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ABSTRACT. Let P be an affine translation plane of order q admitting a nonsolva-

ble group G in its translation complement. If G fixes more than q+l slopes,

the structure of G is determined. In particular, if G is simple then q is even

and G L2(2s) for some integer s at least 2.
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1. INTRODUCTION.
2r

Let W be a translation plane of square order p If N admits a collinea-

tion group isomorphic to SL(2,pt) and the Sylow p-subgroups are planar, then usually

(in the known cases) the group fixes pr+l components (or slopes). Generally, how-

ever, simply knowing that a group fixes a number of slopes says essentially nothing

concerning the structure of the group. However, for planes of order q we can

make some progress. That is, in this note our objective is to prove the following.

THEOREM A. Let W be an affine translation plane of order q admitting a non-

solvable group G in its translation complement. Suppose G fixes more than q+l

slopes.

(1) If q is odd then 81 G and the of G 2. Furthermore, G al-

ways contains the kern involution.

(2) If q is even then G contains a normal subgroup N such that N L2(2s),
for some s, and G/N is of odd order. Now the Sylow 2-subgroups fix Baer subplanes

elementwise. Furthermore, the Baer subplanes share the same points at infinity and

so N fixes exactly q2+l slopes.

COROLLARY 1. If G is simple then q is even and G L2(2s) for some inte-

ger s 2.

PROOF. When q is odd the kern involution is central in G and so G is not

simple.
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REMARKS. (1) When q is odd it is possible to find G’s with 2-rank one and

2-rank two such that they satisfy the hypothesis of Theorem A. For example,

G
1

SL(2,q), acting on Hall planes of order q has 2-rank one; if we now choose

(Gl,> where is any Baer involution, we get a ’G’ with 2-rank two.

(2) Both the theorem and its corollary cease to be unconditionally true if we

allow G to fix "at least q+l slopes", instead of "more than q+l slopes": the

only known counterexamples seem to be the Lorimer-Rahilly planes Ill and its trans-

pose, the Johnson-Walker plane [2].

The following well known consequences of Foulser [3] will be used on several

occasions in the proof of Theorem A.

RESULT 0. Suppose B is a collineation group of an affine translation plane of

order p that fixes a Baer subplane elementwise. Then

(i) B is solvable;

(ii) the Sylow p-subgroups of B are elementary abelian; and

(iii) the Hall p subgroups of B are cyclic.

2. PROOF OF THEOREM A.

We begin by dealing with the case when q is odd. The first step is folklore

and 8orresponds to Ostrom’s ideas in [].

LEMMA 1. If q is odd then any Klein 4-group in G must contain the unique

kern involution of ; we shall always denote this involution by .
PROOF. Let K [1, a, , ] be a Klein group in G and suppose, if possible

that K. For any involution x in K rite W for its fixed Baer subplane.
x

Now we claim w N cannot be a subplane of if x,y are distinct involutions
x y

in K. If W W we have a Klein group fixing elementwise a Baer subplane of W,x y
contrary to Result O. So W N is a fourth root subplane of W and now we contra-

x y
dict the assumption that G fixes more than q+l slopes. Thus xy acts like -1

on the fixed components of G, in the spread associated with ; i.e., xy is the

required involution.

LEMMA 2. If q is odd then IGI is divisible by 8.

PROOF. If 2 exactly divides G then, by Burnside’s theorem, G has a normal

2-complement [5, 6.2.11] and we contradict the assumption that G is nonsolvable.

For the same reason the Sylow 2-subgroups of G cannot be cyclic of order . Hence

IGI only if the Sylow 2-subgroups are Klein groups. So by Lemma l, G contains

the kern involution and G/(: ) is solvable. Thus we contradict the nonsolva-

bility of G when 8 I GI" The result follows.

LEMMA 3. Suppose q is odd. Then G cannot contain an elementary abelian

2-group of order 8.

PROOF. If S is an elementary abelian subgroup of G, whose order is 8, we

may write

s {,,,,,y,, ] (.)
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and assume that

(2.2)

are distinct subgroups of order 4. But by Lemma i, both L and M contain the kern

involution :. Hence . Interchanging the role of @ and , we find that

is also :. The lemma follows, since we have contradicted the assumption that

LEMMA 4. G contains , the kern involution of u.

PROOF. Let S denote a Sylow 2-subgroup of G. So S 8 (Lemma 2) and non-

cyclic, because G is nonsolvable. Now Lemma i applies unless the 2-rank of S is

one. Thus S is the generalized quaternion group

2
n

2 2
n-I

-i -i(x,y x i, y x y xy x for n m 2) (2.3)

2n-2and so contains Q (x y), the quaternion group of order 8.

Now let a denote the unique involution in Q and, to get a contradiction,

assllme is a Baer involution with fixed plane U Now Q leaves u invariant

but does not fix it elementwise because of Result 0. Moreover, no element of Q can

induce a Baer involution on U because Q fixes > q+l slopes of u Thus the

restriction map

Q> QI (2.4)

has as its image <), where is the kern involution of So ker p is

clearly a noncyclic group Z of order 4, contrary to Result 0.

The lemmas proved so far add up to Theorem A, Part (i). To deal with the case

when q is even we need the following version of a theorem of Johnson [6], deduced

from Hering [7].

RESULT 5. Suppose @ is an affine translation plane of even order admitting a

nonsolvable group H in its translation complement. Assume a Sylow 2-subgroup of H

fixes a Baer subplane elementwise. Then H contains a normal subgroup N such that

H/N is of odd order and N L2(2s) for some integer s.

PROOF. Use Johnson’s argument in [6, Theorem 2.3].

L,94A 6. If q is even then the Sylow 2-subgroups of G fix Baer subplanes of

U elementwise.

PROOF. Let S be a Sylow 2-subgroup of G and note that elements of U fixed

by S form a subplane S’ because S fixes many slopes. To get a contradiction we

assume U
S

is not a Baer subplane of . Now let be any involution in the center

of S and let be its fixed Baer subplane. Then we have a chain of planes

u D UDUS" Hence the order of S& q and we contradict the assumption that G

fixes more than q+l slopes. The result follows.

Now by Result 5 and Lemma 6 we immediately have

LEMMA 7- Suppose q is even. Then the Sylow 2-subg:’oups of G fix Zaer sub-

planes elementwise and generate of a subgroup N L2(2s) where 2
s ,II IGI
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To complete the proof of Theorem A we restrict ourselves from now on to the sit-

uation described in Lemma 7.

LEMMA 8. N fixes a unique affine point 0.

PROOF. Suppose N, which is in the translation complement of N, fixes a se-

cond affine point of . Then N is a planar group of W of order > q. Now by

Lemma 7 we have a Baer chain SD NN" If N # NS we have the same contradiction

as in Lemma 6; otherwise we have a nonsolvable group fixing a Baer subplane element-

wise, contrary to Result 0.

LEMMA 9. The only affine point fixed by distinct Sylow 2-subgroups of N is 0,

the unique point fixed by N.

PROOF. N is generated by any two of its Sylow 2-subgroups, so we contradict

Lemma 8 unless the lemma is valid.

For 2s# 4, Lemma 9, when combined with Foulser and Johnson [8, Proposition 3.4],
shows than N fixes q2+l slopes. From Johnson [9, Theorem 2.1], the same is true

if 2s= 4 as N fixes at least 3 slopes. This proves Part (2) of Theorem A.
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