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ABSTRACT. We examine the solvability of multilinear equations of the form

(x,x x) y, k ,
-k times-

where M
k

is a k-linear operator on a Banach space X and y E X is fixed.
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1. INTRODUCTION.

We study the quadratic equation

B(x,x) y (.)

in a Banach space X, where B is a bounded symmetric bilinear operator on X and

y is fixed in X [2], [3], [7], [9], [i0]. We consider two cases.

CASE i. Let y 0 and set x x h for some x such that the linear oper-

ator 2B(x) is invertible then (i.i) becomes

B(h,h) h y (1.2)

where (B())-lB, y (B(x))-lB(x x) and h E X is to be determined

We introduce the iteration

hn+I ((hn))-l(hn ) for some h
0

X

to find a solution h of (1.2) such that h # x.

It turns out under certain assumptions that iteration (1.3) converges to an

h E X such that h # x, therefore x x h is a nonzero solution of (i.i).

CASE 2. Let y # 0, we then introduce the iteration

)-lXn+I B(x
n

(y) for some x
0 E X (1.4)

to find solutions of (i.i).

The results obtained here can be generalized to include multilinear equations of

the form



584 I. K. ARGYROS

y(x,x x) y
-k times-

where Y is a k-linear operator on X and y is fixed in X [i0].

We now state the following lemma. The proof can be found in [i0].
2. EXISTENCE THEORY.

LEMMA I. Let L
1

and L
2

be bounded linear operators in a Banach space X,

where LI
is invertible, and IILIII "IIL211 < i. Then (L

I
+ L2 )-I exists, 82nd

II (L
1

+ L
2
)-i II

II L2111
l-IlL211 llLl-llI

LEMMA 2. Let z # 0 be fixed in X. Assume that the linear operator (z) is

invertible then (x) is also invertible for all x E U(z,r) Ix E X llx-zll < r],
where r (0,r0) and r

0 [fill[ l[(z)-lll] -i.
PROOF. We have

llN(-z)ll llg(z)-ll l]gll ll-zll llg(

<i

for r (0,r0). The result now follows from Lemma i for LI B(z), L
2 B(x-z)

and x U(z,r).
DEFINITION i. Assume that the linear operator B(z) is invertible.

Define the operators P,T on U(z,r) for some r 0 by

p(x) g(x,x) + - x, (x) (g(x))-(x-)

and the real polynomials f(r), g(r) on R by

and

THEOREM i. Let z X be such that B(z) is invertible and that the following

are true"

a) c > 0;

b) b < 0, b
2 4ac > O, and

c) there exists r > 0 such that f(r) > 0 and g(r) 0

then the iteration

hn+i (hn)-l(hn-y), n 0,i,2
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is well defined and it converKes to a unique solution h of (1.2) in U(z,r) for

any h
0

6 U(z,r).

PROOF. T is well defined by Lemma 2.

CLAIJM i. T U(z,r) into U(z,r).

If x U(z,r) then

T()- z (x)-(-)- z

(x [( -(z))(-z) (z)]

SO

if

ll(x) zli r

(using Lemma 1 for L
1

B(z) and L
2

B(x-z)) or g(r) 0 which is true by

hypothesis.

CLAIM 2. T is a contraction operator on U(z,r).

If w,v U(z,r) then

ll(w)-l[I B(B(v)-l(v-)

ll(w)-l]I B(B(v)-l(v-z)) + [([(v)-l(z-))](w-v)l
, 1 [I( z)-lll + ]!II l[(z).-lll2r + [ll(z)-l!2z-y--]]" llw_v

i II I(z)-lll r i II[I- ll(z)-lll r

So T is a contraction on U(z,r) if 0 < q < i, where

whSch is true since f(r) > 0.

THEOR 2. Asse that there exist r > 0, z, x X satisfying the hotheses
of eorem i d

(a) 0 < < -i +
+ 4]

then if it’ll < h
0
& r + llzil, the solution h if (1.2) is such that

l;ll < llll + ;l z l;.
Moreover, x x h is a nonzero solution of (i.i).

PROOF. By Theorem 1 h 6 U(z,r) therefore
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or

SO

to show that

Assume that II > II for k 0,1,2 n. By iteration (1.3) we have

B(hn+l,hn) h
n

y

llhn+III > i111
it suffices to show

which is true by (b). For consistency we must have

[l-I[ < lieu,

which is true by (a). The result now follows by taking the limit as n --, in (2.1).

Finally note that since llhll > llII, x h # 0 therefore x x h is a non-

zero solution of (i.i).

DEFINITION 2. Assume that the linear operator B(z) is invertible for some

z X. Define the operator P on U(z,r) for some r > 0 by

P(x) B(x,x) y, y # 0

and the real polynomials f(r), g(r) on R by

where

2(r) slr + s2r + s
3f(r) szr2 / sr / s3, g

(lIBll IIB(.)- II )e

s -i111" IIB(z 11- llBll liB(.)-ll 2

:L IIBli lIB(z)-Zll

The proofs of the following theorems are omitted as similar to Theorems i and 2.

THEOREM 3. Let z X be such that the linear operator B(z) is invertible

and that the following are true"

a) s > 0;

2
4SlS2 > 0, andb) s

2
> 0, s

2

.c) there exists r > 0 such that f(r) > 0 and g(r) 0
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then the iteration

B(xn)-l(y)Xn+1
for some x

0
E X is well defined and it converges to a solution x of (l.l) which

is unique in U(z,r) for any x
0

6 U(z,r).
THEOR{ 4. Let z,r be such that the hypotheses of Theorem 3 are satisfied.

Let p < q be positive numbers such that

a) pqlIBIl llyll

then if p [IXol q then the solution x of (l.1) is such that
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