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ABSTRACT. This paper is concerned with some general theorems on the distributional

Stieltjes transformation. Some Abelian theorems are proved.
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1. REGULARLY VAPYING FUNCTIONS

Throughout the paper, r will denote a positive continuous function

on an interval (X,=), X > 0, such that the limit

lim r(pt)
r(t)

exists for’ every p > 0. Such functions are called regularly varying fu.Lc-

tions (r.v.f.) at infinity and it is well known ([ 7] that they are of

the form r(t) taL(t) for some a R (called the order or index of r)

and some slowly varying function (s.v.f.) L. This means that the functi-

on L (X,) (0,) is continuous and that

lim L(L- 1

for every p > 0.

2. QUASIASYMPTOTIC BEHAV!OUR AT INFINITY RELATED TO r

The quasiasymptotic behaviour (q.a.b.) at infinity of tempered

distributions with support n [O,m) (denoted by S+) ws defined by Zavi-

jalov (see, for instance, [2] ). In this paper we use a somewhat more

general concept of q,a,b, related to a r.v.f, as defined and analysed in

Definition 1. Let T S+ and r be some r.v.f. The distribution T has

q.a.b, at infinity related to r if there exists the limit in the sense

of S"

lim
T(kt
r(k) g(t

Provided that g 0.
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If the order of r is a, then g() A f (t) for some A 0a+l
(from now on we take A 1 for simplicity], where

f (t) H(t)ta/F(a+l) for a > 0 and f (t) Dnf (t)
a+l a+l a+n+l

for a < 0 and n+a > 0, n e N. As usual, H is the characteristic function

of t]e interval (0,), and D stands for the distributional derivative.

It is easy to see that a continuous function on 0,) having ordi-

nary asymptotic behaviour of order a >-1 related to r has also q.a.b.

of the same order and conversely. However for a <-1 this may not be

true. This follows from the following

Structural Yheorem. ([ 10] A distribution T $+ has q.a.b, at infinity

relted to a r.v.f, r of order at iff there exist a natural number, n,

n+a > 0, and s continuous function F on R such that

T * f and F(t) 1
t
n r(t) as tn [(n+a+l)

The proof of this important theorem is analogous to the one of

Theorem I in 2] p. 373.

3. EQUIVALENCE AT INFINITY

The other "asymptotic behaviour" of distributions at infinity

given in the following definition was used in 3] 1] and 6] however,

this notion goes back to Sebastiao e Silva ([ 8] ).

Definition 2. A distribution T e $+ is equivalent at infinity to

r(t) ta L(t), a 4 Z_, if for some X" X" > X, and some nonnegative
integer n, n+a > 0, there exists a continuous function F on [X’,) such

that T Dn F on (X’,) and

F(t) tn r(t)/(a+l)(a+2)...(a+n) (3.1)

in the ordinary sense as t .
It seems to be of interest to compare these two asymptotics; for

our purposes it is enough to prove

Lemma I. Let T + be equivalent at infinity to r(t) ta L(t) for

a >-1. Then it has q.a.b, of order a related to r.

Proof. We can write T B + Dn F(t), where the supports of B and F are,

respectively, in [0,X ] and [X’,), X > 1. Let us prove that

lim
B(kt

0
k+ k

a L(k)

In fact, for every e > 0 there exists a number n No (No N U {0})

and a continuous function F on R such that DnF, B and supp F, I-e,
X’+e] For 5 we have

B(kt) F (t) n (n,)
(t)> <n (-1) (t/k) ><

ka L(k) +a+lL(k)
(-1)n X’+e (n)

kn+a+lL(k ) F(t) (t/k) dt 0 (3.1)
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since n,+a+l > a+l > 0. By supposition F satisfies (3.1), so by the

Structural theorem it has q.a.b, of order a related to r.

4. STIELTJES TRANSFORM OF DISTRIBUTIONS

For the sake of completness we rewrite the definition of the

distributional Stieltjes transform given in [4] Let I’(z), z C, de-

note the subspace of distributions t $+ such that T Dn G for some

n e N and some locally integrable function G on R with support in

[0,) and

/IG(t)l t
-(z+n+l)

dt < =.

From now on we take z R and z > -1, though a complex setting is also

possible (see [4] or [1] ). Obviously l’(z) $+ and I (z,) c I (z2) for

-I < zl < z2.

Lein{tion 3. The Stieitjes transf rm of inex z of a distribution

T e I’(z) is the complex vdlued function

Sz{T}(s) < T(I),
h(t) > s C \ (- 0] (4 i)

(t+s)Z+l
where h is an inf;.nitely differentiable function on R such that h(t)

in some neighbourhood of [0,) and h(t) 0 in some interval (-,-c),
> 0.

It is easy to see that (4.1) does not depend on the function h,
so it is usually omitted, it is pmoved in [5] that Sz{T}(s) is a holo-

morphic function of the complex variable s in the domain C \ (-=,0] pro-

vided that T I’(z). We shall need the following equality ([ 5], p. 140)

S {T}(s) S {DnT}(s) (4.?)z+n (z+l)(z+2) (z+n) z

for T I’(z) and n N. Observe that T I’(z) implies T e I’(z+n) and

DnT e I’(z).

5: ABELIAN THEOREMS

The initial value type Abel\an theorems for the distributional

Stieltjes transform seem to have a satisfactory form. So, we prove only

final value type ones. We use first the following result from 6]

T;eom 1. Let us suppose that T l’(z) is equivalent at infinity to a
regularly varying function r(t) t

a L(t) of order a > -1. Then

Sz{T}(s) B(a+l,z-a) L(s) s
a-z

as s , s R, (5.1)

provided that z > a > -1.

As usual, B(p,q) stands for the beta function. In view of Lemma 1
we see tha-t this Theorem can be rewritten as

2loem I ". Let us suppose that T $+ has q.a.b, of order a > -1 rela-
ted to the r.v.f, r(t) ta L(t). Then (5.1) holds if z > a > -i.

If T in these two theorems is a continuous function on 0,=), then
T(t) ta L(t) as t in the ordinary sense. Essentially, we need such
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a "functional" (i.e. not "distributional") version of them in the fol-

lowing

Abelian Theorem. Let T e $+ have q.a.b, of order a related to a r.v.f.

r(t) taL(t). Then

i) T e l’(z) for z > max(-1,a)

and
F (z-a) a-z

ii) Sz{T}(s) L(s) s as s ,
staying on the real line.

Remark. Such a statement was proved in [3] for r(t) t , > -1 and

ip [4] for r( +] t
a

logj+., a > -1. Further on, r.v.f, were used in 61
(again for a > -1). In all these papers the equivalence at infinity was

used. The q.a.b, was used i, 9] for r(t) aa (a arbitrary real num-

ber) and now for any r.v.f. In [1] the results from 3] ere gven in

a complex setting; it might be_ of interest to prove an analogou state-

ment for our Abe] ia teorem.

Proof cf he Abe lian theorem. Part i) follows from te Sructural

theorem and the estimate L(t) < C t for t > t t0(e) (E i (0,I)).

For ii), we take n > -a and F as in the structural theorem; then

F(t) C tn+a L(t) as t
n

for C 1/U(n+a+l), By Theorem 1" we get
n

S {F}(s) C B(n+a+l,z+n-(n+a)) L(s) s a-z
z+n n

and from (4.2) we have

Sz{T}(s) (z+l)(z2)...(z+n) Sz+n{F}(s), so

F(n+a+l) F(z-a)

Sz{T}(s) Cn
L(s) s

V(z+I)

a-z

This gives the statement ii).

(5.2)

Example. The equivalence at infinity with the distribution

A(a,j) Fp(ta log3+t), a R, j NoT (5.3)

for appropriate constant A(a,j) was analysed in [4] Fp stands for the

finite part. Obviously, T is equivalent at infinity to ta logJt for

a Z_; we take A(a,j) 1 then. On the other hand, T has q.a.b, of

order a related to ta logJt for a Z and related to A(a,j)ta logj+It
for a Z_; we take A(a,j) (-1)-a-1/((-a-1)!(j+l)) then. Computing the

Stieltjes transform of T we see that it behaves at infinity as the Abe-

lian theorem predicts (see 4] formulae (2.3) and (2.4)).

Now let -2 < a < -1. Then the distribution S T + 6 has q.a.b, of

order -1 related to 1/t and is equivalent at infinity with ta logJt. But

for z > -i

Sz{S} Sz{T}+ Sz{6} Ca, ]. logj+Is sa-Z + s-(Z+l) s-(Z+l)
when s /-. This trivial example (which can be generalized easily) shows
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again that q.a.b, is more appropriate for final value type Abelian theo-

rems for Stieltjes transformation than equivalence at infinitv, though
the latter seems more "natural".
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