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ABSTRACT. In this paper we deal with dual integral equations with an arbitrary weight

functlon and Hankel kernels of distinct and general order. We propose an operational

procedure, which depends on exploiting the properties of the Mellin transforms, and

readily reduces the dual equations to a single equation. This then can be inverted by

the Hankel inversion to give us an equation of Fredholm type, involving the unknown

function. Most of the known results are then derived as special cases of our general

result.
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I. INTRODUCTION.

We shall consider dual integral equations of the type

J (xt)[l+w(t)]@(t)dt f(x) O < x (1 i)22 t-2 1
o

22 J (xt)@(t)dt g(x) x I.t-25
o

Such equations arise in the discussion of mixed boundary value problems. If w(t)

O, then (I.I) become dual equation of Titchmarsh type, [I]. Different methods for

solving dual integral equations have been proposed by various authors, notably, Tranter,

[2], Lebedev and Uflyand [3], Noble [4] and Cook [5]. More recently, Erdelyi and

Sneddon gaw a solution using fractional integral operators [6]. Basically, all these

methods, make use of some form of integral operator to reduce the system (l.l) to a

single equation, which is then solved using standard techniques.

In this paper we use a different approach. We develop an operational procedure,

which consists in exploiting the properties of the Mellin transforms. By this technique

the dual equations are readily reduced to a single integral equation, which in turn can

be solved using the usual Hankel inversion. A somewhat similar method has been used for

solving ordinary dual integral equations by Williams [7], Tanno, [8] and Nasim and

Sneddan [9].
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2. KNOWN RESULTS.

First, we wrlte down some detinltlons and results which are used later.

Lemma [i p.94]. Let xk-lf(x) e L(O,) and F(s) e L(k-i, k+i), then

F(s) f(x)xS-ldx, s k + it, r <
o

and

1
f(x) 1 lim F(s)x-Sds.

r- "k-it

F is then the Mellin transform of f written as

l[f(x);s] F(s)

and f is the inverse Mellin transform of F, written as
-1

l [F(s);x] f(x).

Lemma 2 (The Parseval theorem) 1 p. 60].
-kgIf x (x) L(O,) and F(s) L(k-i,k+i),

then

f(xt)g(t)dt
i(R)o

where ,F and G are the Mellin transforms of f nd g respectively.

F(s)G(I-s)x-Sds,

3. DUAI, INTEGRAL EOUATIONS.

where hl(x) 22ax-ZaJ (x)

Now, we write the system (I.I) as

hl(Xt){l+w(t)}(t)dt x-2tXf(x), 0 < x < 1 (3.1a)
o

f -2gh2(xt)(t)dt x (x), x > I (3.1b)
o

and h2(x) 22x-2J (x). Then the Mellin transfor of h

and h2 are respecatively,

F(1/2s+
1 1

r(l-2s +u+a)
and

H (s) 2s-1 2a-v < Re(s) < 2a

1

1 i 2- < Re(s) < 2,
r(1- 2 s + +)

both belonging to L(k-i(R),k+i(R)), s k+ir, [10]. The left hand sides of the equations

(3.1a) and (3.1b) represent functions for all values of x and we shall denote these by

fl(x) and gl(X), having ellin transform Fl(S) and Gl(S), respectively.

Now we set Fl(S) and Gl(S) both e L(k-i,k+i(R)) and put appropriate conditions on

the functions w(x) and @(x). Then, due to lemma 2, the equations (3.1) give,

respectively

Hl(S){#(l-s + F(l-s)} Fl(S)
(3.2)

H2(s)#(l-s Gl(s>
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a.e. on s k + iv, v -, where,

*[(x);s] #(s), and *[w(x)(x);s) (s).

Next, consider the functions
1, F(I s + u +a)

HI(s) 1
Re(s) < 2+2a+u

r(l s + + )

r( s a)
*(s) e(s) > 2= u.H2 r(1/2 s , )

Note that

Then 10 p. 326]

* *(s)HI(s)Hl(s) H2(s)H2
2s-if( s + 2 u a)

1 1r(1 -2s + 2, +)

-= K(s), say.

k(x) *-l[K(s);x] (2x)-TJA(x),
1 1/2where T U u + a + / and A

We now write equations (3.2) as

Hl(S)#(l-s) Fl(S) Hl(S)%*(l--s
H2(s)O(l-s) Gl(S).

Multiply the above equations by the function Hi(s) and (s) respectively and using the

definition of K(s), we obtain the following pair of functional equations,

K(s)#(l-s) H(s){Fl(S) Hl(S)(l-s)} (3.3a)

*(S)Gl(S (3 3b)K(s)(1-s) H2

a.e. on s k + iv, v -.
First we consider the equation (3.3a), whence, for x > O,

1 k+i- -[1 I
k+i"

*K(s)#(1-s)x-Sds Hl(S){Fl(S) Hl(S),(1-s)}x-Sds2,
k-i" k-i"

(3.4)
1 1Here K(s) e L(k-i-,k+i’) if 2a- k --u+a+ and if we let x-k/(x) e L(O,-), then by

applying Lelama 2, the left-hand side of (3.4) gives

f k(xt)/(t)dt. (3.5)
o

The right-hand side of (3.4) is

1 I
k+i F(I 1/2 s + 1/2 u +a).. x-Sds{FI (s)-Hl (s)?(l-s) 1 1

1-2a-u d fk+i(R) r(= s + u)
u+2a

4i
x d-- {Fl(s) -Ht(s)i*(1-s)} 1 i x Sds.

k-i(R) r(1 2 s + , + )

(3.6)
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We define,

l-l[Fl(S)-Hl(S)(1-s);x l-l[Fl(S);x l-l[Hl(S)F(l_s);x
f(x) a(x),

k+i(R)
1

whete x I HI s l-s x
-s

ds
k--i(R)

I hl(xu)w(u)(u)du (3.7)
o

:s) e L(k-i=,k+i(R)) if 2a-u k 2a and if we let x-kw(x) /(x) e L(O,(R)), theHere tl

r(a
result then follows from lemma 2 above. The function 1 1r(l

-kflL(k-i(R),ki(R)) if k 2a+ and a-D 1/2-u; and if we assume that x (x) and x (x)

both both belong to L(o,(R)), then by applying Lema 2 on the s-integral, the expression

(3.6) yields

1-2a-[ 2a+u: 1. *.x.x x [fl(t)-Q(t)]nlt)dt 0 x 1,
o

where,

and T--2al O, [I0:p.350]. On simplifying the last expression, (3.6) then becomes

1-2a-u d I
x

t2a+u-1 x2 t2 $-2adt}x ] xu--+2a-2D [fl(t)-(t)]
r(r- za + 1) o

ml(x), 0 < x < I. (3.8)

Hence combining (3.5) and (3.8), the equation (3.4), finally becomes

I k(xt)(t)dt ml(X), 0 x < I, (3.9)
o

The above analysis is justified if we consider the strip 2a--u k < 2a, with the

condition that a--/] t-. The formula is actually valid for a-/ < I, and it can

be extended to the full range by analytic continuation.

Now simplify the expression (3.8), by making use of the definition of the functions

fl(t) and (t) from (3.7), we get

ml(x) r(r-2a+l) x I xU-+2a-2/ tu-l(x2-t2)’-2af(t)dt
o

rT: 2-a+l I ) xl-2a-d[xU--.+2a- 2Ixt
u 1 (x2_t2)T_2adtI(R)u_2aJu (ut)/ (u)e (u) du]

o o

-12, say.

On changing the order of integration in 12, we can write the double integral as,

u2a(u)w(u)du tu- (x2_t2)Y--2aju(ut)dt
o o
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22,8(’r-2:+I,) xZ(b,+’l"-2a):uU-2a/(u)(u)1F2(u.,+1 u+T- 2a+I; ---)du
r(w+l )2u+l o

10" p. 327]. Then,

D(T-2a+l,u) 1-2a-u d[12 r(’r-2a+l)r(u.+ 1)2u+l
x ] x2U oUU-2a/(u)w(u)

22

which on differenting inside the integral sign and simplifying gives,

22a--Ux T12 u-T/(u)w(u)JA (ux)du.
Hence, o

ml(x) r(’r- 2a + I) x - xu--+2<x-2 tu-l(x2-t2)T-2af(t)dt
O

22a-Yx-Y u-Y#(u)(u)JA(ux)du"
o

Next we consider the equation (3.3b), whence

K(s)(l-s)x--Sds - H (s)G (s)x-Sds
--ico --i(R)

As before

where

And

K(s)#(1-s)x-Sds k(xt)@(t)dt,
k--ira o

1 12x-u k vI ]u + a + .
I

k+i(R) k+i" r(s + :)

2.-- Ik_i(R) (S)Gl(S)x-Sds 2- Ik_i(R) r(s + 1/2. )
G
1 (s) x-Sds

x ]
x2_U+2a

-i(R) F( s + a I)
G
1 (s)x -Sds]

r( s* 2u-a- 1)
1 1Here e L (k-i,k+i(R)) if k ) 2+2a-u and

r(21-s + .-)
-kgFurther if x l(X) e L(O,#), then by La 2, the above expression gives

x x
2-u+

gl(t) h2

where
1 2

-1[(s+-a -1)

];x h(x)_ ,r(-:2+l)

(21_s+._) 0

p-2a-2
x (l-x2 0 x

,x> I,

T--2/"’ O _.e. ---I < -/, [10, p.349].

Hence on simplifying, we have from (3.13),
.k + i(R) .., x

v--2a- 1
(s)l(s)x-sdsJk--i(R) 2 F(T-2D+I)

m2(x), x I.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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From the results (3.12) and (3.14), the equation (3.11), then gives

k(xt)(t)dt m2(x) x l, (3.15)
o

The above analysis is justified if we consider the strip
1 12a-v+2 k 2 and - --.

The formula is actually valid for --i < a-, and it ca extended to the full range

by analytic continuation.

Now combining the results (3.9) nd (3.15), we have,

; k(xt)(t)dt m(x), 0 x < (R),
o

where m(x)

(3.14) respectively,

and

mr(x), 0 x

m2(x), x
ml(X) and m2(x) defined by (3.10) and

I=-1 2, 2 + 1.

or, (2t)
o

-rJA(xt)0(t) m(),

which by the usual Hankel inversion gives,

T+l<x) 27‘
x
rl t JA(xt)m(t)dt

o

tT JA(xt)ml(t)dt + 27‘ xT*I t7‘+1

o
JA(xt)2(t)dt

Now substituting the values of ml(t) and m2(t) above, and simplifying, we obtain,

27‘ T+l /uU-1 7‘-2af((x)
F(T-2a+i) x .[ _2-2u+A

: JA(xt)d tu-+2a-2/ (t2-u2) u)du
o o

r (-27‘2/+ I) xT‘+] ;1 t J (xt)d ul--(u2-t2)7‘-2/g(u) du

22T-2axT+ 1 ;1 t Jh(xt)dt f u-T(ulw(U)JA(Ut)du
o o

12 13, say

i1 12 22T-2a 7"-1 j’ Ix u-TO (u)w(u) du t JA (xt)JA(ut)dt
o o

0 U --X

Iwhere L(u,x) uJA+I(U)JA(x) x JA+I(X)JA(u), A 1/2M + u + , 7‘ "M + a ,
and

1I--1 <2.-+ 1.

This is the integral equation of the Fredholm type and can be written as

/(x) A(x) + E(,u)(u)du.
o

(3.16)
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Thus the solution of this single integral equation gives us the value of the unknown

function O(x), which is the solution of the system (3.1), as well.

4. SPECIAL CASES.

In particular if u, then the solution of the system

2
2cx t-2cx J (xt)[l,(t)](t)dt f(x) 0 < x I (4.1)

o

22 t-2 J (xt)(t)dt g(x) x
o

is the solution of the equation,

/(x) r(-=+l) t -u-+Ju_a+(xt)d t 2a--2 u )-af(u)du
o o

2a+fl a+fl+l fF(a--/ I) x
u-+$

(u2-t2 g(

-22flxa+/ 1 u-a--// (u)w (u) L (u’ x) 2 2’
O U -X

(4.2)

where L(u,x) u Ju_++l(U)Ju_a+(x) x Ju_a++l(X) Ju_+(u),
and [a-/[ 1, derived as a special case from (3.16).

If we consider 0 a-- 1, then the differentiation under the integral sign in the

second term of (4.2) can be carried out, and we have

(x) I I 12 13, (4.3)

where

2a++l xa++l[ tu-++Ij tul-U( a--I2 F(a-)
-i

v-a+$tx)dtf u2-t2) Ig(u)du"
1The special case v O, O, a is of interest, since it arises in the

discussion of certain contact problems in elasiticity. The dual equations (4.1) now

become

t -I J (xt)[1-(t)](t)dt f(x) 0 x

f Jo(xt)(t)dt g(x), x > I,
o

where the unknown function satisfies the Fredholm equation, which can be derived from

(4.3) to give,

/(x) W x cos(xt)d du
o o )t2 2

-u

x cos(xt)dt du + K(x,u)/(u)(u)du
t 42_t2 o

with

x[sin(x+u) sin(x--u)]K(x,u) -[. +
x u [6; 4.6.28].

On the other hand, if we consider-I < a- < O, then the differentiation under the

integral sign in the first term of (4.2) can carried out, and then we have

,(x) 11 12 I3, (4.4)
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where

2a++Ir ++I 1 t

1 y(_) x f tl-u+- uU+l 2 u2)--lfJu_a+(xt)dt (t (u)du.
o o

1One can, now deduce the special case when u O, 0 and -. easily. In this case

the solution of the dual equations

t J (xt)[l+(t)]#(t)dt f(x) 0 x 1
o

o

J (xt)/(t)dt g(x) x
o

o

is the solution of the equation, from (4.4),

@(x) sin(xt)dt du sin(xt)d
ug(u)

du / K(x
o o Jt2_u2 1 Ju2_t2 o

,u)(u)du,

with
1 [sin(u4x)K(x,u) ;t sin(u-X)]ux [6; 4,6,40].
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