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i. INTRODUCTION.

The topology of oointwise convergence and the comoact-ooen to_ology are two

of the most commonly used topologies on the set C(X,Y) of continuous functions

from a soace X into a soace Y. These spaces will be denoted by Co(X,Y) and

C]=(X,Y), respectively. If Y is a metric soace,, the supremum metric tooology on

C(X,Y) is also commonly used. However, sometimes none of these topologies is

strong enough to aoply a function space to a given situation, in which case a finer

topology may be needed. A good examole of this is the use of a "fine topology" on

a function space in [4], in which the Baire soace oroperty of the function space is

used to obtain certain kinds of embeddings into infinite-dimensional manifolds.

This oaper studies the topological pro_erties of two kinds of "fine topologies"

on C(X,Y). In order to avoid pathologies, all soaces will be Tychonoff soaces.
+

The symbol ]R will denote the real line with the usual tooology, and lR will denote

the positive real line. Also C(X, ]9) and C(X, ]R+) will be abbreviated as C(X) and
+

C (X). Finally let denote the set of natural numbers.

I. UNIFORM TOPOLOGIES.

Whenever a space Y has a comoatible uniform structure on it, this induces a

uniform structure on C(X,Y). If 6 is a diagonal uniformity on Y, then for each

Dsg, define

{( )c(x,) for every xX, (f(x),g(x))D}. (i.I)

The family { Ds} is a base for a diagonal uniformity on C(X,Y). Denote the

resulting topological space by C6(X,Y). On the other hand, if u is a covering

uniformity on Y, then for each Cs, let

={(f,g) s C(X,Y) 2 for every xsX, there exists a UC with (f(x),g(x))sU2}. (1.2)

The family { -Cs} is also a base for a diagonal uniformity on C(X,Y). Denote this

spaee by C (X,Y).
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There is a natural way of passing from a diagonal uniformity 6 to a covering

uniformity U, so that U6 U and 6 6 (cf. Willard [5] section 36). It can be

easily verified that Cu,(X,Y) =C(X,Y) and C6u(X,Y) C(X,Y). Therefore a uniform

structure on Y may be considered either as a diagonal uniformity or a covering

uniformity, and the resulting uniform structures on C(X,Y) will generate the same

topology, called the uniform topology.

Let stand for the fine (covering) uniformity on Y. Whenever Y is paracompact,

has as a base the family of all open covers of Y. The topology on C (X,Y) will be

called the fine uniform topology.

If u is any comnatible uniformity on Y, then the relationships between the

various topologies discussed above are given by

c (x ) _< Ck(X ) _< C (X,) _< C(X,Y) (1 3)p U

where the inequality means the space on the right is finer than that on the left.

Each compatible bounded metric p on Y induces the supremum metric p on C(X,Y),
defined by p (f,g) sup{p(f(x),g(x)) xsX}. The resulting topological space will be

deDoted by Cp (X,Y). A base for C (X,Y) consists of the metric balls
+{B (f,e) faC(X,Y) and ea 19 }. If u is the uniformity on Y generated by p then

c (x,z) c (x,).uo P
For a metrizable space Y, let M(Y) be the family of all comnatible bounded metrics

on Y. The following fact gives a useful tool for working with the fine uniform

tODology.

PROPOSITION i.i. If Y is metrizable, then C (X,Y) has as a base

{B (f,e)" eM(Y), feC(X,Y) and ea19+}.
PROOF. To see that B (f,e) is a neighborhood of f in C (X,Y), define the open

cover {B(y,e/3) yaY} of Y, and let ga[[f]. Then for each xaX, there is a

yaY with (f(x), g(x)) a B (y, e/B). Therefore each (f(x),g(x))<2e/3, so that

p(f,g)s2e/3<e. This establishes that gab (f,e), and it follows that [f]cB (f.e).
P >* * P

On the hand, let a and feC(X,Y). Let i 2> be a normal sequence of

open covers of Y so that UI refines , and let p be the metric defined by this sequence

(see Willard [5], P. 167, for this construction). It follows from the construction of
+

p that there is an edR so that B (f,e)c f].
p

Let ube any comDatible uniformity on Y. If X is compact then u on C(X,Y) is the

same as the uniformity of uniform convergence on comnact sets, which is known to

generate the comDact-open topology (cf. Willard [5], section 43). The converse is in

fact also true for most Y.

PROPOSITION 1.2. If Y contains a nontrivial path, then for any compatible

uniformity u on Y C (X,Y) =Ck(X,Y) if and only if X is comDact.
PROOF. Let "I +Y be a continuous function from the closed unit interval into Y

such that (0) / @(i). Let y =(0), let z =(i], and let f be the constant mare from

X to y. Define [l={Y\{y}, Y\{z}}, which is an open cover of Y. To see that au, let

Da6 with zD[y]. Choose a symmetric Ea6 with EoEcD. It follows that

{E[p] paY} refines 8, so that
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Suppose that X is not compact. To see that [f] is not a neighborhood of f in

Ck(X,Y) let W [AI,V1 ]n...n [An,Vn] be any basic open subset of Ck(X,Y) which

contains f, where each [Ai,Vi] {feC(X,Y) f(Ai)cVi} and the A. are comDact and the
1

V. are open. If A A
1

u u A then there is some xeX\A. Define g:Au{x} Y
1 n

by g(a) y for aeA and g(x) z. Since I) is arcwise connected, then g extends to

some geC(X,Y). _Then eW\6[f], which establishes that C (X,Y) is finer than Ck(X Y)
It follows from Proposition 1.2 that whenever X is compact, all compatible

uniformities on Y generate the same topology on C(X,Y) the compact-open topology.

Also when Y is compact, a compatible uniformity on Y generates a unique topology on

C(X,Y) since there is only one compatible uniformity on Y but in this case the

topology on C(X,Y) is not the compact-open topology, unless X is also compact.

PROPOSITION 1.3. Let Y be a metrizable space. If X is psuedocompact, then

all compatible uniformities on Y generate the same topology on C(X,Y).
PROOF. Let U be an open cover of JR, and let feC(X,Y). For each xeX, let

V eU with f(x)e V Then for each such x there exists a C eu withx x x
(D oD )If(x)] V where D u{U 2 UeC }. Since X is DsuedocomDact and Y is
X X X X X

metrizable, then f(X) is compact. So there exist xI x e X such that
n

f(X)cD _[f(xl)]U uD _[f(Xn)]. Now there exists an C0eu which refines each of
Xl xn

Xl, C
xn

In order to show that C0[f] U If], let geC0[f] and xeX. Then there exists an

i such that f(x)eDxl [f(xi) ]. Let UeC
0
with (f(x), g(x))eU 2. There is some Uiexl

such that UcUi, so that (f(x),g(x))eU.2 cD Therefore
1 x1

f(x)eDxl[f(xi)]C(DxlODxl)[f(xi)]CVxl and g(x)e(DxlODxl)[f(xi)]cV Since x is

arbitrary, ge6[f]. Xl

The topology generated in Proposition 1.3 is in general not the compact-open

topology.

The "comnleteness" of a function space can be a useful property for obtaining

the existence of certain kinds of functions. If 0 is a complete metric on Y, then

0 is a complete metric on C(X,Y). On the other hand, C (X,Y) may not be metrizable.

So comnlete metrizability of C (X,Y) is too much to exnect in general. But C (X,Y)

does have "completeness" to the following extent.

THEOREH 1.4. If Y is completely metrizable, then C (X,Y) is a Baire space.

PROOF. Let 0 be a compatible bounded comnlete metric on Y. Also let

{W n e} be a sequence of dense open subsets of C (X,Y), and let W be a nonempty
n

open subset of C (X,Y) Choose d
I

eM(Y) fl eC(X,Y) and 0< 1/2 so that
v 1

(fl’e )cWInW. Define 0 max {0,dI}, so that B (fl’el)C B
d (fl,e). Continue byBd1 1 1 en+l<l/2n+linduction so that at the n+l step, choose dn+lM(Y fn+IC(X,Y., and 0<

such that Bdn+- fn+l n+l CWn+IoBo fn en/2 and define 0n+I max(0
n dn+l }"

Now {f ne)- is a Cauchy sequen
n
ce in C (X,Y), and therefore converges to some

n
feC (X,Y). Also for each ie, {f ne} will converge to f in C (X,Y), so that

o n
f is in the closure of BOi(fi,e/2 in Ci(X,Y). Therefore

feBi(fi’ei Bdi(fi,ei WiW for every

The conclusion of Theorem 1.4 cannot be strengthened to Cech-completeness, which

can be seen from Theorem 4.1. Also the hypothesis cannot be changed to Y being compact.

For examDle, if X is the closed unit interval I with the usual topology, and Y 12
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with the order topology with respect to lexicographic ordering, then some functions in

C (X,Y) have onen neighborhoods which can be written as countable unions of nowhere

dense sets.

2. FINE TOPOLOGIES.

Throughout this section, (Y,0) will be a metric space. In this case there is a

natural way to generate a topology on C(X,Y) which may be even finer than the fine

uni fortuity topology.
+ +

For each fsC(X,Y) and CsC (X), define B (f,) (gsC(X,Y) for every xsX,

0(f(x),g(x))<qb(x)}. Since for each ,,eC+(X max{,} e C (X), then

{B+(f,qb) feC(X,Y) and CeC+(X)} is a base for a topology on C(X,). This

topology is called the fine topology with respect to 0 (Munkres [3], p.285), and

will be denoted by Cfp(X,Y). Certainly Cf0(X,) is finer than C0(X’Y)’ and is in

general strictly finer. However, for psuedocompact X, they are the same.

PROPOSITION 2.]_. If X is pseudocompact,+ then

PROOF. Let fef (X,), and let eC (X). Since

psuedocompact, then 1/ is bounded. So there is a number M with 1/d(x)< M for all

xaX. 2nerefore B (f,!/M)cB2(f ).
From Propositions 1.3 and 2.1 it follows that if X is psuedocomact then

Cf (X,Y) Cv(X,Y). But even if X is not Dsuedocompact,_ Cfo(X,Y) can still be

reated to C (X,Y) as follows.

PROPOSITION 2.2. If X is paracompact, then C (X,Y)-<C (X,Y).
v+ fp

PROOF. Let dM(Y), let fC(X,Y), and let e ]R For each xX, there exists a

(x) ]R such that B (f(x),(x))cBd(f(x),e/2). Let C =(Ua A) be a star-

refinement of (f-l(BP(f(x),(x)/2)) xX). Let ( A) be a artition of unity
p

subordinated to C. For each A, let n be the cardinality of (A UnU),
let xX be such that Ua f-l(B (f(x),(x))) and let m min((x)/2 U nUp (

/
Then define Z((m /na) A}, which is a member of C (X).

To establish that B+(f ) Bd(f,e) let gsB+(f ) and let xsX. Also let

U U be the members of containing x. Take i to be such that
al’ k
mall(X) min{mala!(x) mkk(X)}. Then (x) -< mlal(X(i/nl+...*l/nk ).

-< maii.
(x) -< @(xi)/2. It follows that 0(g(x), f(x)) @(xi/2. Since

f(x)B0(f(xi),@(xi)/2), then g(x)sBo(f(x),@(xi ))cBd(f(xi)’e/2)" Also

f(x)eBd(f(xai),e/2), so that g(x)Bd(f(x),e.
The inequality in Proposition 2.2 is in general not an equality as indicated in

the comment after Corollary 3.5.

Whenever 0 is complete then Cf(X, Y) is a Baire sace ([4], p.297). Instead

of giving a proof of this here, a proof will be given in the next section that C (X)
f0

is psuedo-complete, which is a property stronger than being a Baire space.

3. REAL-VALUED FUNCTIONS. For the rest of the paper, 0 will denote the usual metric

on R bounded by i; that is, O(s,t) rain(l, s-tl}.
+ +

LEMiA 3.1. Let f,gsC(X) and let @,@sC (X). Then the closure of B (f,) in
+

Cf0(X) is contained in B0(g,@) if and only if for each xsX the closure of B0(f(x),(x))
in R is contained in B (g(x),@(x)).
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+
PROOF. For the sufficiency, let hsB (f,) and let xX. Suppose h(x) were

contained in the complement of the closure of B (f(x),(x)); call this set V. Then

the set of functions taking x into V would be a neighborhood of h in Cf (X) which
+

misses B (f,). This contradiction shows that h(x) cl(B (f(x),(x)))pc B (g(x),O(x)).

For necessity let xo s X and let t s cl(Bp(f(x0),(x0))) in JR. Define

h(x) f(x) + (t-f(x0))’0(x)/(x0) for all x X. This defines an h C(X) such that

h(x0)=t. Also lh(x)-f(x)l<(x) for each x.
+ +

To see that hecl(B(f,qb)) in Cf (X), let B(h,) be a basic neighborhood of h.

Define k(x) h(x) + sign(f(x) h(x)’min{(x)/2,1h(x)-f(x)I}, which is an element of

C(X). Now Ik(x)-h(x)I min{(x)/2,1h(x)-f(x)l}< (x)/2 <(x). Also if h(x)>f(x),
then Ik(x)-f(x)l lh(x)-f(x)-min{(x)/2, h(x)-f(x)} I. If this is positive, then it

is equal to (x)/2, and E(x)/2<lh(x)-f(x)l<(x). The same argument shows that if
+

h(x) f(x), then also Ik(x)-f(x)l < (x). Therefore kB (f,), so that

B(h,)nB (f,) . From this it follows that hecl (f,))cB (g,). But then

l-g(x0) lh(x0) g(x0)I<(x0) so that tB (g(x0),(x0)).p

The proof of Lemma 3.1 depends on the metric (and algebraic) structure of the

range space. In fact the lemma is not true in general. For example, let

i
2

X=I and Y ((s,sin(2/s))s 0<s_<2}u((0,0)} with metric d on Y defined by

d((Sl,tl),(s2,t2)) max(Isl-s21 ,Itl-t21}. Also let y=(2,0), let z=(0,0), let f

be the constant map taking X to y, and let g be the constant mad taking X to z.

Then Bd(f,2) C(X,Y)\(g}. Since g is isolated, Bd(f,2) is closed, so that

cl(Bd(f,2))cBd(f,2). 0n the other hand, for any xeX, zacl(Bd(f(x),2))\Bd(f(x),2
in Y.

THEOREM 3.2. The space Cfp+(X) is psuedo-complete.

PROOF. For each n, let C (X) (sC+(X) for all xsX, (x)<I/2n},
n+

a (X) Itn (B(f ) fC(X) and C+X/}. Each is base for Cf0and define
n n

remains to show that if Bnn for each n with cl(Bn)CBn then {Bn:n} . If each

Bn=B(fn,n) then by Lemma 3.1, for each ns and each xsX,

cl(B(fn+l(X)’n+l(X)))cBp(fn(X)’n(X))" Since each Cn(X)<i/2n, then

[(B (fn(X), (x)) n} (f(x)} for some f(x)s JR. This defines the function f, which
n

is the uniform limit of (f n}, and is hence continuous. Clearly
n n

as desired.

The algebraic structure on ]R induces an algebraic structure on C(X). This

structure interacts well with some topologies on C(X). For example_ Ck(X) and C(X)
are always locally convex linear topological spaces. On the other hand C (X) is only

a topological group under addition while the scalar multiplication operation is not

continuous for non-compact X. The space C (X) behaves much like C (X) in this
f

regard. It is. straightforward to show that Cfo(X) is a topological group under

addition. As a result, Cfo(X) is homogeneous; and for many arguments it suffices to

consider only basic neighborhoods of the zero function, f0"
The next result establishes when f0 has a countable base. It is stated for

(JR,o), but it is also true for any metric sace containing a nontrivial path.

PROPOSITION 3.3. If X is normal and f0 has a countable base in Cf0(X), then X

is countably compact.
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PROOF. Suppose X is not countably compact. Then X contains a countable closed
+

discrete set, (x new). Let (n new) be any sequence in C (X). The goal is to
n +

show that (B+(f0,0n new) cannot be a base at f0" For each n let e e R be such
p n

that interval [0,en] is contained in Bp(0,0n(Xn)/2). Since X is normal, there exists a
+

oeC (X) such that 0(x e for every n.
n n + B+It remains to show that B (f0,0n) (f,0) for each n. Fix nee and let U be a

neighborhood of x such that 0n(U) (0n(Xn)/2,). Because X is a Tychonoff soace
n

there exists an feC(X) such that f(Xn =en’ f(X\U)=(0},+/-and f(U) [0,en]" Clearly

f B+(f0,@) since f(x e 0(x ). To see that feB(f0,0n) let xeX If xUp n n n
then p(f(x) f0(x))=0. If xeU, then f(x) e [0,en] B (0,0

n (x)/2) Also
P n

0n(X) > 0n(Xn)/2 so that (f(x),f0(x)) < 0n(X).
Therefore for a normal space X, Cfo(X) is first countable if and only if it is

already equal to the metrizable space C (X).

The situation is little different for C (X). To begin with, C (X) is in general

not homogeneous, as the next proposition shows.

PROPOSITION 3.4. An element of C (X) has a countable base if and only if it

is a.bounded function.

PROOF. First suppose f is an unbounded function in C(X). Without loss of

generality suppose there is a sequence {x nee} in X such that f(x n for each
n n

nee. Let {U [f] nee} be any sequence of basic neighborhoods of f in C (X).
n

For each nee, let V e U with neV and let I be a closed interval containing
n n n n

n in its interior and contained in V o(n-i/2,n+i/2). Also let t be a Doint of the
n n

interior of I different than n, and W be an open subset of the interior of I which
n n n

contains n but not t Then let W N\a, and define / {W}n {W n0}.

To see that each U [f] is not contained in U[f], let ,n:l I be a homeomorhism
n n n

which fixes the endpoints of I and moves n to t 2nen define O() by O(s)=O (s)
n n n

if seI and O(s)=s otherwise. It follows that Oofe [f]\l[f]. Therefore
n n

{/ If] nee} cannot be a base at f.
n

For the converse, suppose that f is a bounded function in C(X). The goal will

be to show that {B (f i/n) ne0} is a base at f in C (X) Let deM(N) and let e’0.
p

Also let Me such that f(X) is contained in the interval [-M,M]. For each t[-M,M],
+

there exists an et]R such that B0(t,e t) Bd(t,e/3 ). There exist t
I ,tm[-M,M]

/2). Take ne with i/n _<min{e /2such that [-M,M] B(tl,etl/2) n...n B0(tm,etm, tl
etm/2}-

To see that Bp(f, i/n)CBd(f,e), let geB0(f, l/n) and let xX. There is some

k with f(x)eBp (tk,e_t/2). Now p (g(x) f(x)) l/n- etk/2 and p (f(x) tk) etk/2
so that p(g(x),tk)<etk. Therefore g(x)Bp(tk,etk)CBd(tk,e/3), and similarly

f(x)eBd(tk,e/3). Hence d(g(x),f(x))<2e/3, so that d(g,f)-<2e/3<e.
COROLLARY 3.5. If Cx)(X) is first countable, then X is suedocompact.

It follows from Proposition 3.4 that whenever X is not psuedocompact then

C (X) is not homogeneous, and is thus not a topological group under addition. Therefore

Cv(X) and Cfo(X) are different whenever X is not psuedocompact.
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4. COUNTABILITY PROPERTIES

The spaces (X) and Cf (X) have a property which is useful for studying

countability properties. That property is submetrizability; i.e., these topologies

contain weaker metrizable topologies. Certain results follow immediately. For

example, singleton sets in Cv(X) and Cf (X) are G6-sets. Also the concepts of

compactness, countable compactness, and sequential compactness are equivalent for

subsets of these spaces.

There is a concept which is weaker than first countability that will be useful

to consider. A space is of point countable type if every point is contained in a

compact set which has a countable base. Every Cech-complete space has this property.

Also a space which is of point countable type and in which singleton sets are

G6-sets is first countable. As a result, a number of properties are equivalent for

the fine and fine uniform topologies. The proof of the following theorem then follows

from Proposition i. 3 and Corollary 3.5.

THEOREM 4.1. If C(X) has the fine uniform topology (or the fine topology for

normal X), then the following are equivalent.

(a) C (X) is first countable.

(b) C(X) is of point countable type.

(c) C (X) is Cech-complete

(d) C(X) is metrizable.

(e) C (X) is completely metrizable.

() c(x) c(x).
(g) All compatible uniformities on ]R induce the same topology on C(X).

(h) X is seudocompact.

Theorem 4.1 is also true with R replaced by any complete metric space which

contains a closed ray; i.e., a closed copy of the interval [0,).
THEOREM 4.2. If C(X) has the fine uniform topology (or the fine topology), then

the following are equivalent.

(a) C(X) is separable.

(b) C(X) has the countable chain condition.

(c) C(X) is Lindelof.

(d) C (X) has a countable network.

(e) C(X) is second countable.

(f) C(X) is separable and completely metrizable.

(g) Cp(X) is separable.

(h) X is compact and metrizable.

PROOF. Since C0(X) -< C(X), each of (a) through (f) implies (g). That (g)

implies (h) is well-known. Finally, if (h) is true, then C(X) C0(X).
These same arguments can be extended to generalize Theorem 4.2. In particular,

this theorem will be true if R is replaced by a separable complete metric space

which contains a nontrivial path.
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