ON THE NON-EXISTENCE OF SOME INTERPOLATORY POLYNOMIALS

C.H. ANDERSON and J. PRASAD

Department of Mathematics California State University Los Angeles, California 90032 U.S.A.

(Received May 20, 1985)

ABSTRACT. Here we prove that if x_k , k = 1, 2, ..., n + 2 are the zeros of $(1 - x^2)T_n(x)$ where $T_n(x)$ is the Tchebycheff polynomial of first kind of degree n, α_j , β_j , j = 1, 2, ..., n + 2 and γ_j , j = 2, 3, ..., n + 1 are any real numbers there does not exist a unique polynomial $Q_{3n+3}(x)$ of degree $\leq 3n + 3$ satisfying the conditions: $Q_{3n+3}(x_j) = \alpha_j$, $Q_{3n+3}(x_j) = \beta_j$, j = 1, 2, ..., n + 2 and $Q_{3n+3}(x_j) = \gamma_j$, j = 2, 3, ..., n + 1. Similar result is also obtained by choosing the roots of $(1 - x^2)P_n(x)$ as the nodes of interpolation where $P_n(x)$ is the Legendre polynomial of degree n.

KEY WORDS AND PHRASES. Roots, interpolatory polynomials, non-existence, nodes. 1980 AMS SUBJECT CLASSIFICATION CODE. 41A25.

1. INTRODUCTION.

In [1] R.B. Saxena considered an interesting problem of (0,1,3) interpolation by taking the roots of $(1 - x^2)P_{n-2}(x)$, where $P_{n-2}(x)$ is the Legendre polynomial of degree n - 2, as the nodes of interpolation. By (0,1,3) interpolation, Saxena meant that for the collections $\{\alpha_j\}_{1}^{n}, \{\beta_j\}_{2}^{n-1}$, and $\{\gamma_j\}_{1}^{n}$ of real numbers and the zeros x_j of $(1 - x^2)P_{n-2}(x)$ arranged so that

 $-1 = x_n < x_{n-1} < \ldots < x_2 < x_1 = 1$ a polynomial $R_n(x)$ of degree $\leq 3n-3$ can be constructed so that

 $R_{n}(x_{j}) = \alpha_{j}; j = 1, 2, ..., n,$ $R_{n}'(x_{j}) = \beta_{j}; j = 2, 3, ..., n - 1,$

and

$$R''_{n}(x_{j}) = Y_{j}; j = 1, 2, ..., n.$$

Saxena proved that such a polynomial exists uniquely if n is even and for n odd there does not exist a unique polynomial $R_n(x)$ satisfying the above conditions. Later Varma [2] obtained the following result in this direction:

THEOREM 1 (VARMA). Given a positive integer n and real numbers $\alpha_k(k = 1, 2, ..., n + 2)$, $\beta_k, \gamma_k(k = 2, 3, ..., n + 1)$ there is, in general no polynomial $F_{3n+1}(x)$ of degree $\leq 3n + 1$ such that $F_{3n+1}(x_k) = \alpha_k$; k = 1, 2, ..., n + 2, $F_{3n+1}(x_k) = \beta_k$;

k = 2,3,...,n + 1 and $F_{3n+1}''(x_k) = \gamma_k$; k = 2,3,...,n + 1 provided x_k 's are the zeros of $(1 - x^2)T_n(x)$ where $T_n(x)$ is Tchebycheff polynomial of first kind and if there exists such a polynomial then there is an infinity of them. 2. MAIN RESULTS.

In connection with the above results we shall prove the following.

THEOREM 2. For any positive integer n, with $1 = \xi_1 > \xi_2 > \ldots > \xi_{n+1} > \xi_{n+2} = -1$ the zeros of $(1 - x^2)P_n(x)$ where $P_n(x)$ is the Legendre polynomial of degree n, there is in general no polynomial $R_{3n+1}(x)$ of degree $\leq 3n + 1$ such that, for arbitrary real numbers $\{\alpha_j\}_1^{n+2}$, $\{\beta_j\}_2^{n+1}$ and $\{\gamma_j\}_2^{n+1}$ the conditions:

$$R_{3n+1}(\xi_j) = \alpha_j; \ j = 1, 2, \dots, n + 1, n + 2,$$
 (2.1)

$$R'_{3n+1}(\xi_j) = \beta_j; \ j = 2, 3, \dots, n+1$$
 (2.2)

and

....

$$R_{3n+1}(\xi_j) = \gamma_j; \ j = 2,3,...,n+1$$
 (2.3)

are satisfied. If there does exist such a polynomial then there are infinitely many of them.

We'also prove the following result for Tchebycheff nodes:

THEOREM 3. For any positive integer n, with $1 = x_1 > x_2 > \dots > x_n > x_{n+1} > x_{n+2} = -1$ the zeros of $\omega_n(x) = (1 - x^2)T_n(x)$, there is in general no polynomial $Q_{3n+3}(x)$ of degree $\leq 3n + 3$ such that for arbitrary real numbers $\{\alpha_j\}_{1}^{n+2}$, $\{\beta_j\}_{1}^{n+2}$ and $\{\gamma_j\}_{2}^{n+1}$ the conditions:

$$Q_{3n+3}(x_j) = \alpha_j; j = 1, 2, ..., n + 1, n + 2,$$
 (2.4)

$$Q_{3n+3}(x_j) = \beta_j; \ j = 1, 2, ..., n + 1, n + 2$$
 (2.5)

and

$$Q_{3n+3}^{(n)}(x_j) = \gamma_j; \ j = 2, 3, \dots, n+1$$
 (2.6)

are satisfied. If there does exist such a polynomial then there are infinitely many of them.

REMARK 1. The comparison of our Theorem 2 with the above mentioned result of Saxena shows that if we do not prescribe the third derivative at ± 1 then there does not exist a unique polynomial regardless whether n is even or odd. In an earlier work [3] we have shown that along with the conditions (2.1), (2.2) and (2.3) if we also prescribe the first derivative at ± 1 a unique polynomial of degree $\leq 3n + 3$ still does not exist. It is also evident from Theorem 3 that even if we prescribe the first derivative at ± 1 a unique polynomial of degree $\leq 3n + 3$ does not exist although the nodes of interpolation are different from that of [3].

REMARK 2. We shall give here the proof of Theorem 3 only. The proof of Theorem 2 can be obtained along the same lines. PROOF OF THEOREM 3. We will show that if all of

$$\alpha_{j} = 0; \ j = 1, 2, \dots, n + 1, n + 2,$$

$$\beta_{j} = 0; \ j = 1, 2, \dots, n + 1, n + 2,$$

$$\gamma_{i} = 0; \ j = 2, 3, \dots, n + 1$$
(2.7)

then there exists a polynomial $Q_{3n+3}(x)$ of degree $\leq 3n + 3$ which is not identically zero, but satisfies (2.4), (2.5) and (2.6). The desired result then follows immediately from the theory of linear equations. From the definition of $\omega_n(x)$ and conditions (2.4), (2.5) and (2.6), together with the requirements (2.7), it is clear that the desired polynomial must be of the form

$$Q_{3n+3}(x) = (1 - x^2)^2 T_n^2(x) h_{n-1}(x)$$
(2.8)

where $\mathcal{A}_{n-1}(x)$ is an unknown polynomial of degree $\leq n - 1$. Since we have also required $Q_{3n+3}'(x_j) = 0$; for j = 2, 3, ..., n + 1, simple calculation provides

$$(1 - x^{2}) \lambda'_{n-1}(x) - 3x \lambda_{n-1}(x) = cT_{n}(x)$$
(2.9)

for unknown real constant c. Letting x = $\cos\,\theta\,$ and

$$\kappa_{n-1}(x) = \sum_{k=0}^{n-1} a_k \cos k\theta$$

we obtaın

$$(1 - x^2)\lambda'_{n-1}(x) = \sum_{k=1}^{n-1} a_k k \sin k\theta \sin \theta$$

Thus (2.9) becomes

$$c \cos n\theta = \sum_{k=0}^{n-1} a_k [k \sin k\theta \sin \theta - 3 \cos k\theta \cos \theta].$$

From this, we obtain on simplification

$$2 c \cos n\theta = \sum_{k=0}^{n-1} a_k [(k - 3)\cos(k - 1)\theta - (k + 3)\cos(k + 1)\theta],$$

from which, by collecting the coefficients of $\cos k\theta$, for $k = 0, 1, \ldots, n$, we may write

$$\begin{aligned} -2a_{1} &- (6a_{0} + a_{2})\cos\theta - 4a_{1}\cos2\theta \\ &+ \sum_{k=3}^{n-2} \{(k-2)a_{k+1} - (k+2)a_{k-1}\}\cos k\theta \\ &- (n+1)a_{n-2}\cos(n-1)\theta - (n+2)a_{n-1}\cos n\theta \\ &= 2c \cos n\theta. \end{aligned}$$

This, in turn, leads to the following system of equations

$$\begin{aligned} -2a_1 &= 0 \\ -(6a_0 + a_2) &= 0, \\ -4a_1 &= 0, \\ (k - 2)a_{k+1} - (k + 2)a_{k-1} &= 0; \ k &= 3, 4, \dots, n - 2, \\ -(n + 1)a_{n-2} &= 0, \\ -(n + 2)a_{n-1} &= 2c. \end{aligned}$$

If n is even, then

$$a_0 = a_2 = a_4 = \dots = a_{n-2} = 0; a_1 = 0$$

but

$$a_{n-1-2j} = \frac{-2c}{n-2} \prod_{k=0}^{j} \left(\frac{n-2-2k}{n+2-2k} \right); \text{ for } j = 0,1,\ldots,(n-4)/2$$

is not necessarily zero.

If n is odd, then

$$a_1 = a_3 = a_5 = \dots = a_{n-2} = 0$$
,

while

$$a_{2j} = \frac{-2c}{n-2} \xrightarrow[k=j]{(n-1)/2} \frac{2k-1}{2k+3}; j = 1, 2, \dots, \frac{(n-1)}{2}$$

with the special case

$$a_0 = -a_2/6$$

which are not necessarily zero. Hence regardless whether n is even or odd, in general, there does not exist a unique polynomial $Q_{3n+3}(x)$ of degree $\leq 3n + 3$ satisfying (2.4), (2.5) and (2.6) and there are infinitely many if they exist.

This completes the proof of Theorem 3. For a complete history on lacunary interpolation we refer to a paper by J. Balázs [4].

REFERENCES

- SAXENA, R.B., On some interpolatory properties of Legendre polynomials III, Academic Bulgare Des Sciences Bull. <u>De L'Institut De Math. 8 (1964)</u>, 63-94.
- VARMA, A.K., Non-existence of interpolatory polynomials, <u>Publ. Math. (Debrecan) 15</u> (1968), 75-77.
- PRASAD, J. AND ANDERSON, C.H., Some remarks on non-existence of interpolation polynomials, <u>Math. Notae Vol. 24</u> (1981-1982), 67-72.
- BALÁZS, J., Sûlyozott (0,2) interpolácio Ultraszférikus polinomok gyökeim, <u>Magyar</u> <u>Tud. Akad. Mat. Fiz. Oszt. Közl. 11 (3)</u> (1961), 305-338.

756