function does not vary for mono-

tone transformations of the argument. This generalization of Banach’s result is due to

Lozinski [31]. The approach presented here is from [32].
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Now let be an increasing concave function on [0,), (0), (x) (x/),

(x)/x +0 (x+). Asatiani and Chanturiya [32] have recently proved the following

theorem.

THEOREM 5.1. If f W and

IM(f) (N (y))dy < (5 I)
re(f) f

then the modulus of continuity of f satisfies

Z [2(n) -(n-l) -(n+l)] f(n) < . (5.2)
n=l

There exists a f C for which (5.2) is valid but (5.1) is not.

Theorem 5.1 and Theorem 4.3 imply

/M(f) (Nf(y))dy < } A BV whereTHEOREM 5 2 {f W: n N
m(f) c n (n)-(n-l)

PROOF. It suffices to check that the sequence { so defined, possesses all the
n

properties required by Definition 3.3. Now > follows from the fact that
n+l n

is concave. If there were a constant K such that K for every n then we
n

n
would have (n)-(n-l) I/K and (n) k [(k)-(k-l)] n/K for every n, con-

n
trary to the assumption that (n)/n /0 (n/). Hence n Finally k I/k=(n)/

IM(f) I/p } l-I/pCOROLLARY If p {f W: (y)dy < {n BV.
m(f) Nf c

COROLLARY 2. (Zerekidze [33]; Garsia and Sawyer [34], p.591)

(f W: IM(f) I/p(y)dy < } V p > I.
m(f) Nf P

IM(f) log Nf(y)dy < } H BVCOROLLARY 3. {f W:
m(f) c

6. POINTWISE CONVERGENCE OF FOURIER SERIES.

In the question of convergence of the Fourier series of functions belonging to the

classes V and V[], Salem and Chanturiya, respectively, have concentrated their

attention on continuous functions of the class and uniform convergence of their series.

The concept of A-variation again (and harmonic variation, in particular) has originated

from Goffman’s and Waterman’s investigation [35] of the conditions under which a Fourier

series converges everywhere for every change variable. (According to their own words,

they were inspired by the possibilities hidden in Salem’s method of [22].) The next

result, obtained by Waterman ([16],[36]), is the farthest reaching result on the conver-

gence of functions with bounded generalized variation.

THEOREM 6.1. If f HBV, then the partial sums of its Fourier series are uniformly

bounded. The series converges everywhere and converges uniformly on closed intervals of

points of continuity. If ABV HBV, then there is a continuous f ABV whose

Fourier series diverges at a point.

Using Theorem 4.2 and 4.3 we state three corollaries, the first two of them in

parelal form.

COROLLARY I. evzadze [37]), All funcitons of the class V[] with Z (n) < have
n2everywhere convergent Fourier series.
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-ICOROLLARY 2. If f e V and I () < =, then the Fourier series of f converges

everywhere.

-ICOROLLARY 3. If E
n < , the partial sums of the Fourier series of

i__sii/ i
f c ABV are uniformly bounded, the series converges everywhere and the convergence is

uniform on the closed intervals of points of continuity.

-IIn virtue of Chanturiya’s result that I < is equivalent to Salem’s

@() < , Corollary 2 is the known result, obtained in an interesting man-condition Z

ner (Koethe space setting) by Goffman [38]. However his method gives no information

regarding uniform convergence (what is the initial Salem’s result and the omitted part

of Corollary 2.) By a result of Sevast’yanov (see Section 7 for more details) Coro-

llaries and 2 are in fact equivalent.

Corollary 3 is new. Unfortunately, the substance of Shiba’s paper [39] on uniform

convergence of funcitons of the class ABV(P) is unknown to us, but we expect that the

corresponding result is in accordance with Corollary 3, i.e.

If f ABV (p) n C and Z < =, then the Fourier series of f
n( I/ I/p

i:i i
converges uniformly.

In view of Theorem 4.4, everywhere convergence of the Fourier series of a function

f {na}BV 0 < < I, follows already from Hardy-Littlewood’s result concerning the

classes Lip(I/p,p) ([40]) and uniform convergence, if f is continuous, from Yano’s
observation [41]. (For other proofs in case of Wiener class V c Lip(I/p,p) see

P
Young [9] and Marcinkiewicz [8].) There is an interesting estimate, due to Bojanid and

Waterman [42] of the rate of convergence in this case.

THEOREM 6.2. If f e {na}BV, 0 < < I, then

iSn(x)_f(x)l < (2-)(i+2/)
kE__
n

(n+l)l- V(E)

where V() denotes {n}-variation of gx(t) f(x+t) + f(x-t) 2f(x).

For =0 (i.e. f BY) this is an earlier result of Bojanid [43]. For a more

general result (classes ABV which can be closer to HBV) see Waterman [44].

7. UNIFORM CONVERGENCE.

As an application of his convergence criterion, Salem [22] has proved s it was al-

ready noted in Section 6) that all continuous functions of the class V@ have uniformly

convergent Fourier series if the function @, complementary to @, satisfies the condi-

tion r. @(I/n) < (7.1)

(Later on, we shall refer to such classes V@ as Salem’s classes.) For a long time it

was an open question whether the condition (7.1) is definitive. It was answered in

positive independently by Baerstein [45] and Oskolkov [46] in 1972. Oskolkov has shown
that (7.1) is equivalent to

i log
0 -d < (7.2)
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and this is further, according to the result of Chanturiya [47], equivalent to

-IZ < (7.3)

For the deviation of f V n C from the partial sums of its Fourier series Oskolkov

gave the estimate
v (f)

lsn(f)-fll < c(/"> og:d0

Here he supposes merely that is an increasing function on [0,), with #(0) 0,

not necessarily convex. In case #() = one obtains the earlier result of Stechkin

[48]:

If f E BVoC then llf-Sn(f)ll ! C(/n) log(V(f)(/n)).

Using a nonincreasing rearrangement ([2], p.30) Nf of the Banach indicatrix of

a function f he constructed a convex function @ (() i du

N such that
0

f V and showed that the criterion of Garsia and Sawyer (iM(f) log Nf(y) dy <
re(f)

[34], Theorem I) is a consequence of Salem’s result. (Till then, the cases of the

Garsia-Sawyer class and Salem classes were treated separately. See, e.g., Goffman [38],

Waterman [16].)

In view of the fact that
-I

vf(n) O(n (I/n)) for f V and equivalence of

(7.1) and (7.3), Salem’s theorem follows from Chanturiya’s result [47]:

Fourier series of all functions of the class CV[v] converge uniformly if (and

only if)

Z v(k__) < (7.4)
k2

However, (7.4) is equivalent to (7.1). (If E v(k)/k2 < one can construct

such that f 6 V# and (7.1) is satisfied. Sevast’yanov [49]).

Since all the conditions above on f yield f HBV corresponding sufficient

part statements are corollaries of Theorem 6.1. What is new here, are the estimates,

the most general one being

THEOREM 7.1. (Chanturiya, [47]) If f E C[0,2], then

[(n-l)/2]
! C min {m (I/n)

k

m
I/k + f(k)/k

2
n>3n(f) ll

l<_m ! [] f k=+l

It implies the estimates of Lebesque and Oskolkov.

8. SUMMABILITY OF FOURIER SERIES.

The usual task of summability in Fourier analysis is to recover a function from its

Fourie series by some regular method, since, in general, the series fails to converge.

However, in the class HBV this is not the case and our question here is quite dif-

ferent: Can one state some assertion, stronger than convergence, about the behaviour of

the Fourier series of functions belonging to certain subclasses of HBV and, if so, to

what extent stronger? It is natural to expect that this depends on the "order of vari-

ation" of f The methods which we consider are Cesro methods (C,), -I < < O.

The central result in this direction is the following theorem due to Waterman [17].
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THEOREM 8.1. The Fourier series S(f) of a function f {na}BV 0 a < I, is

everywhere (C,a-l) bounded and is uniformly (C,a-l) bounded on each closed interval

of onlinuity of f If f {na} BV, then S(f) is everywhere (C,a-l) summable to
c

f and the summability is uniform on each closed interval of continuity.

From (C,a-l) boundedness and convergence, by a well known convexity theorem ([I],

p. 127), (C,B) summability for B a-I follows.

Analogous to Theorem 3.1 one realizes that V {na}cBV if I (I/ka) <

0 < a < i. Therefore, as the first corollary of Theorem 8.1 we can state a theorem of

Akhobadze [50], proved independently and at the same time as Theorem 8.1.

l-a
COROLLARY I. If f V and Z (i/k )< O< a i, then the Fourier series of

is (C,-) summable everywhere and the summability is uniform if f is continuous.

Akhobadze establishes also that the condition I @(I/k l-a) < is necessary and

sufficient in order that the assertion holds for every f e V and, on the other hand,

Waterman proves that there exists f e C n ABV whose Fourier series is not (C,a-l)

bounded at some point, if ABV {na}BV.

(Asatiani, [51] If f C n v[J and Z (k2-a
<=, 0< a i, thenCOROLLARY 2.

S(f) is uniformly (C,-) summable to f.

According to Theorem 8.1, if in Corollary 2 we let out the assumption of continuity

of f the we have (C,-a) everywhere summability in conclusion. Corollary 2, so en-

riched, and Theorem 4.2 imply

COROLLARY 3. If f ABV and

i -i I
n=l - ()n

n i=Zll/%i
then S(f) is everywhere (C,-a) summable to f and the summability is uniform on

each closed interval of continuity.

In a similar way, using the results of of Section 5, one can state corresponding

assertions for the classes defined by means of the Banach indicatrix. (C,8) summa-

bility for f V B > -l/p, which is an immediate consequence of Theorems 8.1 and
P

4.4, was proved by Young [9]. It follows also from a more general result of Hardy and

Littlewood [40] on the classes Lip(i/p,p) (see also [2], p. 66).

In the end we mention Asatiani’s extension of Chanturiya’s theorems on uniform con-

vergence.

THEOREM 8.2. If f C and

m n-I
lim min {f(I/n) kI i/kI- + km+1 f(k)/k2-} O, 0 -< i, then the Fourier
n- l_<m<n-I

series of f is uniformly (C,-a) summable to f

The condition above (with m and fixed) is also necessary for uniform (C,-a)

summability of all Fourier series of functions of the class H n VIii.

9. ABSOLUTE CONVERGENCE.

Bernstein has proved that the Fourier series of f is absolutely convergent if

-/2. n f(i/n) (see [2], p. 241). The condition is best possible in the sense
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-i/2m Hthat if Z n (l/n) , then there exists f e such that f A (Stechkin [52];

see [53], p. 14 f.). In particular Lip a A for a 1/2 and there exists

f e Lip 1/2 \A (This was already proved by Bernstein.) Now if BY, the condition

posed on its modulus of continuity may be significantly weakened. Namely, by a theorem

of Zygmund ([2] p. 241) in this case

Z i/n/2(l/n)
is sufficient for absolute convergence of S(f). (Hence BVc Lip a A for all 0.)

That this condition is also definitive (and for every uniformly bounded complete ortho-

normal system!) was proved by Bochkarev [54] ([54a]) in 1973. (It is understandable

that his method has become fundamental for necessity type results of this kind.)

The question arises: What is an apprepriate condition if is of generali?ed

bounded variation? Trivially, Lip I/2 V2 and by HIder inequality V
2

ABV if

I/ Hence, the fact that f ABV with Z I/ does not contribute to
n n

H
a

absol,te convergence of the Fourier series of f (Both in [20] and[16] theorems

for HBVoH’ A have been stated!)

Siasz has noted that what is actually needed in Bernstein’s theorem is the conver-

gence of the series

-112I’ n I02 (]/n,f)

Stechkin [55] gave a criterion in terms of the best approximations to f in L2-metric
and deduced Sasz’s theorem from it by means of the Jackson type relation

E2(k,f) O[m2(I/k,f)]. (9.1)

In [56] McLaughlin has generalized Stechkin’s result to

THEOREM 9.1. Let {’k be an orthonormal system. Assume that {m(k)} is an increasing

sequence of natural numbers and 0 -< 2. If

Z k-/2[E2(m(k) f)]B < then Z kla ]B <
m(k)

where {akt denotes the sequence of Fourier coefficients of f for {k
The theorem and the relation (9.1) stress the importance of the estimate for

2(1/k,f). The essential result for our purposes here is due to Chanturiya [57]:

(n)+n i/2Cn-1/2(k=Z(n) (k)/k2) (9 2)2 (l/k f)
f

where f W and (n) max {m: f(m)/m_> f(I/n)}.
Now from Theorem 9.1, (9.1) and (9.2) one obtains immediately Chanturiya’s theorem

announced in [58].

THEOREM 9.2. Let f H V[v], (n) o(n). If 0 B < 2 and

6-3 .n+/-(n) 2 k2 3/2
n
6 BZ n (kL (k)/ < then Z 0 < .

n=l (n) n=l n

For 6 0, B =I this yields the sufficiency part of

H
m a

THEOREM 9.3. ([57]) For a Fourier series of the class V[n 0 < a < I/2, to

be absolutely convergent it is necessary and sufficient that

l-2a

![() ]2(l-a)
n=l n
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nong a number of corollaries which one can state for particular classes, we point

to

COROLLARY I. ([59]) Cor. I.) Lip a n V[n A for 0 < B I/2, a > O.

By Theorem 4.4 this is equivalent to Lip a n {n }BV A (a,B as above) and fur-

ther to Lip a n V A (p < 2) what was an earlier result due to Hirschman ([60],
P

Lemma 2d). Similarly

forCOROLLARY 2 ([59] Theorem 3) If f V[n I/2 then Z Ok
2/(3-26), is equivalent to Golubov’s result on V in [6] (a special case of Th. 6

P

there). (Corollary 2 may be obtained from Theorem 9.1 via (9.1) and 10(3).)

Using Theorem 4.2 and 4.4 it is also possible to deduce some informations (in

various forms) about the classes ABV.
i0. ORDER OK MAGNITUDE OF FOURIER COEFFICIENTS.

A standard argument (see [61], p. 80 f.) leads to the relation ml(,f)

O(6f([I/])) for bounded f We repeat it. Let 0 < h ! Then

f2 if(x+h)_f(x)idX
[I/ 2 2

vf([I/h] +|)

0 [l/h] kl If(x+kh)-f(x+(k-l)h)l dx ! [I/h]

(10.1)

Since vf(n)/n is nonincreasing, we have

f(n)/n ! f(n+l)In ! (l+lln)f(n+l)l(n+l) ! (l+lln)f(n)In.
Further [I/h] [I/6] implies vf([I/h])/[I/h] ! vf([I/6])/[i/6].
Hence

ml (6’f)
0 <spi 6 g2 if(x+h)_f(x)idx 0(6f([1/6])).

Since the absolute value 0 of the n-th Fourier coefficient of f is always
n

dominated by ml(/n,f)/(//), it follows that the Fourier coefficients of functions

of the classes V[] are of the order (n)/n (see also Chanturiya [59]) From this

and the results of Section 4, follow all known estimates for Fourier coefficients of

functions of generalized bounded variation. In case of ABV, e.g., one obtains

n

Pn 0(1/ i=Z1 I/i). This was independently proved by Wang [20], Schramm and Waterman

[23] and this author [62] in 1982. For f Lip(a, p) 0n(f) O(I/na) (Hardy and

-I/p) if Lip(I/p,p) (MarcinkiewiczLittlewood [40]) and hence On(f) O(n f e V
P

[8]).

Waterman’s result on summability (Theorem 8.1) implies ([2], p.78) that On(f)
a

BV 0 a < I. In particular, 0 (f) o(n-I/p) (P I) ifo(na-l), if f {n }c n

iM(f) llp(y)dy < or if I f(n)/nm(f) Nf
2-1/p < or if f V with I @(I/n I-I/p) <.

n
Wang [20] has proved 0n(f) o(I/ i__E1 I/i) for f A BV, in general. Hence func-

c

tions of Salem classes and of the class of Garsia and Sawyer have Fourier coefficients

of order o(I/log n). (See Theorem 3.1 and Corollary 3 in Section 5).



236 M. AVDISPAHI

REMARK. In case of Fourier coefficients one can use the presence of the factor cos nx

(resp. sin nx) in a relation analogous to (I0. I) to eliminate on the right hand side

(a modification due to [zumi [63]). The group theoretic nature of the argument was

noted already by Vilenkin ([64],3.22) in 1947. Vilenkin’s observation escaped notice

of Taibleson [65], Edwards ([66], p.35), Benedetto ([67], p. 120).

Another information on the magnitude of Fourier coefficients is contained in the

estimate of the rate of approximation of a function by trigonometric polynomials in

L2-norm

(kn 0) I/2
0(2(I/n,f)). (10.2)

(See section 9, relation (9.1).)

0(|) if f Lip(I/2,2) Hence one has the latter estimateClearly, n kn O k

for all V P! 2 and then, via Theorem 4.4, for all {na}BV, a ! I/2 (and Vine],
P

a i/2). This is significantly better than Shiba’s result in [68]. A simple applica-

tion of the estimate for l(i/n,f) and the fact that is bounded (eventually con-

tinuous) does not lead to satisfactory results in (10.2). We have already seen the

advantages of Chanturiya’s approach in matters of absolute convergence. Sacrificing

(n), we illustrate the principle on which his estimate of 2(I/n,f) (see relation

(9.2) in Section 9) relies. Let us denote

dk,n(X) If(x+k/r)- f(x+(k-l)/n)l, k=l,2,...,n. Then

/20 If(x+/n)-f(x)IZdx I/n /20 (kl dk,n2 (x))dx =0(n kI (k)/k2)’

since dk, (x) (k)/k if we denumerate {d
k

(x)}n for each particular x son f ,n k=l

that these numbers decrease when k increases. Therefore

( k (k)/k2 I/2
2(,f) O[

n
]’ (I0.3)

and, in general,

2(6 f) 0[(6
[I/6]

2 I/2k1 f(k)/k2) ].

((9.3) follows, of course, from (9.2), for 9.(k)/k decreases.)

For {na}BV, a i/2, this gives us, for example, (via Theorem 4.4 again)

2-2a
n

k=n Ok
2 0(I)

and this is also better than the corresponding result of Shiba.

II. CHARACTERIZATION OF CONTINUITY.

Of the following five conditions

n k 0 sin2 k o(i) (11.1)

n

k2k p o(n) (11.3)

n

k! kPk o(n) (11.4)

n

k Ok o(Zog n) (11.5)
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the first three are equivalent (Tanovid-Miller [69]). They imply (11.4) and this one

implies further (11.5). By a well known theorem of Lukcs ([2], p. 60) (11.5) is suffi-

cient to insure continuity of f if f is supposed merely to be regulated. Wiener

[4] has shown that (Ii.I) and (11.3) are also necessary for continuity of f BY.

Sidon [70] has indep@ndently established the same for (11.4), which is, in case BY,

trivially equivalent to (11.3), because of kok 0(I). Hence (11.5) is also necessary

in this case, what is known as Lozinski’s theorem [71]. Actually, Wiener has proved the

necessity of (Ii.I) if f Co V ! p < 2 (see [4], p.77 the bottom, and p.78,
P

relation (21); see also Golubov [72]). This is contained in a more general result

lim
+ (i 2

Of if(x+h)_f(x) lqdx )I/q (Z If(Xk+O)-f(Xk-O)I q)I/qkh/O

which holds for f V ! p < q (Golubov [7]).
P

In view of (10.2) condition (11.2) is obviously fulfilled if f Lip(I/2,2). In

particular, by (9.2), (II.I) (ii.5) are necessary and sufficient conditions for con-

tinuity of functions of the class {f k 9(k)/k2 < } (Chanturiya [73]). Therefore

also for the classes ABV with n [# I(I/ i I/li)]2 e.g. (See Theorem 4.2)

On the other hand, there is no necessary condition for the continuity of f e V
2

in terms of the absolute value O k
of its Fourier coefficients. (The function fl(x)

sin kx
BV V2 with a jump at O, and Hardy-Littlewood function f2(x)kl k

kI sin k(x+logk)k Lip I/2 V2 have 0k(f 2) I/k .)

Let us now prove

THEOREM 11.1. Each of the conditions (II.I) (11.5) is necessary and sufficient for

the continuity of f {n I/2} BV.
C

PROOF. Sufficiency is clear. For the necessity part it is enough to prove

n

k If(x+k/n)-f(x+(k-l)n/n)l 2 o(I) uniformly in x as n since

4n kIn 0sin2 nk /20 (kl If(x+k/n)-f(x+(k-l)/n)12)dx

(x) n
be as in Section 10and then (II.I) will hold. For every x and n let {dk, n }k=l

I/2
Then k d

k
(x) 0(I) uniformly in x (See Theorem 4.4 part i) of the proof,n

Given g 0, there exists n (independent of x) such that
O

n V(no)kn +i dk, (x)/kI/2 < (f;[O 4])
o {k I/2

(See Definition 3.3) Further there exists n such that f(I/n) for n n

Let n
2 maX{no,nl }" For n > n

2
we have then

n

/2dk dk, (x)
(x) d

2 n kl (x) nk=Zl dk’n k=Zl k,n
(x) + k=Zn +I ,n I/2 -<

O K

n
_< no (I/n) + C k__Zn +I dk,n(X)/kl/2 no2 + C, uniformly in x.

O
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COROLLARY ([32], Theorem 6) In the class {fe W: fM,f,t I/2
m(f) Nf (y)dy < } conditions

(11.1) (11.5) characterize the continuous functions.

Still easier than Theorem 11.1 one proves the theorem due to Cohen [74], saying

that such characteriz&tion is possible in the class V$ if $ satisfies the condition

U2/(U) O(I) (u/O+). In fact, given e > O, there exists u such that u 2 e(u),
O

0 _< Uo For f C n V_ take no so that f(I/n)_ Uo for n _> no. Then

n

dK,n(X) eV(f) for every x and n _> no and the assertion follows immediately.kl
12. DETERMINATION OF A JUMP.

By the theorem of Lukcs the jump of an integrable function at a point x of its
o

discontinuity of the first kind may be determinated from its Fourier series using the

first logarithmic mean ([2], p. 106, f.) of the sequence {nb cos nx na sin nx }.
n o n o

In case f BV the logarithmic mean may be replaced by (C,I) method (essentially

Fejr [75]; see Czillag [76]) and indeed by any (C,) > O. In some sense we have

completed this picture proving

THEOREM 12.1. ([77], Theorems and 2) If f HBV, then the sequence

{kbk(f)cos kx kak(f)sin kx] is (C,) summable to (f(x+O)-f(x-O))/ for every x.

n
If ABV HBV then there exists a continuous function f ABV such that k kbk(f)
O(n).

THEOREM 12.2. ([78], Theorem 3) If f V p I, (f {nB}BV or f e V[n ], 0<8<I)
P

then the sequence {kbkCOS kXo kaksin kXo is (C,) summable to (f(x+O)-f(x-O))/

for every > l-I/p ( B) and every x. S’(
n Xo)

(C,1)-limit of {kbkCOS kXo kakstn kXo is, of course, equal to lim
n+l

Therefore, once the (C,1) result is established, it turns out that it is possible to

take any of expressions:

lim
s(2r-1) (xo) g(2r) (xo)n lim n

r=l 2
n 2r-I n 2r

n n

for the determination of the jump at x since the summability methods here involved are
O

implied by (C I) [77]. (s(k)(x) is the k-th derivative of S (x) A similar defini-
n n

ton applies to other cases.)

An earlier result on the effectivness of (C,I) in the case of V classes is due
P

to Golubov [79]. It is a corollary of our Theorem 12.2.

13. GIBB’S PHENOMENON.

A sequence of functions {f defined in the neighbourhood of a point x and
n o

converging at x (but not necessarily for x # x is said to converge uniformly at
O O

x to limit s if to every 0 there is a (e) and a n n (e) such that
O O O

.Ifn(X)-Sl < for IX-Xol < and n > n.o
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An equivalent definiton is that fn(Xn)/S for each sequence Xn/Xo (Zygmund [2],

p.58). If f lim f is defined in the neighbourhood of x and continuous at x
n+ n o o

the absence of the Gibb’s phenomenon at the point x is equivalent to the uniform con-
o

vergence of {f at x (ibid., p. 61). We have
n o

THEOREM 13.1. If f is of harmonic bounded variation, S(f) shows Gibb’s phenomenon

at every point of discontinuity of f and only there.

PROOF. f(x) lim S (x,f) for every x by Theorem 6.1. An inspection of Waterman’s
n+ n

proof of this fact in [36] shows that if f is continuous at Xo Sn(x,f) is arbi-

trarily close to f(Xo), provided n is large enough and x close enough to Xo
(Waterman’s idea is repeated in the proof of Theorem 14.1.) Hence S(f) converges uni-

formly at x and Gibb’s phenomenon is absent.
o

Let us suppose now that f has a jump f(Xo+0)-f(Xo-0)=d (0) at Xo. The func-

d
k

sin k(x-xo)
tion g(x) (x)

k
is continuous at Xo and belongs to HBV.

Hence S(g) converges uniformly at x The behaviour of S (x,f) near x is then
o n o

d
sin k(x-xo)

the same as the behaviour of the partial sums of the series which
k k

is known to show Gibb’s phenomenon. Hence so does S(f).

14. CONJUGATE SERIES.

Another among the classical theorems about functions of bounded variation which ad-

mit to the whole class HBV is Young’s theorem on the convergence of the conjugate

series.

THEOREM 14.1. If f HBV, a necessary and sufficient condition for the convergence of

(f) at x is the existence of the conjugate function at x, i.e. of the limit

(x) lim f f(x+t)-f(x-t)
dt

g/O e 2tan(t/2)

which represents then the sum of (f) at x.

f x (t)
PROOF. Let us denote x(t) f(x+t)-f(x-t) (x h)

h 2tan(t/2)
dt"

We may assume x(+O)=O, for otherwise both the series and the integral are known to

diverge.

1-cos nt(x) (x,n/n) =-! fn x(t) 2tan(t/2) dt + o(1) + ! n x(t)
n n 0 /n 2tan(t/2) dt

fn cos nt f/n 1-cos ntn
n/n @x(t) -r2) dt x(t) dt + o(1) 11 + 12 + o(1)n 0 2tan(t/2)

Given e > 0, we can chose n such that Ix(t)l < e for Itl ! n/n Then

i21 < /In ll-cos nt Idt <
2g In sin2nt/2 n2 f,ln

0 2tat/2) -- 0
dt -< 2 0

tdt < g.

Further

6 n cos ntII 3 /n + f x(t)2-a2)
0 < 6 < n by Riemann-Lebesgue.

dt and f... o(i) (n/) for every
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The method of estimating / is essentially that of Waterman’s proof of
/n

Theorem 6.1 in [361.

6 cos nt N (k+l)/n cos nt f i,
/n x(t)2tan(k/2)dt kZ--I f (t) dt + I[ +

k/n x 2ta t/2) (N+i i/n
in the samewhere E+l [n/]. Clearly I’ o(I) and removing the last term in

way, necessary, we may ,ssume N to be even. After an obvious change of variable

one obtains

_I N t+k (-l)k
/

cos nt

II 0 n kE--I x-n-) t+k
dt

tan---n]
The ab,olute value of the integrand her, is dominated by

N-I
(t+k t+k t+(k+l ) (k+ll__ ik__Zi [x --)cot x-- )ct’t+

2n n 2n n 2n
.!

where indicates summation over odd indices. Let us write the general term of the sum

in the form

(,t+(k+l) t+k t+(k+l)(t+k____!) x(t+(k+t)) cot + x )tcot--n cot
2n

]"n[*x n n in n n

By the mean value theorem

t+k t+(k+l
2-I cot-n cot

2n
<

r
2 4n 2 4 .t+k 2

< <

sin Sk -----n 4n2 4k2 k2

Choosing N such that kN +Io
o

I/k2 , we have

N-} t+(k+l)) [co co )--}lt
t+k tt+(k+l

2n k-Z-I lx( n 2n

N
sup Ix(t+(k+l))ln kZ--I I/k2 + e"

0<t<
l<k<N

o

The first summand after the inequality sign is clearly o(I) as n since @ is con-

tinuous at O. Further

N-I (t+kn. t+(k+l)n .t+kn N- -t+k t+(k+l))[ <2-z iki [mx T x()]cnln ! kl lX) -x(I n -< VH(Ox ;[0’6]) <

if 6 is sufficiently small (Waterman [21]).

Hence (x) (x,/n) o(1). Since l(x,h) (x,/n) O(I/n) for
n

/(n+l) h /n the proof is complete."

The earlier extension of Young’s theorem to the classes V p>[, is due to
P

Marcinkiewicz [8].

THEOREM ]4.2. If f g HBV and g W, then both S(f) and (f) are uniformly con-

vergent.

PROOF. Already f, W imply that f and are continuous. Really, if, e.g.,

f(xo+O)-f(xo-O) > 0 then, by Lukc’s theorem n(Xo,f)/ -" Hence n(Xo,f)
what contradicts the fact that (Xo,f) n(Xo,) ((Xo+O)-(Xo-O))/2. The proof

for is completely analogous. Now f HBVO C implies uniform convergence of S(f)

by Theorem 6.1. But if f, C and S(f) converges uniformly, then so does (f)
([61], p. 592).
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15. PARSEVAL IDENTITIES.

Zygmund ([2], p. 157) calls two classes of functions, K and K complementary

if for any pair e K g K the Parseval formula

/2f(x)g(x)dx
0

a(f)a(g) + k=Zl{ak(f)ak(g) + bk(f)bk(g)} (15.1)

lolds, in the sense that the series on the right is summable by some method of summation.

[!- we require that this series converges, as we shall do, examples of complementary

classes are (L,BV), (Lp,Lq) for [/p+I/q =I p I, and (Llog L,L)([2], pp.159 and

27). Waterman [36] has generalized the first result to

]IEOREM 15.1. L and HBV are complementary classes, if ABV dBV then there exist

f L, g ABV such that the series in (15.1) diverges.

We would like to point out another, less known, type of "Parseval identity" due to

Young 9 ].

TItEOREM 15.2. If f V g V l/p+l/q Z 1, and f and g have no common points of
P q

discontinuity, then the Stieltjes integral f fdg exists in the Riemann sense and

! S2 fdg
n n[an(f)bn(g)-an(g)b (f)]. (15.2)

0 =l n

Taking the pair we obtain the interesting

(’ROLLARY. If V V 1/p+l/q l, then
P q

Z np (15 3)
n=l

It is a classical theorem due to Hardy and Littlewood (see [2], p.286 f.) that the

conditions f BY imply f A (Clearly, if f A and ko
k

0(I), (15.3) is

satisfied.)

Generalizations of Theorem 15.2 to the classes V have been investigated by

esniewicz and Orlicz [15].
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