
Internat. J. Math. & Math. Scl.
Vol. 9 No. 3 (1986) 459-469

EXISTENCE THEOREMS FOR DIFFERENTIAL INCLUSIONS
WITH NONCONVEX RIGHT HAND SIDE

459

NIKOLAOS S. PAPAGEORGIOU
University of Illinoi:

Department of Mathematics
1409 West Green Street
Urbana, Illinois 61801

(Received November 21, 1985 and in revised form February 26, 1986)

ABSTRACT. In this paper we proe some new existence theorems for differential

inclusions with a nonconvex right -hand side, which is lower semicontinuous or

continuous in the state variable, measurable in the time variable and takes volucs in

a finite or infinite dimensional separable Pmch space.
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I. INTRODUCTION.

In the recent years there }as been an increase in interest in the investigation

of systems described by differential inclusions. In ay ordinary differential

equation the tangent at each point is prescribed by single valued function. In a

differential inclusion the tangent is prescribed by a mu]tfunction (set valued

function) which is usually called a: orientor field. .’Lany problems of appl

mathentics lead us to the study of d3q_nmical systems having velocities not miquc]y
determined by the state of the system, but depending only loosely upon it. In these

cases the classical equation ’(t) f(t.x(t)) describing the dy,xmics of the system

is replaced by a relation of the form (t) F(t,x(t)) where F(.,.) is a

multifunction (the orientor field). Such a "set valued differential equation" is

called "differential inclusion". The initial impetus to study diffe.rential inclusions

came from control theory. Then the subject found additional impo,’tmt applications in

ma{hc,natical economics [I], nonsmooth dynamics [2], optimization [3], differential

equations with a discontinuous forcing term [4] etc.
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The purpose of this paper is to prove existence theorems for differential

inclusions governed by nonconvex valued, lower semicontinuous orientor fields which

take values in a separable Banach space. Until now, most of the existence theory for

differential inclusions was developed for upper semicontinuous, convex valued orientor

fields with values in n. However lower semicontJnuous, nonconvex valued orienror

fields appear often in control theory in connection with the bang-bang principle. So

it is important to have existence theorems for differential inclusions governed by

such orientor fields.

2.PRELIMINARIF.

Let (,2) be a measurable space and let X be a separable Banach space, with

X being its topological dual. We will use the following notation.

Pf(X) {A _C X" nonempty, closed}.

For A E 2X\c). we set [A[ sup [[x[[ and by dA(. we denote the distance
xEA

function from A i.e. for all x e X.dA(X inf
aA

A multifunction F d Pf(X) is said to be measurable if it satisfies any of

the following equivalent conditions.

(i) d (x) is measurable for all x X
FC)

(ii) there exists a sequence {fn(.)}n of measurable functions s.t.

F() cl{fn()}n for all (Castaing’s representation)

(iii) for all U X open F-(U) E O F() 0 U } e 2 (in the

language of measurable multifunction F (U) is called the

inverse image of U under F(’)).
A detailed treatment of measurable multifuntions can be found n

Castaing-Valadier [5] ad Himmelberg

We denote by SF the set of all selectors of F(’) that belong to the

LebesNe-Bochner sNce (n) i.e. SF {f(.) e (n) f() e F()-a.e.}. It is

easy to see that this set is closed and it is nonempty if and oniy if

inf Iixll L+().
xE()

Assume that Y,Z are topological spaces and F Y d 21a,{}. We say that

is lower semicontinuous (1.s.c.) if and only if for all V Z open, {y E Y F(y)

V g } is open too.

Finally if -{A-}n are nonempty subsets of X, we define

s-l__im An (x X x s-lira Xn,Xn 6 An.n _> I}.
n-)co

By W(’) we will denote the Hausdorff measure of noncompactness i.e. if B _C X

is botmded, then (B) inf{r > 0 B can be covered by finitc.ly m.nny balls of
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radius r}. This is equivalent to the Kuratowski measure of nonconq>actness [7] (see
also Banas-(;oebel [8]). Recall that by a Farc function we mean a function w

[O,TJ’xtR+ + satisfying the Caratheodory conditions (i.e. it is measurable in t

and continuous in x),w(t,O) 0 a.e. and such that u(t) z 0 is the only solution

of the problem u(t) (s,u(s))ds,u(O) O.

3. F_XISTENCETHEOREIS.

The setting is the following. e are given a fnite intervaI T [O,b]. On T

we consider the Lebesgue measure dr. lso let X be a separable reflexive Banach

space. By X we ill denote X ith the weak topology. e Cauchy problem under

consideration is the following:

xCt)

e FCt,Ct))}Co) xo

By a solution of ) we understand an absolutely continuous function x T X

satisfying () for almost all t T.

Our first existence result is the following"

THEOII 3.1. I_f_f F TxX Pf(X) is a multifunction .t.

1) for all x X, F(’,x) is measurable

2) for all t T,F(t,-) is 1.s.c. from X into X

3) for all x X, [F(t,x)! g,(t) a.e. with C’} El(T)
4) for all B X nonempty and bounded we have

CFCt,B)) _(wCt,c(B)) a.e.

where (.) is the Hausdorff measure o nonco,npactness and w(’,.) is a

Kamke function.

then () admits a solution.

PROOF: Let r 1111. mnd consider Br(XO) {x X IlX-Xoll r}. Because o the

reflexivity of X,Br(XO) is w-compact md metrizable for the weM: [opology (see

anford-Schwartz [9], theorem 3, p. 3). In the sequel we will al,:ays consider

Br__fXo) with the were topology’. Let L Br..iXo Pf(I2.(T))_X be the mtl] ti function

defined by L(x) S(.,x). Our claim is tha L(.) is 1.s.c. From Delahaye-Deel

[10] we know that it suffices to sl,ow t.hat tot any x x in B (Xo) we have
n r

1

Sc x)
C s-lm SF( x )" For that purpose let t’(’) SF( x)" Then fCt) F(t,x)

n- ’n

a.e. A straightforward application of Au,nknann’s selection theorem can give us f .) E

S( x
s t d (fCt)) lit(t) fn(t)ll for all t C T. Since F(t .) is s c

n F(t,Xn)
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from Xw into X, F(t.x) C_ s-lim___ F(t,Xn) and so lim d
n- n- F(t,Xn) n-o

O, which by the dominated convergence theorem implies that f (.) f(.) =>n
1f(.) E s-lim SF(" Xn). So we lmve. shown that SF(, x)

C s-lim SF( which as we-- ,Xn)
already said, implies the lower semicontinuity of L(-). Hence we can now apply

theorem 3.1 of Fryszkowski [11] and deduce that there exists $ Br(XO) [,(T)
continuous s.t. 8Cx) 6 LCx for x e BrCXo). set f(t.x) $Cx)C t) and consider

the following single valued Cauchy problem

x(t) f(t,x(t))}(o) xo

Let W {xC- e CxCT xCt e BrCxo)
W W defined by

for al t T} and consider the nap

(x)Ct) x0
+ fCs,xCs))ds.

For t,t’ E T,t _< t’ we have tbt

t’ t
IIO(x)(t’) -b(x)(t),, ,,x

0
+ 0 f(s.x(s))ds x

0 of(S,X(s))dsII

IItf(s,x(s))dsll <. ftll(s,x(s))llds < tq(s)ds
:> [[Cx)(t’) -Cx)Ct)l[ < a

when t’ t[ ( 5, for a11 x(’) W. Thus v,e deduce that (W) is an

equicontinuous subset of Cx(T and in fact it is uniformly equicontinuous since T

is a compact interval.

Also we claim that (-) is continuous. For tha.t purpose let x (’) x(’) in
n

W. Then we have"

II(Xn.)(t (x)(t)ll =lix0 + f(S,Xn(S))ds x
0 f(s.x(s))dsll

_< O][fCS,XnCS)) fCs,xCs))[]ds.

Applying the dominated convergence theorem we get th-t
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,Cxn) +C)I o

as n . Now consider the classical Caratheodory approximations

x (t)n nf(s.Xn0
+ s))ds for b
0

Note that for all n > x (-) E W and
n

iiXnCt) CXn)Ct)’l llCXn)Ct4) (Xn)Ct)l for l_n <- t _< b

/,1/n /,1/n
while llxnCt -OCx)Ct)ll _< Jot)fCS.XnCS}},ds Jo,CS)ds for 0 < t _< 1/n.

Thus we have that

ilx IIo -* 0
n CXn)

as n . Let R (XnC’)}n>_l. Then since R _c (I 0) (R) + (R) we deduce that

R is uniformly equicontinuous. Set R(t) {Xn(t)}n_>1 for t E T. Then we have

CRCt)) ^ fCs,RCs))ds +
__1fcs’Rcs))ds
n

Note that given a > 0 we can find n() s.t. (s)ds < a/2 for t E T,n _>

n

1. Hence we have that

y
t_l. CS,XnCS))ds n )_ nCa) (_ 2 sup l&CS)ds ( .

n>n() t
n

Using this estinmte and the propoerties of (’) we get that

[R(t)] _< y[f(s,R(s))]ds.

Since for all s T,R(s) is bounded, using hypothesis 4} we have that"

CfCs,RCs))) _< wCs.CRCs )))a.e.

=> ,[R(t)] _( w(s,(R(s)))ds.

Since R(O) Xo,(R(O)) 0 and w(-,’) is a Knmke function we must have that
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for all t T. But recall (see [8]) that

TCR) sup TCRCt)).

So (R) O. which means that R is a relatively compact subset of Cx(T).

Therefore we can find a subsequence {%(-) Xk(.)}k_l of {Xn(.)}n>_lS.t.

Xk(" x(’) 6 W. So IIxk b(Xk)llo IIx b(x)llm. But we have already seen that

IIx
k (Xk)ll0o -* O. Thus finally we have that

IIx (x)ll 0 => x(t} x
0

+ f(s.x(s))ds x(*) solves

Since the vector field of {} is a selector of F{’,’}, we conclude that x(’)

solves {).
Q.E.D.

RENARK. The theorem remains true if we essume that X is a separable dual space ’ith

a separable predual and F(t..} is 1.s.c. from Xw into X.

When X is finite dimensional we can have a more general boundedncss hypothesis.

THEORF 3.2. I__f F TxX Pf(X} is a multifunction s.t.

1) for all x 6 X, F(.,x) is measurable and IF(t,:}] a(t)llxll + b(t)

a.e. with a(-),b(,) 6 EI(T
2) for all t 6 T,F(t,.) is 1.s.c.

then () admits a solution.

PROOF" Let N [(llxoI12 + 1)e2[ilalll" + Ilblll) 1]
1/2

and define the following new

orientor field.

[F(t,x) for Ilxll N

F(t.x) IF Mx(t II-D for llxll > N

Then for every t T,F(t,’) is the composition of the multiftmction F(t.’)

and of the M-radial retraction map r X - BN{O} {z X Ilzll (_ N} defined by

r(x) j if Ilxll _< 14

[]ll-Mx f Ilxll > M

It is well known that r(,) is Lipschitz. So F(t,.) is 1.s.c. Clearly it is

measurable in t and for all x 6 X, [F(t,x)[ a(t)M + b(t)a.e. So F(.,-)
satisfies the hypotheses of theorem 3.1 (recall that X is finite dimensional) and so

by that theorem there exists x T X absolutely continuous s.t. (t) (,x(t))
a.e., x(O) xO. Our goal is to show that for all t e T, IIx(t)ll _< M. We proceed by

contradiction. Suppose that there exist tl,t2 T s.t. for t 6 (tl,t2)llx(t)ll > hi.
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Then we bve thaz ’(t) E FCt.[[xCt)i a.e. on (tl.t2) ----> [[(t)] aCt)hi + bCt a.e.

Set z(t) Ilx(t)ll2 + 1. Then - z(t) tIIx(t)ll2 + 1] 211x(t)ll Ix(t)la.e. Since

d--qtlx(t)ll _< l(t)ll we get that

d
-zCt) _< 211xCt)ll[aCt)ll + bCt)]

211xCt)llEaCt)llx(t)ll + bCt)]a.e, on {tl,t2)-

Because llx(t)ll > I 1 on {tl,t2) we have that

d"zCt 2[aCt)Cllx(t)ll2 + 1) + bCt)CllxCt)ll2 + 1)]

2[a{t) + b(t)]z(t)a.e, on (tl,t2).

Since for t t (tl,t2) we already have that IIx(t)ll (_ I,

and get that for all t E T

z(t) z(O) / 2 (a(s) + b(s))z(s)ds.

we can now integrate

Using Gronwall’s inequality we get that for all t E T

llxCt)ll

_
[(llxol12 + l)ex’p C2JoCaCs + bCs))ds) 1]

I/2

x(.)

So for all t T, llx(t)[[ _( 1. Then F(t,x{t)) F(t,x(t))
solves the original Cauchy problem

which implies that

Q.E.D.

Another existence result in this direction is the following.

X is finite dimensional.

THEOREN 3.3. ]__f F TxX d Pf(X) is a multifunction s.t.

1) for all x 6 X,F(’,x) is measurable and IF(t,x) a(t) @([Ixll)a.e.
with a(’) L and (,) a positive continuous function s t

/

t
ds +

2) for all t T,F(t,,) is l.s.c.

then () admits a solutiou.

PROOF" Because a(,) E L and because of our integrability hypothesis on &(’)+

can find bI > ]lXol, s.t. Oa(S)ds < ’llx011 (s) ds.

Again assume that

we
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Aain introduce a new orientor field F(.,.) defined as before by

IF(t.)F{t,x)

[(t

if Ilxll M

i Ilxll > M

We have already seen in the proof o theorem 3.2 that F(.,-) satisfies all

hypotheses of theorem 3.1. So we can find x T X absolutely continuous s.t.

e F(t,x(t)) a.e. x(O) xO. Oar claim is that llx(t)ll M for all t e T. Suppose
not. Then we can find to T s.t. [lX(to)ll > M. On the other txnd we have llx(O)ll

llxoll < M. Hence we can find t* e T s.t. llxoll llx(t)ll M for all t [O,t’]. So

we can write

(t} F(t,x(t)}a.e. on

=> [[(t}l[ < a(t}#([[x(t}[I}a.e, on [O,t’]

=> -Itlx(t)ll _< a(t)#(llx(t)ll)a.e, on E0. t’]

=> dlx(t)[ _( 2(s)ds (s)ds

J,x0,(s

a contraciction to our choice of M. Thus IIx(t)ll g M for all t 6 T and so

F(t,x(t)) F(t,x(t)), which implies tlt x(’) solves ().
Q.E.D.

REMARKS" 1) If T R+ then we divide it into subintervuls T [n-l,n]. Then on

T [0,1] we consider the Cauchy problem () and find a solution Xl(- ). (h, T2

[1,2] we consider gain () but with initial condition x(1) Xl(1 ). Continuing

this way we obtain a sequence of partial solutions {Xn(’)}n defined on Tn n )_ 1,

which vhen pieced together give us the global solution on +.
2) I the domain o F(’,’) is TXBr(XO), then local versions o those results

are valid.

3) The above theorems as well as the one tl’t follows extend significantly

earlier results obtained by Bressan [12], Kacz3mski-Olech [13] and Lojascwicz [14].

e will conclude this work with an existence result concerning continuous

orientor-fields on separable Ba_ch space X. But first we need to introduce the

concept of a semi-inner product.
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Let X be a Banch spce and X its dual. Consider the map J X 2
x

defincd by J(x) { X (x.x) ,x,2 ,xa,2}. Thanks to the Hahn-ch

theorem J(x) for all x X. Using J(-} we can define the semi-lnner product

(...)_ XxX- by

Cx.Y}_ Inf{CY.X} y J(y)}.

For more details about semi-inner products the reader can consult Dimling [15]
(p. 33).

Now let T [O.b] and let X be any separable Banach space. By h(’..) we

will denote the Hausdorff metric on Pf(X).
THEOREM 3.4. I_[ F TxX Pf(X) is a multifunction s.t.

1) for all x X, F(..x) is measurable

2) for all x,y E X, h(F(t,x),F(t,y}) < k(t)llx- yl[ with k(-) e L+*(T)
3) SF(..Xo
4) for all y e F(t,x) (y,x)_ < cCt)EIIxll2+l] with coo e LI+cT)-
then () admits a solution.

PROOF" Let M2 [.[]Xo]12+l]e 1 1. Again we introduce the new orientor field

F(’,’) defined by

f
F(t.x) J](t’x)

Ct.,-)

if Ilxll M

if Ilxll > M

Clearly FC’,x) is measurable. Also if r(’) is the M-radial retraction map,

then FCt.x FCt.r(x)). So for any x,y 6 X we have"

h((t,x).(t,y)) h(F(t.r(x}),F(t,r(y)))

k(t) lir(x) r(y)ll < 2k(t)lix-y[[.

Furthermore note that llXol
_
M and so F(t,Xo) F(t,Xo}. ltence by hypothesis

3) S g which is equivalent to saying that tnfllyll LI(T)
"t"

F(-.Xo) ze(t,Xo
So we can apply theorem of Muhsinov [16] and get that the Cauchy problem

(t) (t.x(t))

x(O} xo

admits a solution Let x(*) be such a solution. We will show that x(-) solves

the original Cauchy problem. I"o show that let u(t} [Ix(t)ll2 + 1]. Then we have"
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(().x())_ <_ c()[x() + z] c()u()

=> u(t) _< u(O) + c(s}u(s)ds.

Applying Gronwa11’s inequality we get that

Ilcll
lu(ou(t) <_ e

Ilcll
[llx0112 + 1]e

--> x()2 < 2

=> x(t) _<

But then from the definition of F(.,’) we bve that for all

F (t0xCt)) FCt,x(t))

tET

=> x(’) solves ().
Q.E.D.

In this paper we extended the works o Kaczyski-Olech [13], Brcssan [12] and

Lojasicwicz [14]. In particular theorems 3.1 and 3.4 provided infinite dimensional

versions of those results,which are important in studying distributed parameter

control systems, characteristic of mechanics and mathematical physics. On the other

hand in theorems 3.2 -und 3.3 which are finite dimensional, we have less restrictive

hypotheses than [12], [13] and [14]. Specifically our orientor field F(’,,)
satisfies Caratheodory type conditions while in [12] and [14] F(*,*) is jointly

lower-semicontinuous and in [13] iz is Hausdorff continuous in zhe state variable x.

Furthermore our boundedness hypothesis is more general than thie of [12] mid [14]
where the orientor field stays within a fixed ball o radius H > O, while in [13]
F(*,*) is integrably bounded.
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