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ABSTRACT. We study the asymptotic behavior in time of the solutions of a system of non-

linear Klein-Gordon equations. We have two basic results: First, in the L@R3) norm,

solutions decay like 0(t-3/2) as t/+ provided the initial data are sufficiently small.

Finally we prove that finite energy solutions of such a system decay in local energy

norm as t++.
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INTRODUCTION

Our main purpose in this work will be to study time decay properties of solutions

of the nonlinear system of Klein-Gordon equations

u + m2u + g2 uv 0

v + ov + gvu 0

where x runs in and t0. Here denotes the d’Alembertian operator i.e.

-F- A and A is the usual Laplacian operator. In (1.1)-(1.2), m, o and g are

positive constants. Such systems of interacting relativistic (scalar) fields were

suggested by a number of authors in the last two decades, among them we can mention i.

segal [I], K. JSrgens [2] and more recently, V.G. Makhankov [3].
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In section 3 we consider solutions of (|.I)-(|.2) in a suitable Banach space X and

we prove, in particular, that II u(-,t) ll =0(t_3/2) and II v(-,t)ll =0(t_3/2) as
LOOOR3 L ()

t++oo, provided the initial data is small enough in an appropriate sense. This, seems to

be the best possible rate of decay (in the norm II II for finite energy solutions of
L

system (.)-(.2). In order to obtain our result we use techniques which are essentially

in the frework of contraction type notions together with kno facts of the linear

Klein-Gordon equation in three dimensional space.

In section 4 we study the local energy behavior as t++ for finite energy solutions

of (.)-(.2). The important work of C. Morawetz [4] was the starting point for our

analysis in this section. Appropriate adaptations of [4] as well as the work of W.A.

Strauss [5] to our case were needed. Unfortunately, we could not find the precise rate

of decay in this case, which we suspect should be 0(t-).

2. NOTATION D PRELIMINIES

In what follows we shall use standard notation: By LP), p< we denote the

of functions in whose pth powers are integrable, with the norm fp=f(x)Pdxspace

eand by ) we denote the space of measurable essentially bounded functions in

with the no f =ess supf(x). From now on, an integral sign to which no domain is
L

attached will be understood to be taken over all sace. We denote by grad u the

(u)gradient of u (in space variables) and grad u= x. The radial derivative (with
j=1

x
respect to the oriem) wl be denoted by Ur --r rad u where r=x. The Laplacian

operator s denoted by = [ For any positive integer k and s we consider the
j=1

W
k sSobolev space of (classes of) functions in LS) which together with their

partial derivatives up to order k belong to LS). The no in wk’S) will be denoted

by 1 1 k s"
W

In case s=2 we shall write Hk) instead of wk’2). From now on, in order to

simplify the notation we will denote by C various constants (which may vary line to

line). All functions consider in this paper are real-valued.

Since the system (2.2)-(.2) is reversible in time, we shall perfo our estimates

only for t>0 and the same conclusion will be true for t<0. Most of the leas,especially

in section 4, are proved only for the case in which the initial data at t=0 belongs to

C) (that is, the space of C functions defined in with compact support). By a
o
standard approximation procedure the same conclusion will be true for finite energy

solutions.

Let us recall briefly some kno facts concerning the linear problem: Consider the

Klein-Gordon equation

+ m 0 x e t e [0,)
(2.)

(x,0) l(x) t(x’0) (x)

where - and m>O. Then, we have the following estimate (see [6]):
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(-,)11 C(l+t)-/2 [11 il 3 / II = II 2
L W W’

(2.2)

provided the initial data (l and 2 belong, say to C(I3).
O

Now, consider the inhomogeneous Klein-Cordon equation

u + m2u F(x,t)

u(x,O) 0 ut(x,O)

x el t e [0,)

where F e LI(0,T; H OR) W2’I(R)), then using Duhamel’s principle and (2.2) we obtain

that

l[ u(’,t)ll -<- C (1+It-s[)-’/2 [l F(.,s) ll 2 ds (2.3)
L 0 W

and

--< II (’,)II d (2.4)

Let us define the space of functions which we will be using in the next section: Let

0(x,t) be such that, for each t we have that 00(.,t) e H3(R). We consider the norm

defined by

I1o up [11o<-,) +(1+)I1(’,’)1 1o] (2.5)
t>O

Let

X {(u,v) such that u(- ,t) ,v(- ,t) e H OR and JJ ul < +oo, II vi < +=

X we consider the norm III (,v)lll==ll"’ ul+ll"= vl"’ Clearly, X is a Banach space with theIn

norm III(’,’)III- Now, we indicate some simple lemmas which will be use in the next

section

LEMMA I. Let (Ul,Vl) (u,v2) e X, then

II + II u-u=v, II 3,I II vll ]+]I UlVl-U2V
H W

+ II u= I, II v II, ,oo
+ II v ll,w

PROOF. Since H (R) is an algebra, then, for each t, UlV-U2V e The

triangle inequality implies

II uv%-u v II -<- It (u-u=)v’ It + II u (v-v
H H H

(2.6)

Using the Leibnitz’s rule and the imbedding H (R)-L(R) we obtain
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II (u-u=)v, I1, =< 11 u-u= I1[ II v I, ,/11 v I1,, ,=oll v I1,
and

W

which together with (2.6) implies that we got the desired bound for the first term on

211 3 can be donethe left hand side of the lemma. The estimate for the term [] UlVl-U2 v
W

similarly.

LEMMA 2. Let q1, r>0 such that rq>1, then, for any t>0 we have

(+It-sl)-r(+s)-rq ds _-< C(+t) -r

PROOF. See [7].

3. DECAY AS t-+o FOR SMALL DATA

I this section we present a result concerning the asymptotic behavior for

solutions of (].I)-(.2) in the space X and small initial data.

LEMMA 3. Let (u l,vI), (u2,v2) e X and 0>0. Suppose that [[l (ul,vl) [[[=<0, [ll(u2,v2)[I[<=0-
Define the nonlinear maps N and N by

m o

Nm[Ua;,vj](x,t) =-g2[t[R"
"0

m(X-y’t-s)u’v’dydsj
(3.1)

No[v:J,uj](x t) _g2 Ro(x_y,t_s)vj

j=,2, where R and R denote the Riemann functions associated with the linear Klein-
m o

Gordon operator [ +m2I and D +2I respectively. Then

a) II Nre[u: ,vl ]-Nm[u ,v ]l -<- CO III (u,-u= ,v:-v=)lll

and (3.2)

0RPROOF. Since H (IR3) is an algebra then it follows that for each t, ulv:-u2v2eH]
Using the definition and (2.4) we obtain, for each t:

t

II m [u,v, ]-Nm[U ,v ]IIH __. CI o II u,v-u v, I1, d
By lemma it follows that

.t t

u:v:-u.v. II ds < cll u:-u. liD
00 H ,oo’

+ell v:-v. I1[ v Ii/ II v. I] II u. ,ds.Cll v:-v I11 u. I
00

W
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Thus

H

Using the definition and (essentially) (2.3) it follows that

II mmeu ,v ]-Nm[U ,v ]llw1 ,oo
as

By lemmas and 2 we deduce that

t

0 W

t /

0
as

(3.3)

Consequently

(3.4)

Combining (3.3) with (3.4) we conclude item a). The proof of item b) is done exactly in

the same fashion.

LEMMA 4. Let Uo(X,t), Vo(X,t) be solutions of the free Klein-Gordon equations

u +m2u =0 and ] v +oav =0 respectively with initial data at time t=0 so thato o o o
defined by (U(o) V(o))=(Uo v(u v e X Let us consider the sequence {(U(n V(n))}o o o

and n=O

U(n+1 u + N [u ,v
o m (n) (n)

V(n+l v + N [v u
o 0 (n)’ (n)

for n=1,2,.., where Nm and No were defined in (3.1). Then (U(n+1),V(n+1)
n=O, 1,2

e X for all

PROOF. The proof is done by induction. It is enough to prove that

(Nm[U(n),V(n)], No[V(n)’U(n)]) e X provided that (U (n) ,V (n) e X. But this was already

done during the proof of lemma 3. Consequently the conclusion of the lemma holds.

Now let u and v as in lemma 4 with initial data
o o

u
u (x o) 1(x) ---i (x o) 2(x)o t

v
o

e C70R 2. Using (2.2) canVo(X,O)=l(X) and - (x,0)= (x) such that 0- j=1 we

estimate the norm [ll(Uo,Vo)ill, say Ill(Uo,Vo) ilI<=0o
’j

where
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+ II I1= + II = IIw,3,1
On the other hand, let us choose >0 small enough so that 2 =< where C>O is the

2/ C
constant which appears in the right hand side of inequality (3.2).

THEOREM (Decay for small data). Let j, j e C=(]R3)o j--1,2 be chosen so that

defined in0<0o-<_ Then the sequence of sucessive approximations (U(n) ,V(n)
n=O

Lemma 3 converges to a pair (u,v) e X, which is a solution of (1.1)-(1.2) such that

u(x,0) l(x) ut(x,0) 2 (x) v(x,0) l(x) vt(x,O) 2 (x)

In particular, we have that II u<’,)ll ==<c<,+) -’z II v<-,)ll J--c<,+) -’z.
L L

PROOF. First we will prove by induction that iil(U(n),V(n))III--<6 for all n=0,I,2...

If n=O this is trivial. Suppose that IiI(u(n),V(n))iII<__. Using the definition of U{n+1

___
and V(n+1) we obtain

II U<n+)<’, )ll +ll V(n+)(" )1 < 2(lluo <’, >1I +llvo <" )11 )+
H H H H

+2(11Nm[U(n),V(n)](’,t)i +llN[V(n),U(n)](’,)li
H H

(3.5)

and

(1+t) [li U(n+1)(" t)l 1,oo
+ (n+1) 1,

<--2 (1+t) JJ u(’o t)J
W I,+Jl Vo(" t)iwl ]+

+2111Nm(U(n),V(n)) lW3,1+il No(U(n),V(n)) IW3, i] (3.6)

From (3.5) and (3.6) we conclude that

IlJ (U<n+) V(n+ ) III <= Z III (Uo ’Vo Ill +2 (C=) III (U(n) V(n) )111 <--.._-< 2( + 2(--J--- )= <
2"

because our choice of . This concludes the proof of our claim. For any positive integer

n we define

e III (u -u v -v )IIIn (n+1) (n)’ (n+1) (n)

Consequently we have en$/2 Ce because of lemma 3 and the above observation.

iteration it follows that e <(/ C2) n
2-ne e Now let k>n. Using the aboven o o

observation we conclude that

By
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III (U(k),V(k))-(U(n),V(n))lll _<- 2-n+I[i_2n-k-lIe 0
O

as k, n-+oo.

Thus, there exist a pair (u,v) e X such that (U (n) ,V (n) )-(u ,v) in X as n-o. Obviously

lll(u,v) lll<. Thus, by lemma 3 it follows that II Nm[U(n),V(n)]-Nm(U,V]l+O as n-o and

II No[V(n),U(n)]-Nm[V,U]l-0 as n-o. Consequently (u,v)=(uo,vo)+(Nm[u,v],No[v,u]) so

that the pair (u,v) is a solution of system (I. I)-(1.2).

4. LOCAL ENERGY DECAY

In this section we consider finite energy solutions of the system (1.1)-(I .2)

without our previous assumptions of smallness on the initial data.

We shall concentrate our attention on the local energy E(t) associated with the

pair (u,v)

+o2v2+g2u2v ]dx (4 1)[u+ grad ul +m’u=+v+lgrad vl’E(t) -where is a bounded region of 3. In many practical situations can be assumed be a

ball. We will show in this section that under suitable assumptions on the initial data

of the system (1.1)-(1.2) then E(t) approaches zero as t/+.

Our analysis is based on the work of C. Morawetz [4] where she studied a single

nonlinear equation. First, we present an existence result: Let us consider the space

Y=HZ@L2HZL2 @R3) and the matrix differential operator A given by

A

0 I 0 0

A-m 0 0 0

0 0 0 I

0 0 A-o 0

We can rewrite (1.1)-(1.2) with uz=u u2=ut, Vl=V and v2=vt
of first order in time

as a system of four equations

d
A + N() (4.2)dt

where =(ul,u=,vl,v=) T N() (0 -g2u v 0,-g2v u2) T (here )T means the transpose of

()). Clearly A is skew-adjoint with domain D(A)=H2@HZ@H2@HZR).

LEMMA 5. For any , e Y we have

where C is an increasing function of norms II (I) I and I{ I"
PROOF. Let =(uz,u=,v,v=) Y

and =(I = e Y. Since Hj) is an algebra

then N(), N() e Y. The triangle inequality implies that
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Holder’s inequality followed by Sobolev’s inequality give us

II <>-<> I =< ell u- I[ v I+11 v

L 6. a> N: D(A)+D(A) and b>
for all , e D(A).

PROOF Item a) is trivial Let =(u,u v,v and =(,u,,v) belonging to

D(A). A direct calculation gives us

il <u-)vI+ It <-v> I+= II <v-) I+
+ ell v <%-u%> I

We use HBlder’s and Sobolev’s inequality to obtain

Combining the last four inequalities with (4.3) we conclude the proof of the lemma.

THEOREM 2 (Global existence). Let the initial data at time t=O for the system (1.1)-

(1.2) belong to the subspace D(A)=H2@HI@H2@HIOR3). Then, there exist a (strong) solution

of (4.2) for all time t=>O.

PROOF. According to Segal’s theorem [6], lemmas 4 and 5 imply that there exists a

unique local solution of (4.2) defined in a maximal interval l={0<t<T _<_+o} of
max

existence. Now, let us write (1.1)-(1.2) as

[ u + m2u f (4.4)

-] v +(7 2v h (4.5)

where f=-g2uv and h=-gvu. We can use the linear theory: Multiply (4.4) by u
t

by vt. Next, integration in the whole space give us

2 dt
grad u +m u ]dx futdx

2 dt +02 v2 ]dx hvtdx
g dBut (fut+hvt)dx=---d--{ uv2dx. Adding the identities (4.6)we conclude that

I +m2u+v2t+Igrad vlEoo(t) [ut+Igrad ul +o2v=+g2uv ]dx Constant

and (4.5)

(4.6)

(4.7)
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in the interval I. In particular, this implies that II ()1 is bounded for all t e I.

This concludes the proof of the theorem.

REMARKS. Using essentially the same procedure as above one can prove higher

regularity of the solutions provided that the initial data is more regular. If the

initial data belongs to HJ+I@HJHJ+IHJ(R3)’’’" then the solution pair of (1.1)-(1.2) will

belong to [C(I;HJ+IOR3))]
LEMMA 7. Let (u,v) be the solution of the system (I. I)-(1.2) with initial data

belonging to [C ()] Then, for any T>0 and y e ]R we have
o

T[u2 (y,t)+v (y,t)]dt < CEoo(O)
0

where C>0 is independent of T and Eoo(O)=ER (0) is given by (4. I) with .
(x-y) grad WePROOF. Let y e ]R For any xy let us denote by r=Ix-y and - ru u

consider Morawetz’s multiplier M(u) + --r Multiply (1.1) by M(u) and (1.2) by M(v).

Adding those two expressions we obtain after some calculations

A
0 ( u+mUu+gUuvU)M(u)+( v+o2v+g=vu2)M(v) - + div B + D (4.8)

where A utM(u)+vtM(v)

B [m2u+o2v2+gUu=v+Igrad ul2+Igrad v
u’ v’ (x-y)

ut-vt 2rr r

-[M(u)grad u+M(v)grad v]

and

D !r [Igrad ul2-u$+Igrad vl’-v$+g’u’v

Integration in3 of the identity (4.8) give us

d IA(x’t)dx-ldiv[(x-Y)(ua2+v2) Id-- r ]dx+ D(x,t)dx 0

Since D0 we obtain- A(x,t)dx+2u (y,t)+2v (y,t) _<- 0

Integration from t=0 to t= T>O gives us

0[u (y,t)+v2(y,t)]dt _<_ [A(x,0)-A(x,T)]dx

Let us estimate JA(x,t)dx. The following simple inequalities are useful:

2u
u

(x-y)u< u (u) + + div(’ + u + u+2M(u)ut r r -- t r r t
r

(x-y)v
v-<_ div( + + v-+2M(v)vt r r t

(4.9)
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Thus, for any t 0 we have

+IA(x’t)dx <= I(u+u+v2+v2)dx <2Ert 0o(0) (4.10)

From (4.9) and (4.10)we obtain the conclusion of the lemma.

LEMMA 8. Let 0: ]R /JR be a C function and y e]R3. Then

a) 2<Igrad 0(x) 12-02(x)’ for any x such that Ix-yl=r. Here 0 (x)=T (x) .grad 0(x) and
T r T

0 (x) (x-y) grad 00(x) where r(x) denotes a (unit) tangent vector at x.
r r

3
b) Igrad m(x) I2=<3 ’ (x) for any x e ’ where r I= and r, are (unit) tangent vectors

T.

to the spheres S.={ e’ such that l-jl=[x-jl j=1 2 3 respectively, for some

convenient choice of $I, and .
PROOF Given I(x) let us choose another vector Io so that {I(x),%o,} are ortho-

normal. Here denotes a vector in the direction of the radious r=Ix-y I. Now, it is

clear that 0+0(x)_-<Igrad 0(x) 60This proves item a). Let j=1,2,3 and three planesr

Pj, j=1,2,3 so that x e PIO P P and their normal vectors are x-j, j=1,2,3

respectively. Let r j(x) e Pj be (unit) tangent vectors to the spheres

Sj={ e ]R such that l-jl=Ix-jl} so that they are linearly independent and the angle

between grad 0(x) and T.(x) is less or equal to /2. Then we can write grad (x) as a

linear combination of the I.(x)’s, j=1,2,3 with nonnegative coefficients Therefore
3 3

Igrad 0(x) l_-< 00T.(x) which implies Igrad w(x) 12_-<3 . 0 (x).
j=1 j=1

LEMMA 9. Let (u,v) be the solution of system (1.1)-(1.2) with initial data at time

t--O belonging to [C3)] . Let m,1 and __]R a bounded region, then for any T>O we
o

have

a) Igrad ul +Igrad v +gu=v]dxdt _-< C()E (0)
0

b) (t)dt _-< C()Eoo(O)

where C() is a positive constant independent of T.

PROOF. a) We use identity (4.8). Integration in the whole space gives us, for any

y e:

(x,t)dx =< 2[u (y,t)+v(y,t)]+ D(x,t)dx - A(x,t)dx

Therefore, integration in time from t=0 to t=T implies that

ITI D(x t)dxdt < CE (0)
O

(4.11)

because we have used our previous estimate (4.10).

Let d=diameter of and o>d_->r=Ix-y I. Thus, from (4.1) we obtain

rD(x,t)dxdt CE (0)
P 0
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Therefore

0
[Igrad ul -u$*Igrad v12-v$+g2u2v21dxdt --< CoE(0) (4. 2)

Now, we use lemma 8 with y=j, j=1,2,3. By part a) and (4.12) we obtain

{. (uS +v )+g2u2v2}dxdt < CoE(0) (4.13)

Using part b) of lemma 8 and (4.13) we conclude the proof of part a).

It remains to obtain a bound for

Let c>0 and h: [0, oo) +]R a C function such that I) h(0)=c, 2) h=0 for all s_>- and

3) h’(s)<O for all O_-<s<c.

Let y eIR and xy. Denote by r=Ix-y I. First, we multiply identity (4.8) by h(r) and then

we integrate in space to obtain

0 2c[u(Y t)+v=(y’t)]-lh’(r)B’’ (x-Y------) dx + d lh(r)A(x t)dx+r
+ lh(r)D (x, t)dx (4.14)

The following identity can be easily verify

2B- (x-y) g2u=v=+Igrad ul 1127u2+,grad v, -2u2-2v+mu2+02v_u2_ -v

_
r r r t t

2uu 2vv
r r

r r

v
r

(4.15)

Substitution of (4.15) in (4.14) and then integration in time from t=0 to t=T implies

21 Ilh’(r)[u2+v2+(1--tt r

2uu 2vv
-1)(n+u=+O2v)+ r

+ r]dxdt
r r

IT2c [u(y,t)+v=(y,t)]dt h’(r)[guv+Igrad ul 2+
0

-2u2-2v2]dxdt+ h(r)[A(x,T)-A(x O)]dx+
r r

(4.16)

Now, using lemma 7, (4.10) and (4.11) we deduce from (4.16) the following estimate

2uu 2vv

[u+(1-j-r -1)(m=u2+O=v=)+v=+ r
+ ]dxdt CE(0)+

0
t r r

T
+C Max lh’()l [gu2v+Igrad ul +Igrad v -u2-v]dxdt (4.17)
05 ;0 [x-y] r r
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Finally, we use (4.12) to obtain from (4.17)

II (v__ (m2_i)h’(r)[(--u +u + +v +u2+v2+( r2 r r r r t t
_m2)u2+((O2-I) _o2)v2_u2_

r r

-v2]dxdt _-< CE (O)+C Max Ih’()IC()E (0)
r 0_<___<

Let us choose =Min{ -I}= Thus, if r=Ix-yl<_- it follows that
/o o

(Tf
-| | h’(r)[u2+v2+mu2+o2v=]dxdt -<_ C()E (0)

Ix_Yl=< t t

In particular

Ix_y __</2 2 [u+v+m2u2+o=v=]dxdt _<- C()Eoo(0)

or

[u=+v.+m2u2+o2v2]dxdt < C()E (0) (4.19)

where Inf (-h’(r)) > 0
r<=c/2

Combining part a) with (4.19) we obtain that

E(t)dt
C()E (0)

where ={x, lx-yl$/2}. Since is a bounded region we can cover it by a finite number

of such balls. This implies part b).

THOERF_ 3 (Decay of local energy). Let (u,v) be the solution of system (1.1)-(1.2)

with initial data belonging to [CR)] and m,o1. Let be a bounded region, then
o

a) Lim | u2(x,t)dx Lim | v2(x,t)dx=0 and b)Lim E (t)=0
t-+oo J t/+oo t-+oo

PROOF. Let T>0. We know by lemma 7 that

TI I (u2+v2)dxdt <= C()E (0)
0

Letting T/+ we obtain

(u +v )dxdt < +o

0a
G(t)=(u2+v2)dx. We also haveLet

(4.20)
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]t G(t)l=121 (uut+vvt)dx]=< I (u’+u+v’+v)dx --< CE(O) (4.2,)

From (4.20) and (4.2,) it follows that Lim G(t)=0. Consequently, Lim[ u2dx=Lim[ v2 dE=0.
t++ tdfl t-q

Let us look back to the inequality (4.9) and let us fix , so that 0<<< We
O

define F(t) as

F(t) E (t)da (4.22)

where {x e/Ix-ySa/}. Integration in time of (4.22) implies

0
F(t)dt J/dajOE(t)dt CE(O)(-a)

Therefore (t)dt<+. A s[mpie caIcuIation shows that

F(t) -<_ - <’x-Y’--<CIIi
(u=+u.+v2+v=)dx _<- E (0)

r E r t

which together with the above observations implies that Lim E(t)=O.
t/
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