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ABSTRACT. Certain elliptic equations arising in catalysis theory can be transformed

into ordinary differential equations on the interval (0,oo). The solutions to these

problems usually depend on parameters 0 E IRn, say u(t,0). For certain types of

nonlinearities, we show that the boundary value (oo,0) is continuous on compact sets

of the variable 0. As a consequence, bifurcation results for the elliptic equation

are obtained.
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I. INTRODUCTION.

Let go be a positive real number. Let (g) be a continuous function with do-

main [0,go] and range contained in [-o,0). Let S={(,u) EIR2:0 < < 0, ()< u }.

Let f C2(S) have the following properties:

lim f(g,u) for each , f(g,u) on [0, o] IR-S
U-

f (g,u) 0 and f (g,u)

_
0 on S

U BU

lim f(C,u) u for each u

(l.1)

(i .2)

(i .3)

As a consequence of (1.3), we also have

lim f (g,u) L(g) > 0 for each
U

U-Oo

(1.4)

We consider the semiinfinite interval initial value problem

+ e-2texp[f(g,u)] 0, 0 < t < , % > 0 (1.5)

u(O) a, G(O) 3 (1.6)

where f(,u) has the properties described in (I.i) through (1.4).

Some problems in catalysis theory (in two spatial dimensions) are modeled by

(1.5)-(1.6) with the boundary condition 6( 0o The classic example is the case
-If(,u) u(l + u) The limiting case, f(0,u) u, gives us the Gelfand problem

which can be solved explicitly in terms of elementary functions.
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We prove that for solutions, u(t,%,,,g), to (1.5)-(1.6), the boundary value

6(,0) is continuous as a function of 0 (%,,8,g) on compact sets with the prop-

erty that % >_ %0 > 0. As a consequence, a bifurcation result for (1.5) with bound-

ary data u(0) 0, 6() 0, is obtained.

The methods for proving continuous dependence are also applicable to other

types of nonlinearities where the bifurcation results (using f(0,u)) are much dif-

ferent than in the above problem.

2. PRELIMINARY LEMMAS.

The following lemmas are needed to prove the continuous dependence results

for (1.5)-(1.6) at the boundary at o0.

LEMMA I. Let D {(,,g): > 0, > 0, 0 _<-- g _<-- go For each 0 E D,

lira 6(t,0) exists.
t-o

PROOF. For each 0 E D, define (0) sup{t [O,):(g) < u(t,0)}. Since

(t,0) __< 0, 6(t,0) is decreasing. If 6(t,0) > 0 for all t > 0, then 6(t,0) is

bounded below and decreasing. Thus, lira 6(t,0) exists.
t-0

However, if 6(T,0) 0 for some finite T [0,), then u(t,0) attains a maximum

value at u(T,0). But f(g,u) is increasing in u, so it is true that f(g,u(t,0)) <

f(g,u(T,0)) k. Equation (1.5) implies that

(t,0) e-2texp[f(g,u(t,0))] _>-%ke
-2t

-2t
(2.1)

6(t,O) _>_ 8 + 1/2%k(e i)

So 6(t,O) is bounded below and decreasing. Thus, lira u(t,O) exists.
t-0

Notice that if (0) < oo, then u(,0) (g), (1.5) becomes 0 for t _> ,
and 6(,0) 6(,0). In all cases, define m(0) 6(,0).

LEMMA 2. L(E) is upper semicontinuous on [0,0].
PROOF. Let N > 0 and gl [0,e0] be given. There exists a number u > 0 such

that fu (gl’ul) < L(l + 1/2D for u > u since fu (gl’ u) L(l as u /. There also

is a number > 0 such that f (g,u 1) -1/2N < f (g u for lg-g < since
U U I’

f (g,u) fu(g u as g E I. u uu---u I, Finally, L(E) < f (g,u l) since f < 0 and

since f (E,u) L() as u oo. Combining these facts gives us
U

L() =< fu (’ ul) 1/2n < fu (gx’ul) < L(gl + (2.2)

or, e(g) < e(g) + for all g such that Ig-gl < . Thus, li--- e(g) _< e(g) + N.
-E

But can be chosen arbitrarily small, so lim L(g) _< L(g); that is, L(E) is upper

semicontinuous at g. Since g was also arbitrary, L(E) is upper semicontinuous on

the interval [O,g0].

LEMMA 3. The value m(0) 6(,0) is upper semicontinuous on compact sets of

the variable 0.

PROOF. Let C be a compact subset of D and let 00 C. From lemma i, for a

given D > O, there exist numbers > 0 and T > 0 such that 6(T,o) <_ m(00) + 1/2 and

6(T,0) 1/2 < 6(T,00) for IP-P01 < since 6(T,O) is continuous in p by standard

continuous dependence. Also, re(p) _< 6(T,p) since (t,p) _< 0. Thus,
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m(0) ! 6(T,0) 1/2 6(T,00) m(00) + 1/2 (2.3)

or, m(0) m(00) + for I0-001 < 6. As in the proof of lemma 2, it follows that

lim m(0) m(00); that is, m(0) is upper semicontinuous on compact sets of the vari-

PPo
able p.

LEMMA 4. If L(g) > 0, then m(p) < 2/L on the set D.

PROOF. Integrating equation (1.5) yields

2texp[f(g u(t,p))] dt 6m(p) + he- (2.4)

By our assumptions on f it is a fact that f (g,u) > L(e) so f(e,u)> f(g 0)+L(e)u

for u > 0. Suppose that for some p 6 D, m(p) > 2/L. The conditions that m is

finite and < 0 imply that u(t) > mt for t _> 0. So

0e-2texp[f(g,u)] dt _> fe-mtef(0)eLUdt _>_ fef(0)e-2t 2t
e dt (2.5)

In (2.4), this would force m which contradicts lemma I. Thus, re(p) < 2/L for

each p 6 D.

LEMMA 5. Let C be a compact subset of D. Then there exists a number 6(C) > 0

such that L(g)m(p) __<_ 2 6 for all p C.

PROOF. Suppose that the conclusion is not true. Then there are sequences

{6n} and {pn} such that 6n > 0, 6n O, Pn P0 C, and e(gn)m(pn) > 2 6n.
The last inequality implies that L(en) and m(pn) are positive. By lemma 4, it is

true that 2- 6 < L(gn)m(Pn) < 2. Thus, lim L(gn)m(pn) 2. But by lemmas 2 and
n n-o

3, we have that

2 li’-- e(gn)m(pn) < li-- L(En) li-- m(pn) < L(g0)m(P0) < 2 (2.6)
n-o n-o n-o

which is a contradiction. Thus, there exists a 6 > 0 such that L(g)m(p) 2 6 for

all p e C.

3. THE MAIN RESULT.

We now show that the function m(p) is actually continuous on compact sets of

the variable p.

THEOREM. Let C be a compact subset of D. Then m(p) is continuous on C.

PROOF. Define h(t,p) (d/dt)[f(e,u(t,p)] fu(e,u(t,p))6(t,p). Define

l(p) {t 6 [0,) :h(t,p) < 2 1/26} where is the number constructed in lemma 5.

Then l(p) contains an interval (T(p),(p)) for some smallest 6 [0,). For if

m(p) > 0, then

lim h(t,p) lim f (,u(t,p)) lim 6(t,p)
U

t-o t-o t-o

L(g)m(p) 5_ 2 6 < 2 1/26

If m(p) 0, then 6(t,p) is positive and so lim f (e,u(t,p)) exists and
t-%0-

u

(3.1)

lim h(t,p) m(p) lim f (g,u) 0
t-- uu() u

(3.2)
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If m(p) < 0, then u(,p) (g) and

lira h(t,p) lim f (e,u) m(p) e [-,0]
t-0- u_/+ u (3.3)

In all cases, there is a (0) such that h(t,0) < 2 1/26 on (%,m) and % is

chosen as small as possible.

Let 00 E C and suppose that T0 T(00) > 0. By the construction, h(T0,00)

2 1/26. But ht(%0,00) f (g0,u0)H0 + f (0,u0)(60) where u0 u(0,00) 6oU UB

6(T0,O0), and 0 (T0,O0)- Also 2 1/26 f (0,u0)60. Thus, f (e0,u0) < 0
U UU

f (e0,u0) > 0, and 50 < 0 imply that h (T0,00) < 0. Consequently, h(t,O0) > 2
u t
on [0,T0). By the implicit function theorem, there exists a continuous function

t(0) and a number > 0 such that t(00) T0 and h(t(0),0) 2 1/26 for I0-001 <

In fact, t(0) Y(0) whenever t(0) > 0 (guaranteed by the uniqueness condition in

the implicit function theorem). It follows immediately that the function, (0)

t(p) when t(p) > 0 and 0 otherwise, is continuous on C. Since C is compact, Y*

sup((O) 0 E C} is finite.

Thus, h(t,0) < 2 1/26 for t > Y(0) since the t-derivative of h is negative at

a’ point where h 2 1/26, and by the previous argument, h(t,0) < 2 1/26 for t > Y*.

On the interval [0,*], by continuous dependence of u and by continuity of f
U

f(g,u(t p)) < M M(C). For t > *, f (g,u(t,0))6(t 0) < 2 1/26 implies that
U

f(g,u(t,0)) < f(g,u(Y*,0)) + (2 1/26)t < K + (2 1/26)t (3.4)

where K is a uniform bound (again by continuous dependence of solutions u on compact

sets in the variable (t,0)).

In the equation (2.4) we had m(p) 8- f%e-2texp[f(g,u(t,0))] dt. Since the

integrand is continuous on [0,oo)xC and is uniformly bounded on the set C by the in-

tegrable function K exp (-6t), m(0) is a continuous function on C.

4. APPLICATIONS.

Consider the Dirichlet problem

Au + exp[f(g,u)] 0, x (4.1)

u(x) 0, x 6 (4.2)

where Q is the unit ball of 2 with center 0, and where A is the Laplace operator.

A typical example of a nonlinearity in applications (for catalysis problems) is

f(g,u) u/(l + u). Using a result by Gidas, Ni, and Nirenberg [i], all solutions

to (4.1)-(4.2) are radially symmetric; that is, u u(r) where r Ixl. Equations

(4.1)-(4.2) then can be rewritten as

u" + u + % exp[f(e,u)] 0, 0 < r < (4.3)
r

u’(0) 0, u(1) 0 (4.4)

-t
Making the change of variables r e we have

5 + e-2texp[f(e,u)] 0, 0 < r < (4.5)
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u(O) 0, 6( 0 (4.6)

Equation (4.5) with initial conditions u(O) and 6(0) B gives us equations

(1.5)-(1.6). Let g 0. Then f(0,u) u and we have

-2t uH + e e O, 0 < t < (4.7)

u(0) a, 6(0) (4.s)

The solution to this is given by

u(t,,,8,0) n[l + (2-)t- 2n [I + ke-t (4.9)

where A (8-2) + 2%e and k [ + (B-2)]/[ (8-2)]. The boundary conditions

u(0) 0 and 6(o0) 0 imply that 2 O, or % 1/2(48 2). The bifurcation

curve is given in figure I.

A result by Dancer [2] shows the bifurcation curve to (4.3)-(4.4) is a

1-dimensional C1-manifold which is connected for each g > O. The manifold has a

boundary point at (%,u) (0,0). In terms of the variables (%,), the theorem shows

that given a compact set C in D and a number N > 0 (but small), there is an interval

[0,i] contained in [0,0] such that Im(,,g) m(,,0)[ < whenever (,B,) is

in the appropriate set. But m(,8,0) 2 , so

2 - D < m(%,8,g) < 2 + D (4.10)

In the region {(,) 2 + N < 0}, m(%,B,g) is negative and in the region
{(%,B) 2 > 0}, m(%,B,g) is positive. The zeros of m must occur in the
parabolic strip between these two regions. See figure 2.

section of C

Figure Figure 2

5. OBSERVATIONS AND CONCLUSIONS.

The condition f(g,u) u as g 0 was only needed to illustrate the example

above. Similar results could be obtained if there is knowledge of a bifurcation

result for other nonlinearities. For example, in Eberly [3], the nonlinearity
u

e -i is analyzed with similar results, although there are an infinite number of

branches of solutions to the condition 6(o0) 0.
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The important condition used is that f (,u) L(g) as u . We conjectureu
that the condition f (g,u) > 0 is technical and that the results on continuous de-

U

pendence should hold for those nonlinearities exp[f(u)] where f < O. For example,
UU

the nonlinearity g(g,,0,u) (l-u)0exp[u/(l+u)], where , , and 0 are positive

constants, also occurs in catalysis theory and this function has the property that

(d2/du2)[n g(g,<,O,u)] _< 0.
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