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ABSTRACT. Let G be a finite p-group and let X be an irreducible character of G. Then
is monomial; that is, x = AG, where A is a linear character of some subgroup of G. We
are interested in Jocating subgroups of G which induce the character .
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1. INTRODUCTION

For G a finite p-group and ¥ ¢ Irr(G) (the irreducible characters of G), x non-linear
(x(1) = 1) it is known that there is some subgroup H of G and some linear character
A e Irr(H) such that x = AG . we say X is induced by A. In this paper we find a way of
locating proper subgroups of G which have a character that induces ¥.

The notation in this paper follows that used in Isaacs [1]. The symbol ¢(G) will
denote the Frattini subgroup of G, the intersection of all maximal subgroups of G. For
X 2 character of G, V(x) = <g e G : x(g) = 0> is called the suypport group of y and is the
smallest subgroup of G outside of which ¥ vanishes. If N is a normal subgroup of G and

¥ € Irr(N), then 16(y) = (g € G : W9 = ) is the mertia growo of ¢ In 6. It Y is an
irreducible constituent of x) then we know there s some 6 € Irr( I5(y) ) such that

80 - X- The main result of this paper is the following:
THEOREM 1.1: Let G be a finite p-group and let X be a non-linear irreducible
character of 6. Let N be a normal subgroup of G such that V() < N < V(X)¢$(G) and let ¢

be an irreducible constituent of x). If yr is non-linear then I(y) < G.
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This theorem enables us , by induction on the order of G, to form chains of
subgroups with associated characters. Each of these characters induces ¥.
2. PRELIMINARIES

Besides Clifford's Theorem, Frobenius Reciprocity and the other fundamentals of
character theory we will need the following results. The first is a corollary to a
theorem of Isaacs(2}:

PROPOSITION 2.1 : Let N be a normal subgroup of G, | G: N| = p, p a prime. Suppose
X € Irr(G). Then either

a) XN € Irr(N)
p

or by = z 8; where 6, are distinct irreducible characters of N
=1

Let 6 ¢ Irr{N) . Then either
p

280 = z X; where ¥, are distinct irreducible characters of G
i=1
or b) 6% ¢lrn(G)

Futhermore, if ¢ is an irreducible constituent of Xy and x satisfies a (respectively b)

of the first part then ¢ satisfies a (respectively b) of the second part. If { is an
irreducible constituent of 8C and 8 satisfies a (respectively b) of the second part then

s satisfies a (respectively b ) of the first part.
LEMMA 2.2: Let X be a non-linear irreducible character of G. Let N be a normal
subgroup of G with|G:N|=p,paprime,andN2 V(x). If { is an irreducible
p

constituent of xy, then G =y andyy= where ; elrr(N) are distinct.
N X and Xn i,
i=1

PROOF: The fact that s Is a constituent of ¥y Implies that X is a constituent of

¢G by Frobenius Reciprocity. Suppose 6 € Irr(G) such that 6 is a constituent of q;G.
Then s Is also a constituent of 6y, thus [Xy, 8yl = 0. Since N 2 V(X), X vanishes outside

of N. Thus, by definition of inner product, we have

161 %, 81= Sx(@0(g™") = Fx(@0(g™") = IN [x, oyl N
geG geN
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p

Hence [, 6] = O yeilding X = 6. By lemma (2.1)b) we have @ =y and XN = 24«.//
i=1

PROPOSITION 2.3: Let G be a p-group with a non-linear irreducible character .
Let 6 be an irreducible constituent of XV(X)' iIf 6(1) = 1, then IG(O) <G.
PROOF: Assume 8(1) = 1 satisfies the above hypotheses. Now 0 = AVOO where A is

a linear character of some subgroup H of V(x). Let M be a maximal subgroup of V(x)
containing H. Then 8 = (AMHVOO by transitivity of character induction. Since M is

normal in V(Y), 6 vanishes off of M Thus V(Y) > M 2 V(8). Suppose I5(8) = G. By
Clifford's Theorem, we have Xviy) = e0. It follows that ¥ vanishes off of V(8) which is
properly contained in V(X) by our above observation. This is impossible by the
minimality of V(x). Therefore I5(6) <G. //

The proof of the following may be found in Isaacs [1, pg 82].

THEOREM 2.4: Let N be a normal subgroup of G, 6 ¢ Irr(N) and | = IG(O). Let
A=(yelrr():[yy, 01=0), B=(x eIrr(G):[xy, 01=0). Then
1) If ¢ € A then  --> 4:6 is abijection of A ontoB
i) If ¢G = X With s € A then ¥ is the unique irreducible constituent of x; which

lies in A and [y, 6] =[xy, 6]

3. PROOF OF THEOREM 1.1

Let G be a p-group, X € Irr(G), X(1) = 1, with N a normal subgroup of G such that
V(X) ¢ N < V(X)$(G). Let s be an irreducible constituent of xy. Assume Ig(y) = G. We
want to show that y(1) = 1.

IT X ts not faithful, replace G by G/kery. We may do this since every character of
G/kery 1s also a character of G. Now, we prove that every irreducible constituent of

Xv(x) is linear. Let 6 ¢ Xv(y) be irreducible. Assume I(8) < G. Let Mbe a maximal

subgroup of G such that M2 15(8) . Since 15(8) 2 V(X) and M Is maximal, 1t follows that
M2 V(X)$(G) 2 N. By Lemma 2.2 we have
p

XM = 2’31 , where B; € Irr(M) are distinct. (3.1
=1
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Let 6 = M@, 508y = ;9" by Clifford's Theorem. Now

p
Xvex) = Xnvey) = 2B pviy) = e 2.0% (3.2)
=1 X €[ 6150 ]
by (3.1) and Clifford's Theorem.
Also
By =1 2om. (3.3)
me(M 1(6) }
Thus
By = T 2emF (3.4)
melM IG(B) ]

Clearly, (m} being a transversal for [ M I5(6) ] implies that (mg-'} is a

transversal for [ G: 15(8) 1. Since, by (3.2) and (3.4),
p

P
e = T@pyy - 2r2emd” (3:3)
el G: 1@ 1  1=1 =1 me[ M 16(6) ]
we obtain f=e and (By)y(y) and (Bj)y(y) have no common constituents for i=j. But

Ig(y) = G so by Clifford's Theorem Xy = ays, yielding
p

a = XN = (XN = 2 BN - (36)
f=1

Thus (Byy(y) =(@/phy all 1 = 1..p and S0 (Bpy(y) = (Bii\dy(y) = (@/pPWry(y)

for all . This is impossible since the characters (ﬁ)V(x) have no common constituents.
So IG(O) =G and, by Proposition 2.3, 8 is linear. Now show that V(x) =N. Again let

6 € Irr(V(Y)) such that 6 < Xv(x) By the above argument 8 is linear and it follows that
Xv(y) = €8 so Z(Y) 2 V(Y), where Z(y) denotes the center of x. Thus Z(x) = V(X) as Z(X)

is always contained in V(X). Suppose V(X) < N. Because G is a p-group we can find B
normal in G such that V() < B < Nand [B:V(Y)l = p. Thus V(x) = 2(G), since Z(x)= Z(G).
So B is a cyclic extension of the center of G and hence B is abelian and all of its
irreducible characters are linear. Now

Xg = T DX (3.7
xel G: IG(O') }
for some a ¢ Irr(B) where f = [a, Xg). Since a*(b) = a(xbx™") = a(b) for all b € B and
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x € C(B) we obtain Cg(B) < I(a). Suppose C(B) < Ig(a). Then by maximality of Cs(B),
lg{@) = G. This would mean that Xg = fa and B < Z(x), an obvious contradiction. Thus

Ig(a) = C5(B) and ig(a) s maximal in G so
p

Xg =T 2.a;, where a; are distinct irreducible linear characters, a = oy
i=1

Therefore Ig(a) is a maximal subgroup containing B 2 V(). Thus I(a@) 2 V(X)$(G) 2 N.

Now since I({) = G we have Xy = ey Hence

p
f >a;=Xp= (XN = ¥ - (38)
i=1
It follows that
p
Vg =(/e)yay; (3.9

=1
thus a 1s not invariant in N so IG(a) does not contain N. This is a contradiction,

so V(x) = N. Since all constituents of Xv(x) = XN 2re linear we have (1) = 1 as

required.//
4. CHARACTERS THAT INDUCE X

In Theorem 1.1 we considered certain subgroups of G. Now we will examine the
relationship of some characters associated with these subgroups.

PROPOSITION 4.1: Let X be a non-linear irreducible character of G. Let N be a
normal subgroup of G with N 2 V(X). Suppose 6 is an irreducible constituent of ¥y, then

80 = ex where e2 = | IgOXNI.
PROOF: Since 6 is a constituent of xy we have [6, x\] = 0. By Frobenius

Reciprocity, [y, OG] = 0 thus x is a constituent of 60, Suppoose { € Irr(G) is a
constituent of 66, Then 0 = (5, V1 = (8, Y\l s0 [xp, Wyl = 0 since 6 is a constituent of

both y and ¥y Since N 2 V(x), x vanishes outside of N. Hence ,by definition of inner

product

l61 Ix, ¥ = Zx(@(g™) = D X(@W(g™ = IN [xn, by) an
geG geN
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Thus [, ¥] = 0 and so X = Y since they are both irreducible. It follows that x is
the unique irreducible constituent of 6°, s0 6° = ey. By definition of Induced character

86(1) =1 G: N 18(1), so | G: N 16(1) = ex(1). By Frobenius Reciprocity, e = 6%, x1 =1, XN

Clifford's Theorem gives

XCD = Xn(1) =€ D, 6x(1) = el G: 15(8) I6(1) (42)
xel G: 16(0) ]
Thus
16:N18(1) = e (el G: 1506 16(1)) (43)

it follows that e2 = | I5(6): N | .//

PROPOSITION 4.2: Let G be a p-group with a non-linear irreducible character y.
Let N be a normal subgroup of G such that N > V(x) and let § be an irreducible
constituent of x) Let | = I5(y) and let B be an irreducible constituent of ¥, Then
Yl=ep e2=11:Nland 0= .

PROOF: By Proposition 4.1, y© = ex where 2= 1: N|. We have 0 =B, '] = By, W
by Frobenius Reciprocity. Now 2.4 tells us that BG is irreducible. Also BG < (4:' 0 = eyx
since B is a constituent of \y', so that BG =X. Again by Proposition 2.4, we have
By, W1 =[xy, W1 =€ Thuse=[B, ¥l1by Frobenius Reciprocity and it follows that

¢! 2 eB since B is irreducible. By definition of induced character, ¢! = | I: N (1) =
e2y(1), so €2 2 eB(1). Since By 2 ey we have B(1) 2 ey(1). Thus e2y(1) = Wl 2 ep(n)

2 eyl 1)). It follows that (1) = eB(1) so y! = eB. //

Now for X € Irr(G), we define an /nertial decomposition series for X,

m
denoted (1, Ny, By, Wili=g Here 1o =6 = No, By = X = Vo, Ny Is normal in |y,

g = 'li("’i*l) for some Yj=¢ € Irr(N;, 1), B € Irr(ly) and (BM)" = B;. Hence we have a
chain of subgroups

'm“m-l S...Sl] $|0=G
with associated characters @ ¢ Irr(l;) such that B;G =¥, all i =1..m, by transitivity of
character induction.
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PROPOSITION 4.3: Let G be a p-group with X € Irr(G). Then X has an inertial

m
decompositon series [1i, Ni, By, Yiljmo WIth ()i = e where e = | I Ny | and

V(B < Njuy < VBIG(Y), (lB;)Nl = ey and Y (1) = 1,44 = 1 for i = 1..m-1. Furthermore,
BO=x fori=1.m.

PROOF: If ¥ is linear then it has a trivial inertial decomposition series,
(19, No» Bo, Yol- Assume ¥ is non-linear. Proof is by induction on IGl. Let N be a normal
subgroup of G satisfying V(x) < N< V(x)$(G). Let y be an irreducible constituent of xy

OG=|0=N0
X =Po = Vo

) ls(‘v)='|
By

PN]
¥

o V(x)

Figure 1

and let | = IG(\IJ). Let B be a irreducible constituent of \IJI‘ By Proposition 4.2, BG =X,

q;' =ef where e2 =| I:N|, and By =ey by Clifford's Theorem. Set 15 =6 = Ny,
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1
Bo=X =Wo, Ny =N, I} =1, B =B, and § = 1, then [l;, Ni, B, il;-g is an inertial
decomposition series for ¥ as required.
Suppose (1) > 1. Then by Theorem 1.1, | <G. Also By = ey implies that f(1) =

ey(1)>1. Since (1) >1 we can apply our Induction hypothesis.//

Note that , in general , we do not have I, , normal in Ij nor Ny, 4 < Nj in an inertial

decomposition series. This inertial decomposition series is illustrated in Figure 1.
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