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ABSTRACT. This paper studies the topological properties of two kinds of "fine
topologies" on the space C(X,Y) of all continuous functions from X into Y.

KEY WORDS AND PHRASES. Function spaces, uniform topology, fine uniform topology.
1980 MATHEMATICAL SUBJECT CLASSIFICATION CODE. 54C35.

1. INTRODUCTION.

The topology of pointwise convergence and the compact-onen topology are two
of the most commonly used topologies on the set C(X,Y) of continuous functions
from a space X into a svace Y. These spaces wil; be denoted by CD(X,Y) and
CP(X,Y), respectively. If Y is a metric space, the supremum metric topology on
CYX,Y) is also commonly used. However, sometimes none of these topologies is
strong enough to apply a function space to a given situation, in which case a finer
topology may be needed. A good example of this is the use of a "fine tovology" on
a function space in [4], in which the Baire space property of the function space is
used to obtain certain kinds of embeddings into infinite-dimensional manifolds.

This vpaper studies the topological properties of two kinds of "fine topologies"
on C(X,Y). 1In order to avoid pathologies, all spaces will be Tychonoff svaces.
The symbol R will denote the real line with the usual topology, andjﬁ+ will denote
the positive real line. Also C(X, R) and C(X,ZR+) will be abbreviated as C(X) and
C+(X). Finally let w denote the set of natural numbers.
1. UNIFORM TOPOLOGIES.

Whenever a space Y has a compatible uniform structure on it, this induces a
uniform structure on C(X,Y). If 8 is a diagonal uniformity on Y, then for each
Ded§, define

ﬁ = {(f,g)eC(X,Y)2 : for every =xeX, (7(x),g(x))eD}. (1.1)

The family {D : DeS} is a base for a diagonal uniformity 6 on C(X,Y). Denote the
resulting topological space by Cé(X,Y). On the other hand, if u is a covering
uniformity on Y, then for each Ueu, let

u={(f,g) ¢ C(X,Y)2 : for every xeX, there exists a Uel with (f(x),g(x»aU2}. (1.2)

The family {U :Ucu} is also a base for a diagonal uniformity u on C(X,Y). Denote this
spate by Cu(X’Y)'
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There is a natural way of passing from a diagonal uniformity & to a covering
uniformity Hgs SO that u6u = p and 6u = § (cf. Willard [5], section 36). It can be
easily verified that Cuéx,Y) =CG(X,Y) and C6u<X’Y) = Cu(X,Y). Therefore a uniform
structure on Y may be considered either as a diagonal uniformity or a covering
uniformity, and the resulting uniform structures on C(X,Y) will generate the same
topology, called the uniform topology.

Let v stand for the fine (covering) uniformity on Y. Whenever Y is paracompact,
v has as a base the family of all open covers of Y. The topology on CV(X,Y) will be
called the fine uniform topology.

If u is any compatible uniformity on Y, then the relationships between the

various topologies discussed above are given by
cp(x,y) < € (X,Y) < cu(x,Y) < ¢, (x,Y), (1.3)

where the inequality means the space on the right is finer than that on the left.

Each compatible bounded metric p on Y induces the supremum metric ; on C(X,Y),
defined by 5 (f,g) = suplp(f(x),g(x)) : xeX}. The resulting topological space will be
depoted by C, (X,Y). A base for CD(X,Y) consists of the metric balls
{Bp(f,e) : feC(X,Y) and eeZR+}. If My is the uniformity on Y generated by ¢, then
c, (x,Y) = CD(X,Y).

For a metrizable space Y, let M(Y) be the family of all compatible bounded metrics
on Y. The following fact gives a useful tool for working with the fine uniform
topology.

PROPOSITION 1.1. If Y is metrizable, then Cv(X,Y) has as a base
(B (£,e) s oeM(Y), £eC(X,¥) and ec R').

PROOF. To see that B (f,e) is a neighborhood of f in C,(X,Y), define the oven
cover (I = {Bp(y,e/3) : yeY} of Y, and let gell[f]. Then for each xeX, there is a
yeY with (f(x), g(x)) e Bp(y, e/3). Therefore each o(f(x),g(x))<2e/§, so that
o(f,g)<2e/3<e. This establishes that gaBp(f,e),*and it follows that U[f]ch(f,e).

On the hand, let Ueu and feC(X,Y). Let Ul> U2> ... be a normal sequence of
open covers of Y so that Ul refines U, and let p be the metric defined by this sequence
(see Willard [5], D. 167, for this construction). It follows from the construction of
o that there is an ek’ so that Bp(f,e)ca[f]. X

Let ube any compatible uniformity on Y. If X is compact thenuon C(X,Y) is the
same as the uniformity of uniform convergence on commact sets, which is known to
generate the compact-open tovology (cf. Willard [5], section 43). The converse is in
fact also true for most Y.

PROPOSITION 1.2. If Y contains a nontrivial path, then for any compatible
uniformity u on Y, Cu(X,Y) =Ck(X,Y) if and only if X is compact.

PROOF. Let ¢ :I »Y be a continuous function from the closed unit interval into Y
such that ¢(0) # ¢(1). Let y =¢/0), let z =¢(1), and let f be the constant map from
X to y. Define U={Y\{y}, Y\{z}}, which is an open cover of Y. To see that Uen, let
De§ ~ with z¢D[y]. Choose a symmetric Ee§ ~with BoEeD. It follows that
{E[p] : peY} refines U, so that Uey.
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Suppose that X is not compact. To see that &[f] is not a neighborhood of f in
Ck(X,Y), let W = [Al,v1 In...n [An,Vn] be any basic open subset of Ck(X,Y) which
contains f, where each [Ai,Vi] = {feC(X,Y) : f(Ai)CVi} and the A, are compact and the
Vi are open. If A = Al U ... U An, then there is some xeX\A. Define g:Au{x} -~ Y
by g(%) = y for aehA a?d ng) = z. Since #I)is arcwise connected, then g extends to
some geC(X,Y). Then geW\U[f], which establishes that CU(X,Y) is finer than Ck(X,Y).

It follows from Proposition 1.2 that whenever X is compact, all compatible
uniformities on Y generate the same topology on C(X,Y) - the compact-open topology.
Also when Y is compact, a compatible uniformity on Y generates a unique topology on
C(X,Y) since there is only one compatible uniformity on Y - but in this case the
topology on C(X,Y) is not the compact-open tovology, unless X is also compact.

PROPOSITION 1.3. Let Y be a metrizable space. If X is psuedocompact, then
all compatible uniformities on Y generate the same topology on C(X,Y).

PROOF. Let U be an open cover of R, and let feC(X,Y). For each xeX, let
Vxeu with f(x)e Vx. Then for each such x there exists a Uxeu with
(DXoDx)[f(x)] €V, where Dx = U{U2 : Ueux}. Since X is psuedocompact and Y is

metrizable, then f(X) is compact. So there exist x s X € X such that

10 -
f(X)CDxl[f(xl)]u ce. UD_ [f(xn)]. Now there exists an U en which refines each of
n
u. ., ..., u_.
X1 Xn ~ ~ ~

In order to show that Uo[f] c Ulr], 1let geuo[f] and xeX. Then there exists an

i such that f(x)eDx [f(xi)]. Let UeUO with (f(x), g(x))eUg. There is some Usel,
1
such that U<U,» so that (f(x),g(x))eUf cDx .  Therefore
1

f(x)erl[f(xiE]C(DxloDxl)[f(xi)]CVXl and g(x)e(DxloDxl)[f(xi)]cVXl, Since x is
arbitrary, gel[f].

The topology generated in Proposition 1.3 is in general not the compact-oven

topology.

The "comnleteness" of a function space can be a useful property for obtaining
the existence of certain kinds of functions. If p is a complete metric on Y, then
S is a complete metric on C(X,Y). On the other hand, Cv(X,Y) may not be metrizable.
So complete metrizability of Cv(X,Y) is too much to expect in general. But CV(X,Y)
does have "completeness" to the following extent.

THEOREM 1.4k. If Y is completely metrizable, then Cv(X,Y) is a Baire space.

PROOF. Let p be a compatible bounded complete metric on Y. Also let
{Wn : n ew} be a sequence of dense open subsets of Cv(X,Y), and let W be a nonempty
open subset of CV(X,Y) Choose 4; eM(Y), £y eC(X,Y), and 0<e, < 1/2 so that
Bdl(fl, | = max {p,dl}, so that Bp (fl,el)c By (fl,sl). Contingilby
induction so that at the ntl step, choose dn+leM(Y), fn+lsC(X,Y , and O<sn+l<l/2
such that Bdn (f Yew an (¢ ,gn/Q); and define p ., = max{on,d }.

- n+1°fn+1’ nt1 n “n ntl
Now {fn : new} 1is a Cauchy sequence in CD(X,Y), and therefore converges to some

el)cwlnw. Define p

feCp(X,Y). Also for each iew, {fn : new} will converge to f in CD‘ (X,Y), so that
i

f is in the closure of Bpi(fi?ei/g) in Cpi(X,Y). Therefore
feBpi(fi,ei) c Bdi(fi,ei) € W0V for every iecw. .
The conclusion of Theorem 1.l cannot be strengthened to Cech-completeness, which

can be seen from Theorem L4.1. Also the hypothesis cannot be changed to Y being compact.

2
For example, if X is the closed unit interval I with the usual topology, and Y =1
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with the order topology with respect to lexicographic ordering, then some functions in
Cv(X,Y) have open neighborhoods which can be written as countable unions of nowhere
dense sets.

2. FINE TOPOLOGIES.

Throughout this section, (Y,p) will be a metric space. In this case there is a
natural way to generate a topology on C(X,Y) which may be even finer than the fine
uniformity topology.

For each feC(X,Y) and ¢eC+(X) deflne B (f $) = {gsC(X Y) : for every xeX,
p(f(x),g(x))<¢(x)} Since for each ¢,yeC (X) max{¢,p} € C (X), then
{B (£,4) : feC(X,Y) and 4¢eC (X)} is a base for a topology on C(X,Y). This
topology is called the fine topology with respect to p (Munkres [3], p.285), and
will be denoted by CfD(X,Y). Certainly cfp (X,Y) is finer than cp (X,Y), and is in
general strictly finer. However, for psuedocompact X, they are the same.

PROPOSITION 2.1. If X is pseudocompact then C, (x, Y) c (x,Y)

PROOF. Let feCfp(X,Y) and let ¢eC (X). Since 1/¢€C (x) and since X is
psuedocompact, then 1/¢ is bounded. So there is a number M with 1/4¢(x)< M for all
xeX. Therefore Bp(f,l/M)CB:(f,du).

From Propositions 1.3 and 2.1 it follows that if X is psuedocompact then
Cf (X,Y) = C (X,Y). But even if X is not psuedocompact, Cfp(X,Y) can still be
related to C (X Y) as follows.

PROPOSITION 2.2. If X is paracompact, then C_ (x Y)<C (X,Y).

PROOF Let deM(Y), let feC(X,Y), and let ee]R . For 2ach xeX, there exists a
w(x)elﬁ such that B (£(x), w(x))CB (f(x),e/2). Let U ={Ua : aehA} be a star-
refinement of {f B (£( x),w(x)/Z)) : xeX}. Let {¢a : aeA} be a partition of unity
subordinated to U. For each aeA, let n ~ De the cardinality of {RBeA : UanUBfﬁ},
let x,eX be such that Uyc f-l(Bp(f(xa),w(xa))), and let m =+ min{w(xB)/2 : UanUBf p}.
Then define ¢ = Z{(ma /na)¢a . aeA}, which is a member of C (X).

To establish that BZ(f‘,Lb) c Bd(f,e), let geB:(f,CP) and let xeX. Also let
s eeey Uak be the members of U containing x. Take i to be suoh that
0‘1% (x) = min{m_ ¢, (x),...,makcbak(x)}. Then ¢(x) < maldaal(x;\l/nalt..*rl/nuk).
Doy ( ) < w(x ) It rollows that p(g(x), f(x)) < w(xai}/2. Since
f(x)eB ( (x 1) w( )/2) then g(x)eB (f (x ), (x ))CBd(f(xai),e/Q). Also
f(x)eB (£(x, ) ,e/2)) so that g(x)eB, (2(x),e3.

a3
The inequality in Proposition 2.2 is in general not an equality as indicated in

al

n g8 a

the comment after Corollary 3.5.

Whenever p is complete then Ce (X,Y) is a Baire space ([4], p.297). Instead
of giving a proof of this here, a proof will be given in the next section that CfD(X)
is psuedo-complete, which is a property stronger than being a Baire space.
3. REAL-VALUED FUNCTIONS. For the rest of the paper, o will denote the usual metric
on R bounded by 1; that is, p(s,t) = min{1l, |s-t]}.

LEMMA 3.1. Let f,geC(X) and let ¢,wsc+(x). Then the closure of B:(f,¢) in
Cfp(X) is contained in B:(g,w) if and only if for each xeX the closure of Bo(f(x),¢(x))
in R is contained in Bp(g(x),w(x)).
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PROOF. For the sufficiency, let heB:(f,¢) and let xeX. Suppose h(x) were
contained in the complement of the closure of B (f(x),4(x)); call this set V. Then
the set of functions taking x into V would be a nelghborhood of h in C (X) which
misses B (f,6). This contradiction shows that h(x) € cl(B (£(x), ¢(x))) c B (g(x),0(x)).

For necessity, let x, e X and let t e cl(B x ), ¢(x ))) in R. Deflne
h(x) = f(x) + (t—f(xo))-¢(x)/¢(x0) for all x € X. Thls defines an h & C(X) such that

(x )=t. Also |h(x)- f(x |<¢(x) for each x.

To see that hecl( B (f ¢)) in C. (X), let B+(h £) be a basic neighborhood of h,
Define k(x) = h(x) + s1gn(f(x) - h(X%)’mln{E(X)32,|h(X )-£(x)|}, which is an element of
c(X). Now |k(x)-h(x)] = min{g(x)/2,|h(x)-f(x)]|}s £(x)/2 <g(x). Also if h(x)>f(x),
then |k(x)-f(x)] = |h(x)-f(x)-min{g(x)/2, h(x)-f(x)}|. If this is positive, then it
is equal to £(x)/2, and £(x)/2<|h(x)-f(x)|<¢(x). The same argument shows that if
h(x) < f(x), then also |k(x)-f(x)] < ¢(x). Therefore keB (f,¢), so that
B:(h,g)nB:(f,¢) # 8. From this it follows that hecl(B (f ¢))CB (g,¥). But then
lt—g(xo)l = Ih(xo) - g(xo)l<w(x0), so that teBD(g(xo ,w(xo))

The proof of Lemma 3.1 depends on the metric (and algebraic) structure of the
range space. In fact the lemma is not true in general. For example, let
X=I and Y = {(s,sin(2n/s))e R 0<s<2}u{(0,0)} with metric d on Y defined by
al(sy5t7)5(s,5t5)) = max{lsl-s2|,[tl—t2l}. Also let y=(2,0), let z=(0,0), let f
be the constant map taking X to y, and let g be the constant map taking X to z.

Then Bd(f,2) = C¢(X,Y)\{g}. Since g is isolated, Bd(f,2) is closed, so that
cl(Bd(f’2))CBd(f,2). On the other hand, for any xeX, zgcl(Bd(f(x),g))\Bd(f(x),2)
in Y.

THEOREM 3.2. The space Cf e

PROOF. For each new, let C (X) = {¢eC (X) : for all xeX, ¢(x)<1/2"},
and define B {B (£,0) : feC(X) and ¢eC (X)} Each B is a base for Cf (X). It
remains to show that if B eBy for each n w1th cl(B, )CBn then n{By:newl} # ﬁ If each

(X) is psuedo-complete.

Bn—Bp(fn,¢n), then by Lemma 3.1, for each new and each xeX,

e1(B (£, 4, ()50, 4, (1)))<B_ (£ (x),6, (x)). Since each ¢, (x)<1/2%, then

ﬂ{Bp(fn(x),¢n(x)) : new} = {f(x)} for some f(x)e R. This defines the function f, which
is the uniform limit of {fn : new}, and is hence continuous. Clearly fen{Bn . newl,

as desired.

The algebraic structure on R induces an algebraic structure on Cc(X). This
structure interacts well with some topologies on C(X). For example, Ck(X) and CD(X)
are always locally convex linear tovological spaces. On the other hand, CO(X) is only
a topological group under addition while the scalar multiplication overation is not
continuous for non-compact X. The space C (X) behaves much like C (X) in this
regard. It is straightforward to show that C (X) is a topologlcal group under
addition. As a result, Cfp (X) is homogeneous, and for many arguments it suffices to
consider only basic neighborhoods of the zero function, fo.

The next result establishes when fO has a countable base. It is stated for
(R,p), but it is also true for any metric snace containing a nontrivial path.

PROPOSITION 3.3. If X is normal and f_ has & countable base in Cfo(X)’ then X
is eountably compact.
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PROOF. Suppose X is not countably compact. Then X contains a countable closed
discrete set, {xn : new}. Let {¢n : new} be any sequence in C+(X). The goal is to
show that {B+(fo,¢ ) : new} cannot be a base at fo. For each n, let ensZR+ be such
that interval [0,e ] is contained in B (o, ¢ (x )/2). Since X is normal, there exists a
¢eC (X) such that ¢(x ) = e, for every n.

It remains to show that B (fo,¢ ) ¢ B (f ¢) for each n. Fix new, and let U be a
neighborhood of x  such that ¢ (U) < (¢ (x )/2,%). Because X is a Tychonoff space,
there ex1sts an feC(X) such that f(x ) =e f(X\U) {0}, and £(U) < [0,e ] Clearly
f¢B (f ,$) since f(x ) = e ¢(xn). To see that feB (fo,¢ ), let xsX If x£U,
then p(f(x), fo(x)) =0. 1If xeU, then f(x) e [0, en] c Bp(O 20, (xn)/g), Also
¢n(x) > ¢n(xn)/2, so that p(f(x),fo(x)) < ¢n(x).

Therefore for a normal space X, Cf (X) is first countable if and only if it is
already equal to the metrizable space C (X).

The situation is little different %or Cv(X)’ To begin with, Cv(X) is in general
not homogeneous, as the next proposition shows.

PROPOSITION 3.L. An element of cv(x) has a countable base if and only if it
is a.bounded function.

PROOF. First suppose f is an unbounded function in C(X). Without loss of
generality, suppose there is a sequence {xn : new} in X such that f(xn) = n for each
new. Let {L%[f] : new} be any sequence of basic neighborhoods of f in Cv(X).

For each new, let VneL% with neVn, and let In be a closed interval containing
n in its interior and contained in Vnn(n—l/2,n+l/2). Also let tn be a point of the
interior of In different than n, and W be an open subset of the interior of In which
contains n but not t_. Then let W = ZR\m, and define U= {Wln {w : new}l.

To see that each U [f] is not contained in U[f] let ¢ I - I be a homeomorphism
which fixes the endp01nts of I and moves n to t . Then deflne<b€(lﬂ) by ¢(s)= ¢ (s)
if seI and ¢(s)=s otherwise. It follows that ¢0f€U [f]\u[f] Therefore
{U [f] : new} cannot be a base at f.

For the converse, suppose that f is a bounded function in C(X). The goal will
be to show that {Bp(f,l/n) : new} is a base at f in Cv(X). Let deM( R) and let €>0.
Also let Mew such that f(X) is contained in the interval [-M,M]. For each t€[-M,M],
there exists an etSZR+ such that Bo(t’et) c Bd(t,e/B). There exist t,,...,t e[-M,M]
such that [-M,M] < B (t /2)n...n BD(tm,etm/Q). Take new with 1/n <minfe /L,...
etm/2}.

To see that Bp(f, l/n)CBd(f,e), let gEBo(f, 1/n) and let xeX. There is some
k with f(x)€Bp(tk,etk/2). Now o(g(x), £(x)) < l/nSe /2 and p(f(x), tk) <eg /2,
so that D(g(x),tk)<etk. Therefore g(x)eBo(tk,etk
f(x)EBd(tk,e/B). Hence d(g(x),f(x))<2e/3, so that d(g,f)SZe/3<e.

COROLLARY 3.5. If Cv(X) is first countable, then X is psuedocompact.

l’etl

)CB (tk,e/3) and similarly

It follows from Proposition 3.4 that whenever X is not psuedocompact then
Cv(X) is not homogeneous, and is thus not a topological group under addition. Therefore

Cv(X) and Ce (X) are different whenever X is not psuedocompact.
o
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4. COUNTABILITY PROPERTIES

The spaces G, (X) and Cfp(X) have a property which is useful for studying
countability properties. That property is submetrizability; i.e., these topologies
contain weaker metrizable topologies. Certain results follow immediately. For
example, singleton sets in C,(X) and Ce (X) are Gg-sets. Also the concepts of
compactness, countable compactness, and sequential compactness are equivalent for
subsets of these spaces.

There is a concept which is weaker than first countability that will be useful
to consider. A space is of point countable type if every vpoint is contained in a
compact set which has a countable base. Every Cech-complete space has this property.
Also a space which is of point countable type and in which singleton sets are
Gg-sets is first countable. As a result, a number of properties are equivalent for
the fine and fine uniform topologies. The proof of the following theorem then follows
from Proposition 1.3 and Corollary 3.5.

THEOREM 4.1. If C(X) has the fine uniform topology (or the fine topology for
normal X), then the following are equivalent.

(a) C(X) is first countable.

(b) C(X) is of point countable type.

(¢) C(X) is Cech-complete

(d) C(X) is metrizable.

(e) C(X) is completely metrizable.

(£) c(x) = c,(x).

(g) All compatible uniformities on R induce the same topology on C(X).

(n) X is pseudocompact.

Theorem 4.1 is also true with R replaced by any complete metric space which
contains a closed ray; i.e., a closed copy of the interval [0,=).

THEOREM 4.2. If C(X) has the fine uniform topology (or the fine tovology), then
the following are equivalent.

(a) C(X) is separable.

(b) C(X) has the countable chain condition.

(¢) €(X) is Lindelof.

(d) C¢(X) has a countable network.

(e) C(X) is second countable.

(f) C(X) is separable and completely metrizable.

(g) Cp(X) is separable.

(h) X is compact and metrizable.

PROOF. Since CD(Y) < C(X), each of (a) through (f) implies (g). That (g)
implies (h) is well-known. Finally, if (h) is true, then C(X) = CD(X).

These same arguments can be extended to generalize Theorem L4.2. 1In particular,
this theorem will be true if R is replaced by a separable complete metric space

which contains a nontrivial path.
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