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ABSTRACT. Let S = f1+ f2+...+ fn be a sum of 1-dependent random variables of zero

mean. Let o= E S°, L = ¢ 0 I E|f.]3. There is a universal constant a such that for
1¢isn
alt|L < 1, we have

|E exp(itSu_‘)I s (1+a|t|):=up{(a|t,|L)—‘/Ll L exp(-t2/80)1.

This bound is a very useful tool in proving Berry-Esseen theorems.
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1. INTRODUCTION.

Consider a sequence of independent random variables f1, f fn of zero

21

means having third moments. Let S = f1+...+fn and 02= ESZ.

Ift g 0E(ff)/E|fi|3 for each isn, one has

|E[exp(it$o—1)]| s I |E[exp(itfia—1)]| S T exp(-t2/3 Effc_z)

isn isn
2
< exp(-t~/3).

This trivial estimate plays a fundamental role in the proof of Berry-Esseen rates of
convergence in the central limit theorem. The purpose of this work is to find an
estimate of |E[exp(itSc_1)]| for the sequence of m-dependent random variables.

We =ay that a sequence (fi)?s1 of random variables is m-dependent if for each
<p<n-m—-
1<psn-m-1, the sequences (f‘i)isp and (fi)i>p+m are independent of each other.

In a recent very interesting paper by V. V. Shergin[1], the author gives the

best rate of convergence in the central limit theorem for m-dependent random
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variables. We will estimate the bound of |E[exp(1tSa-1)]| by Shergin's methods. This
result extracts the most important ideas of Shergin's work. Also we want to point
out that this estimate turns out to be an essential tool in the proof of Berry-
Esseen type bounds in other limit theorems for m-dependent random variables. In a
subsequent work, we shall establish such a convergence rate for U-statistics[2] and
an Edgeworth expansion for a sum of m-dependent random variables[3].

2. CONSTRUCTION.

We follow the lines of Shergin's ingenious construction to decompose S in an
amenable way. We do not however assume the reader to be familiar with Shergin's
paper. The cxposition is self contained, and some long details of h s pr ,of ar.
eliminated by our approach.

We assume now on m=1. We denote ao,a1,...,al

made at finding optimal values for these universal constants, since the numerical

universal constants. No attempt is

values involved here are too large to be of any interest.

-3

Set U = I E|f, |3 L =Us "~ and R = - 1n L. In the sequel, we assume R210. It

isn
follows that for isn, we have

s (e]r, 13?35 1235 o%/s0n. (2.1)

By induction we define indices s(i) as follows. Set s(1) =1, and

s(iv1) = T+min{s: s>a(i), E(f £ )%2 o°/R).

s(i)’

The construction stops at an index h such that either s(h) = n or

E(f ..+fq)2< 02/R for s(h)<ssn.

s(n)’
LEMMA 1. ([1]) We have 10R/11 € h £ 2R and s(i+1) - s(i) 2 15R for 1sish-1.
PROOF. From the 1-dependence of the fi it follows that

h-1
2. 2 2
I VTR I T I SR
h-1
2k E s gen-1Tsaen

It follows from Schwartz's inequality and (2.1) that
0?2 (n-1)0%/R - 2(h-1)sup E|fi|2= 240%(h-1)/25R

so that h £ 25R/24 + 1 £ 2R. Moreover

h-1
2 2 2
O DR (et ()t By )
h-1 > h-1 h-1
+ if Ef§(1+1) "t Ziz E(f s(i+1)-2 s(i+1) 1) + 2151E(fs(i+1)-lfs(i+1))

So,
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025 th/R + 5h sup Eff s 11h02/10R

and hence h210R/11. On the other hand, for ish-1,

> s(i+1)-1 s s(i+1)-2
)= L Ef + 2E(f.f. )

2
o2/R < E(f .
jes(i) 3 j=s(i) 3

sy s i)

< 3(s(1+1) - s(i)) Max Eff $ 3(s(i*1) - =(1))0°/50R

which proves the lemma. Q.E.D.
s(i+1)-1 3 h-1
For ish-1, let 1.= & E|f.]|°. We have L 1.5 U. Hence if p is the number
Pesi) ) i=1 "

1

of indices ish-1 such that 112 10U(h-1)" , we have p s (h-1)/10. It follows that

there are at least 9(h-1)/10 indices i for which ris 10U(h-1)_1.

Let H = [9(h-1)/20 -1]. If R210, we have H2R/10. This follows from the fact that

h210R/11 and straightforward computations. We can moreover select indices 11,...,1H

such that for 1sish,
T S 100(h-1)"" 5 20U/R; i
%

For 1 £ & £ H, we set S(il) =a

22, 2s1i, s h2. (2.2)

- i 2

L+1 L

s(iz+1) = a). We have a, - a! 2 15R 2 15H.

8’ ) L )

Let

= -1
f.o= (a) - a,) T E|f.].
Lo ) 3

aQSJ<ai

Since there are at least 15H/2 2 TH indices a S j < aj for which E|fj|52F1, one can

pick indices p(%,-H),...,p(%,0),...,p(%,H) of [az,ai[ with this property such that

no two of them are consecutive.

LEMMA 2. For each -H < i S H, we have E|f | s uoL.
p(g,i)
PROOF. By Holder's inequality, we have,
£ Elfjl RS (E|fj|3)1/35 (ay - a2)2/311/3,
<j ' <j A
al-J<al a2-3<al L
L E|fj|3 s 1 (E|fj|3)2/35 (ay - a,)' /3273,
<3 \ <j Al
aE-J<a2 a2-3<a2 L
As already shown, E( T fj)zﬁ 5 L Ef?, so we get by combining the above
< 1 <5 [
al=3<al aE-J<a1
. . . 2 2 2=
inequalities, and since ¢ S R E( r f.), 0 fES 2R 7y < hou. Q.E.D.
a15j<ai J L

Set
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= = f sqsSH
Z&,o fp(!.,O)' ZZq f‘p(ft.,-q)+ fp(l.q)’ or 0xqsH,
22 " b fi + z f., for 0sqsH.
9 p(g,-q-1)<i<¢p(R,~q) p(2,q)<i<p(L,q+1)

For 1$ssH, let bss (e1,...,es) be a collection of integers OSe S2H+1. We set

-1
Wb ) =0 (S-%T T Z,.).
8 11 jse, %3

For s<H, &sH bsn (e1,...,es), we set w(bs,l) = H((e,,...,es),l). Let

1'
o (1) = max |E[exp (1t-W(b_))]]

and if s<H, let

A (E) = maxIE[exp(itw(bs)) - exp(itw(bs,o))ll.

Here the maximum is taken over all possible choices of bq.

3. ESTIMATES.

LEMMA 3. There is a universal constant a, such that for a1|t|L<1 and 15s<H we

have
A () £ (a ItIL)H*1+ a |t|Le_, ., (t)
s - 1 s+1° 770"

PROOF. Let us fix bs' and for 0Sks2H+1, let Yk- exp(itZs k0-1)-1.

one sees by induction that

2H+1 -1
exp(itW(b_)) - exp(itW(b_,0)) = L exp(itW(b_,%)) T Y (3.1)
s s s k
=1 k=0
2H+1
+ exp(itW(b, ,2H+1) T Y .
L k=0 4

By a well known estimate and lemma 2, we have

-1
Elv,.| < |t]o 'E[z,| s 80[t|L for OszrsH-1.

So, since |Yk|52, if we set £ = [L/2], we have

21 =
El 1y, | s2% 1 |v,] s (6oft |y,
k=0 153

Thus the lemma follows (with a = 320) by taking expectation in (3.1), and since

© -
£ (6ofe]) s 2 for a [t|Lr.
20

LEMIA 4. ¢ (t) € (exp(-t2/UR) + 3, [t
PROOF. We fix bH- (81,...,eH). For 1s4sH, we set

re= p(%,-q)-1, r! = p(,q)+1 if e, is of the form 2q

) )

and
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r.= p(%,-qg-1), r! = p(x,q-1) if e is of the form 2q+1.

L L

Let r‘b = 1 and PH+1= n. For 0s&sH, let

T = L f..
L Vi< i
rﬁl,r‘lﬂ

We have W(DH) = 0-1(1‘ +...+TH), and the T

0 L

(2.2) that each TSL

of the type [s(jl), s(jzﬂ)[. It follows that

2

401

are independent. Moreover it follows from

is the sum of the f‘i over an interval which contains an interval

2 2
g, = E|T,| 2 E( z £.)%°= 2E(f_,. \F_ o _iy)= 2E(f_,. f )
. . S(3g)8i<s(3*1) © sUy)sligmh) s+ e (iy+2)
2 02/2R.
Let W= b E(fi)3. It follows from the theorem of R. V. Erickson [4] that for
rtsisr
L+1

each z, |E(exp izT ol - exp(—z2/2)| < a3|z|m£0;3.

[

By taking z = 't,cv!Lo--1 and using oi 2 02/2R, one gets

|ECexp itT£0-1)| s exp(-t2/UR) + 2a3a-3me.

Thus, we get

H
|E(exp 1tW(b )| § T (exp(~t2/4R) + 2a.0 Ru).
H b= 3 %
13
The concavity of the function ln (1+x), and the fact that I ¢ Rw!l,
2=0

the result.
4, RESULTS.

PROOSITION 5. If 35|t|L $1(andL s e %), we have

|ECexp itSo—1)| < (1+a5|t|)(exp(-t2/HR) + aSItIL)H.

3} &8

S RL § 10HL prove

PROOF. Since ¢qs ¢s+1+ As+1' it follows easily from lemma 3 and by induction
that
T (t) € ql1ea P, e wf* e a oo (e
per b = artra s 1 117 1%541q :
00,
. H
|ECexp itSa V| $ ¢+ LA

a

1

S o (021 + Ha1|t|L(1+a1|t{L)H)+ H(1+a1|t|L)H(a1ItIL)H(a1|t|L)H

+1
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If a1|t|L < e1/2- 1, we have, since H SR = 1ln L-i,
H(1+a1|t|L)H$ 20n LTHL" % aoL".
So proposition 5 follows from lemma 4 with as= sup(10a1, 233, ao).

It is well worthwhile to reformulate the above result to show more precisely
the behaviour of the bound.
THEOREM 6. There exists universal constants a7 and a8 such that for q ¢ § and

1t], a,s |] and ag|t|L < 1, and

|ECexp itSc—1)| < (1+a5|t|)sup(exp(—t2/80), (a8|t|L)ln L. (4.2)

PROOF. Let ag= 3a5. By taking a, large enough, the existence of one |t]

7

satisfying the hypothesis implies L2e10, so we can assume that (4.1) holds. We can

also assume that 372 80a5. If |t|s2/R, we have exp(—tZ/UR) 2 1/e. Thus, since

H2R/10,

(exp (-tZ/MR) + a5|t|L)HS exp(-tZ/MO)(1+ea|t|L)H
2
< exp(-t°/40 + eas|t|LH).

Since LH £ LR £ 1/e and |t] 2 80a;, we have -t2/u0 + ea5[:|LH s -t%/80, which

proves (4.2) in that case. If t 2 2/R, then exp(-tz/BR) 2 /g(exp(-tz/uR)). and it is

easy to check that
exp(~tZ/4R) + a5|t|L < Max{exp(-t%/8R), 3as|t|L}

and theorem 6 follows. ’ Q.E.D.
REMARK. (1) In case of a m—dependent (m>1) sequence of random variables, an

estimate of |E(exp itSo_1)| can be obtained by considering S as the sum of 1-
dependent blocks of fi.

(2) The constant 1/4 in the exponent of (4.2) plays no particular role. It is clear

from the method that it can be replaced by any number; but the values of a5 and 38

depend on this exponent. However for the applications we have in mind, any positive
number will be sufficient.
To support our claim that theorem 6 is useful tool, we deduce Shergin's theorem
in a simpler way. Let ¢ be the distribution function with the normal law.
SHERGIN'S THEOREM.
sup |P(S<t) - @(t)| s aL.
t

PROOF. It is possible either to use the construction of sections 2 and 3 or to

do again a similar but much simpler construction. In order not to repeat arguments
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already used, we choose the first approach. Let q = [H/2] and p = p(q, 0). Let S1-

¢ f, and S_ = T fi. For s(iz)s s £ p (resp. p < s s s(i )), it is easily

2

0si<p * p<isn I

seen that E( £ f.)zz 02/10 (resp. E( fi)zz 02/16). The method of lemma 3 and
18i<s 1<isn

the result of theorem 6 gives for HasltIL <1

|ECexp itSo-1) ~ E(exp 1t(S1+ 82)0—1|

1
m 1n L/64

< (a1|:|L)H*‘+ a1|t|L(1+Ha5|t|)Max{exp(-t2/320). (Hag|t|L) }.

Moreover, if of = E Sf and 02 = E Sg, we get for € = 1, 2, from Erickson's theorem:

|ECexp 1tS€o_])— exp(-t205/202)| S 16a3|t|L.
So it follows, using again theorem 6, that

|ECexp 1t(s,+ 32)0_1)- exp(-tz(o$+ og)/Zoz)l

) -1 1n L/6Y
S 36a3|t|L(1+ua5|c|)Max{exp(-t /320), (Hag|t|L) ).
Now, if we set T—1= Ue8a8L, a straightforward computation gives
T -1 2, 2, 2 2
JT) = [ t |E(exp itS) - exp(-t (o]+ 03)/209)| s a L.
-T

The familiar Esseen inequality gives

sup (l’(So—1

X

<o - etx) sad(m + T s a L

where ¢'(x) is the normal distribution function with variance

k2= 0—2(02 + 02) = o-zE(S - f )2. We have
1 2 p
sup (8" (x)- 6(x)) £ 1-k°< 02(E(f§) + 28(e,_

u fp)+ ZE(fpf ).

1 p+1

We can also assume that at the time we picked the indices p(q,j) we have made
the extra effort to choose p = p(q,0) sSuch that for ~ = 1,0,1, we have
l2

E(f§+€)s 10(a& - a) P E|f . It then follows by an estimate similar to lemma 2

<i<a!
ap=i=ay

J

that the right hand side of the parenthesis is also bounded by a12L, and concludes

the proof.
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