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1. INTRODUCTION.

In the recent years there has been an increase in interest in the investigation
of systems described by differential inclusions. In ary ordinary differential
equation the tangent at each point is prescribed by 2 single valued function. In a
differential inclusion the tangent is prescribed by a multifunction (set valued
function) which is usually called an orientor field. Many problems of applicd

mathcmatics lead us to the study of dynamical systems having velocities not uniquely
determined by the state of the system, but depending only looscly upon it. In these

cases the classical equation i(t) = f(t,x(t)) describing the dynamics of the system
is replaced by a relation of the form i(t) € F(t.x(t)) where F(-,*) is a
multifunction (the orientor field). Such a "set valued differential cquation” is
called "differential inclusion™. The initial impetus to study differential inclusions
came from control theory. Then the subject found additional important applications in
mathematical economics [1], nonsmooth dynamics [2]. optimization [3]. differential

equations with a discontinucus forcing term [4] etc.
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The purpose of this paper is to prove existence theorems for differential
inclusions governed by nonconvex valued, lower semicontinuous orientor fields which
take values in a separable Banach space. Until now, most of the existence theory for
differential inclusions was devcloped for upper semicontinuous, convex valued orientor
fields with values in R". However lower semicontinuous, nonconvex valued orientor
fields appear often in control theory in connection with the bang-bang principle. So
it is important to have existence theorems for differential inclusions governed by
such orientor fields.
2.PRELIMINARIES.

Let (0,2) be a measurable space and let X be a separable Banach space, with

X* being its topological dual. We will use the following notation.

Pf(X) = {A C X: nonempty, closed}.

For A € 2X\(¢}. we set |A| = sup lixll and by dA(°) we denote the distance
XEA

function from A 1i.e. for all x € X.dA(x) = inf lx-all.
a€A

A multifunction F : @2 > Pf(X) is said to bc measurable if it satisfies any of

the following equivalent conditions.

(i) w > d (x) is measurable for all x € X
F(v)

(ii) there exists a sequence (fn(')}n>l of measurable functions s.t.
F(w) = cl{fn(w)}n>1 for all w € 0 (Castaing’s representation)

(iii) for all UCX open F (U) =0 €0 : F(w) NU # ¢} €3 (in the
language of measurable multifunction F (U) is called the weak
inverse image of U under F(-)).

A detailed treatment of measuiable multifuntions can be found in

Castaing-Valadier [5] anrd Himmelberg [6].

¥We denote by S; the set of all selectors of F(+) that belong to the

Lebesgue-Bochner space L;(Q) i.e. S; = {f(-) € L;(Q) ¢ f(w) € F(u)u—a.e.}. It is

easy to see that this set is closed and it is nonempty if and only if

inf  Ixll € L ().
x€F(w)

Assume that Y,Z are topological spaces and F : Y = 22\{¢}. We say that F(*)
is lower semicontinuous (l.s.c.) if and only if for all VCZ open, {y €Y : F(y) N
V # ¢} 1is open too.

Finally if {An}n>1 are nonempty subsets of X, we define

s-1limA = {x € X : x = s-limx_,x_€ A_.n > 1}.
—— "n n''n n
no®

By +«(*) we will denote the Hausdorff measure of noncompactness i.e. if B C X

is bounded, then +«(B) = inf{r > O : B can be covered by finitely many balis of
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radius ¢ r}. This is equivalent to the Kuratowski measure cf noncompactness [7] (see

also Banas-Goebel [8]). Recall that by a Kamke function we mean a function w :

[O,T]xR+ - R+ satisfying the Caratheodory conditions (i.e. it is measurable in t

and continuous in x),w(t,0) = 0 a.e. and such that u(t) = 0 is the only solution
t

of the problem wu(t) < I w(s.,u(s))ds,u(0) = 0.
0

3. [EXISTENCE THEOREMS.
The setting is the following. We are given a finite interval T = [0,b]. On T
we consider the Lebesgue measure dt. Also let X be a separable reflexive Banach

space. By Xw we will denote X with the weak topology. The Cauchy problem under

consideration is the following:

x(t) € F(t.x(t))

x(0) = X0 =)

By a solution of (%) we understand an absolutely continuous function x : T » X
satisfying (%) for almost all t € T.

Our first existence result is the following:
THEOREM 3.1. If F : TxX » Pf(X) is a multifunction s.t.

1) for all x € X, F(*,x) 1is measurable
2) for all t € T,F(t,*) is l.s.c. from Xw into X

3) for all x € X.[F(t,x)| < ¥(t) a.e. with () € LI(T)

4) for all B C X nonempty and bounded we have

v(F(t.B)) < w(t.v(B)) a.e.

vhere +y(*) 1is the Hausdorff measure of noncompactness and w(*,*) is a
Kamke function.

then (%) admits a solution.

PROOF: Let r = Hw"l, and consider Br(XO) ={x€X: Hx—xoﬂ < r}. Because of the

reflexivity of X,Br(xo) is w—comﬁact and metrizable for the weok topology (see

4
Dunford-Schwartz [9], theorem 3, p. 434). In the sequel we will always consider
Br(xO) with the weak topology. Let L : Br(xo) - Pf(Li(T)) be the multifunction

defined by L(x) = S;(' )" Our claim is thav L(*) is l.s.c. Trom Delahayc-Derel

[10] we know that it suffices to sLow that for any X Y5 x in Br(xO) we have

For that purpose let f(+) € S Then f(t) € I'{t,x)

1 . 1 1
C S —
Sp(e.x) & s7Lm S, F(+.x)"

no® ’ n)
a.e. A straightforward application of Aumann's selection theorem can give us fn(') €
1.
Si. oy s-tod (f(t)) = If(t) - £ _(t)l for all t € T. Since F(t,*) is l.s.c.
F(e.x ) n
n F(t.xn)



462 N. S. PAPAGEORGIOU

from Xw into X, F(t,x) C s-lim F(t.xn) and so limd (f(t)) = lim Nf(1) - f (t‘ﬂ
o o F(t, xn) n-®
=1y
= 0, which by the dominated convergence theorem implies that f ( ) —= () >

f(*) € s- 11m SF( X ) So we have shown that S1 C s-lim S

. ¥which as we
F(+x) = 5750 SF(-.x )

already said, implies the lower semicontinuity of L(+). Hence we can now apply

theorem 3.1 of Fryszkowski [11] and deduce that there exists & : Br(xo) - L;(T)
continuous s.t. &(x) € L(x) for x € Br(xo). set f(t,x) = &(x)(t) ard consider
the following single valued Cauchy problem
x(t)
x(0)

f(t.x(t))

(3e)

i

*0

Let W = {x(°) € CX(T) :x(t) € Br(xO) for all t € T} and consider the map
® : W-> VW defined by

t
(x)(t) = X * j f(s.x(s))ds.
0
For t,t'" € T,t ¢ t' we have that

t t
(=) (t') - ¢(x)(t)" Hx j f(s.x(s))ds - Xy = j f(s.x(s))dsll
0 0

t! t' t!
= HJ f(s.x(s))dsll ¢ J‘Hf(s,x(s))ﬂds < j Y¥(s)ds
t t t

= IP(x)(t') - d(x) (L)l < ¢

when [t' - t| < &, for all x(+) € W. Thus we deduce that &(W) is an

cquicontinuous subset of CX(T) and in fact it is uniformly equicontinuous since T
is a compact interval.
Also we claim that ¢(+) 1is continuous. For that purpose lct xn(-) 2 x(*) in

¥. Then we have:

t t
H¢(xn)(t) = o(x)(t)h =llxg + J;f(s,xn(s))ds - Xg ~ J;f(s.x(s))dsu

< Jbuf(s,xn(s)) - f(s.x(s))Nds.
0

Applying the dominated convergeuce theorem we get that
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Io(x ) - (x}h, 0

as n - ©. Now consider the classical Caratheodory approximations

Xo . for 0<¢t¢ %
Xn(t) ) X, + _;}(s x_(s))ds for L t<b
0 o *“n n-= "

Note that for all p 2 1 xn(-) € VW and

lx_(£) - $(x )(t]I = 10(x ) (t-1) - o(x )(t)U for Leeen

Jd/n 1/n

while Hxn(t) = P(x ()N < | Nf(s,x (s))lids £ | ¥(s)ds for O < t { 1/n.
n 0 n 0

Thus we have that

fx - di(xn)llm -0

as n-® lLet R = {xn(')}nZI' Then since R C (I - ¢) (R) + $(R) we deduce that

R is uniformly equicontinuous. Set R(t) = {xn(t)}n21 for t € T. Then we have

t t
v(R(t)) < v fof(s.R(s))ds + f [f(s.R(s))ds .
t—
n

t
Note that given & > O we can [ind n(e) s.t. f l\p(s)ds < e/2 for t €T,n2

t—
n

1. Hence we have that

t t
Y J;_if(s,xn(s))ds :n 2 n(e)] < 2n§§?8) J -%?(s)ds < e.

Using this estimate and the propoerties of +y(*) we get that

t
VRO € [ Al R()) 108,
Since for all s € T,R(s) 1is bounded, using hypothesis 4) we have that:

Y(£(s.R(s))) < w(s.v(R(s)))a-e.

= A[R(t)] < f;w(s.v(kcs)))ds-

Since R(0) = xo.y(R(O)) =0 and w({*,*) is a Kamke function we must have that
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v(R(t)) = 0 for all t € T. But recall (see [8]) that

¥(R) = sup v(R(t)).
t€T

So v(R) = 0, which means that R is a relatively compact subset of CX(T)'

Therefore we can find a subsequence {xnk(°) = xk(')}k21 of {xn(°)}n>ls.t.

xk(') - x(*) €¥W. So ka - ¢(xk)ll°° = lix - ¢(x)!l . But we have already seen that

ka - d’(xk)ll°° 2 0. Thus finally we have that

t
x - ¢(x)ll , = 0 = x(t) = Xg + I f(s.x(s))ds = x(°*) solves (>¢).
0

Since the vector field of (%) is a selector of F(+,*), we conclude that x(-)
solves (%).
Q.E.D.
REMARK. The theorem remains true if we assume that X 1is a separable dual space with
a separable predual and F(t,*) is l.s.c. from Xw* into X.

When X is finite dimensional we can have a more gencral boundedness hypothesis.
THEOREM 3.2. If F : TxX - Pf(X) is a multifunction s.t.

1) for all x € X, F(*.,x) is measurable and JF(t.x)] < a(t)ixhl + b(t)
a.e. with a(+).b(+) € L1(T)

2) for all t € T,F(t,*) is l.s.c.
then (%) admits a solution.

2 2(llall; + Wbl) _

PROOF: Let M = [(lixyi® + 1)e 172

1]

and define the following new
orientor field.
F(t,x) for lixll < M

F(t.x) =
Mx
F(t.m) for Ixll > M

Then for every t € T,F(t,°) is the composition of the multifunction F(t,*)
and of the M-radial retractionmap r : X - BM(O) = {z € X : llzll { M} defined by

X if Ixit ¢ M
r(x) =

Mx .
m if lixlt > M

It is well known that r(+) is Lipschitz. So E(t.-) is l.s.c. Clearly it is
measurable in t and fer all x € X, |E(t.x)| { a(t)M + b(t)a.e. So E(-.-)
satisfies the hypotheses of thegrem 3.1 (recall that X is finitec dimensional) and so
by that theorem there exists x : T - X absolutely continuous s.t. i(t) € ?(t,x(t))
a.e., x(0) = Xg- Our goal is to show that for all t € T,lx(t)ll < M. We procced by

contradiction. Suppose that there exist tety €T s.t. for t € (tl.t2)Hx(t)H > M.
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Then we have that x(t) € F(t.%i%%%ﬁ) a.e. on (t;.t,) = Ix(t)l < a(t)H + b(t) a.e.
Set z(t) = Ix(t)I® + 1. Then S$=z(t) = ()% + 17 = 2Mx(e)IGx(t)lae.  Since

Lix(£) < IX(E)I we get that

$2(t) < 2Mx(t)fa(e)M + b(t)]

< 2Mx(£)Ifa(t)ix(t)l + b(t)Ja.e. on (t;.t,).
Because lix(t)ll > M 21 on (tl't2) we have that
%;Z(t) < 2Lat) (Ix(e)I% + 1) + b(e)(Ix(e)N2 + 1)]
= 2[a(t) + b(t)Jz(t)a.e. on (t,.t,).

Since for t € (tl,t2) we already have that Ilix(t)ll { M, we can now integrate

and get that for all t €T
t
z(t) € z(0) + 2| (a(s) + b(s))z(s)ds.
(o]

Using Gronwall's inequality we get that for all t €T
2 172
Ix(t)ll < [(onﬂ + 1)exp (2| (a(s) + b(s))ds) - 1]
0

= lix(t)l < M.

So for all t € T,lx(t)ll < M. Then F(t,x(t)) = F(t,x(t)) which implies that
x(*) solves the original Cauchy problem ().
Q.E.D.

Another existence result in this direction is the following. Again assume that

X 1is finite dimensional.
THEOREM 3.3. If F : TxX » Pf(X) is a multifunction s.t.

1) for all x € X,F(*,x) is measurable and |F(t,x)]| < a(t) y(lixl)a.e.

with a(-+) € Li and y(+) a positive continuous function s.t.

1
- ds = + ©
Jiw(s) y
2) for all t € T,F(t,*) is l.s.c.

then (%) admits a solution.
PROOF: Because a(+) € Li and because of our integrability hypothesis on (*) we

M
can find M > HxOH s.t. Jma(s)ds < J‘r JTéT ds.
() It
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Again introduce a new orientor field F(+,*) defined as before by

~ F(t.x) if Ixit ¢ M
F(t,x) =

Mx :
F(t.ﬁ;“) if x> M

We have already seen in the proof of theorem 3.2 that ﬁ(-.-)
hypotheses of theorem 3.1. So we can find x

satisfies all

: T > X absolutely continuous s.t. i(t)
€ F(t,x(t)) a.e. x(0) = X,- Our claim is that |lx(t)ll <M for all t € T. Suppose

not. Then we can find %o €T s.t. Hx(to)ﬂ > M. On the other hand we have I[Ix(0O)ll =

HxOH ¢ M. Hence we can find t' €T s.t. onﬂ < x(L)l ¢ M for all t € [0.,t'"]. So

we can write
x(t) € F(t.x(t))a.e. on [0,t']
= x(t) < a(t)p(lx(t)l)a.e. on [0,t']

= Lix(0)1 ¢ a(t)p(ix(t)a.e. on [0.t']

t'
= JM "¢(“§T?7ﬁ7d"x(t)" < J;a(s)ds < Oa(s)ds

=> JM ’¢(S) 0a(s)ds

a contraciction to our choice of M. Thus Illx(t)ll {M for all t € T and so
F(t.x(t)) = F(t.x(t)). which implies that x(*) solves ().

Q.E.D.

REMARKS: 1) If T = R,. then we divide it into subintervals Tn = [n-1,n]. Then on

Tl = [0.1] we consider the Cauchy problem (%) and find a solution xl(-). On T2 =
[1.2] we consider again (*) but with initial condition x(1) = xl(l). Continuing

this way we obtain a sequence of partial solutions (xn(')}n>1 defined on Tn n2l,

which when pieced together give us the global solution on R+.

2) 1If the domain of F(-,*) is TxBr(xo). then local versions of those results

are valid.

3) The above theorems as well as the one that follows extend significantly
earlier results obtained by Bressan [12], Kaczynski-Olech [13] and Lojasewicz [14].
We will conclude this work with an existence result concerning continuous

orientor-fields on 2 separable Banach space X. But first we need to introduce the
concept of a semi-inner product.
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%
Let X be a Banach space and X* its dual. Consider the map J : X = 2x

defined by J(x) = {x* € X* : (x*.x) = Ix% = 1x*1%}. Thanks to the Hahn-Banach
theorem J(x) # ¢ for all x € X. Using J(°) we can define the semi-inner product
(*.*)_ : XXX >R by

(x.y)_ = inf{(y".x) : ¥ € J(y)}.

For more details about semi-inner products the reader can consult Déimling [15]

(p. 33).
Now let T = [0,b] and let X be any separable Banach space. By h(+,*) we
will denote the Hausdorff metric on Pf(X).

THEOREM 3.4. If F : TxX =» Pf(§) is a multifunction s.t.

1) for all x € X, F{+,x) 1is measurable
2) for all x,y € X, h(F(t.x),F(t.y)) < k(t)llx — yil with k(+) € Li(T)
1
3) SF(‘-XQ) #®
4) for all y € F(t.x) (v.x)_ € c(t)[Ixi®1] with o(+) € LL(T)
then (%) admits a solution.
2 lIcII1
PROOF: Let M2 = ["xoﬂ tl]e - 1. Again we introduce the new orientor field

F(+.*) defined by

F(t.x) = F(t.x) if Ixll < M

Mx .
F(t'ﬁ§ﬁ) if Ixlt > M

Clearly F(+,x) is measurable. Also if r(°*) is the M-radial retraction map,

then F(t,x) = F(t,r(x)). So for any x.,y € X we have:
n(F(t.x).F(t.y)) = h(F(t.r(x)).F(t.r(y)))

< k(t) Hir(x) - r(y)Il € 2k{t)lUx-yl.
Furthermore note that onﬂ { M and so F(t,xo) = F(t.xo). Hence by hypothesis

3). Si # ¢ which is equivalent to saying that infilyll € Li(T).
F(.'XO) z€F(t.xO)

So we can apply theorem 1 of Muhsinov [16] and get that the Cauchy problem
x(t) € F(t.x(t))

x(0) = Xq

admits a solution. Let x(+) be such a solution. We will show that x(*) solves

the original Cauchy problem. To show that let u{t) = [Hx(t)H2 + 1]. Then we have:
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dggt) = 2(d"x§El")Hx(t)H

< (x(1).x(1))_ < e(t)[Ix(t)1Z + 17 = c(t)u(t)
t
= u(t) < u(0) + I c(s)u(s)ds.
0

Applying Gronwall's inequality we get that

licl

u(t) < e (o)

llel
= [ixgh® + 1le |

= k()12 ¢ M2
= Ux(t)ll < M
But then from the definition of ﬁ(-.-) vie have that for all t €T
F (t.x(t)) = F(t.x(t))

=> x(*) solves ().
Q.E.D.

In this paper we extended the works of Kaczynski-Olech [13], Bressan [12] and
Lojasiewicz [14]. In particular theorems 3.1 and 3.4 provided infinite dimensional
versions of those results, which are important in studying distributed parameter
control systems, characteristic of mechanics and mathematical physics. On the other
hand in theorems 3.2 and 3.3 which are finite dimensional, we have less restrictive
hypotheses than [12], [13] and [14]. Specifically our orientor field F(-,*)
satisfies Caratheodory type conditions while in [12] and [14] F(-,*) 1is jointly
lower-semicontinuous and in [13] it is Hausdorff ccntinuous in the state variable x.
Furthermore our boundedness hypothesis is more general than this of [12] and [14]
where the orientor field stays within a fixed ball of radius M > O, while in [13]
F(+.,+) 1is integrably bounded.
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