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ABSTRACT. We study the existnece and cardinality of solutions of multilinear differ-

ential equations giving upper bounds on the number of solutions.
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1. INTRODUCTION.

Let n(i), i 1,2 m be positive integers such that n(1) n(2) ... n(m)
n(i)

and let L.I CijDJ i 1,2,...,m be regular linear differential operators de-
J=O

cn(1)fined on (I), where I [a,b] usually (but not necessarily). The coefficient

functions Cij i 1,2 m, j 0,1,2 n(i) are never vanishing real and con-

tinuous on I.

Using some ideas from [1] and [3] we study the branching of solutions u E cn(1)(I)
to the multilinear equation

Mu (LlU)(L2u)...(LmU) 0

Equation (i.i) is related with the null set N(M)

() [u cn()() u 0
which can be infinite dimensional.

We give necessary and sufficient conditions for a (m-l)-tuple (GI,@2 ,m_l)
to be a multiple ordinary branching of a solution to (i.i) where I,e
e 1,2,... ,m-l.

We also study the existence and cardinality of solutions to the initial value

problem

Dn(1)u(z) zi, i 1,2 n(1)-i (1.3)

where z,z
i

I, giving upper bounds on the number of solutions with n multiple

branchings.

Multilinear equations have a rather extensive literature [3], [h], [6]. A few
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special cases of applications (e.g., pursuit problems and bending of beams) may be

formulated in the form (1,1).

Finally we study the problem

when it assumes the form (1.1) for some function %.

2. BASIC THEOREMS.

DEFINITION i. Let BI,B2,... and Bm denote bases for N(LI),N(L2),... and

N(Lm) respectively where

B
i LUIi,U2i Un( i)i with dim(Bi) n(i), i 1,2 m

and let

Ej (B.0 N cn(1)(1)) Bj_1 with dim(Ej) (J) < n(J), J 2,3,...,m.

Obviously N(LI) U N(L2) U U N(Lm) N(M).

of the form

We will seek solutions u N(M)

[ n(l
f E c..(x)

| hie)
j=l e3 e

(x) u(x) =n(e+l)
jl Ce+ljUe+lj

| nim)
/ E o .u .=u_ (x)
kJ-i m3mJ m

e-i x

(2.2)

e ,x e+l

am_l x

for aeI, e 1,2 m-i and aeN(Le) U N(Le+I). A function of the form (2.1)
in N(M) will be said to have a single ordinar branchin5 at x on

e

[ae_l,ae+l]. A function of the form (2.2) will be said to have a multiple ordinary

branching at (i,2 m_l on I [a,b] with @ e 1 ,m-2e e+l
Denote the Wronskian

We(Uli,U2i,...,Un(i)i, Ul(i+l)(xo)
by

W __(x0), e 1,2 m-l.
e

The following theorem shows when N(M) will contain functions having a multiple

ordinary branching.

THEOREM i. Assume that

n(e) (e) + n(e+l) n(1) + i, e 2 ,m-i (2.3)

and if

() E has Just one function __ulj(x)’ J 2,...,m, then there exists u N(M)
having a multiple ordinary branching at (l m-1 if and only if

We(e o, e i, m-i <=> (LiUl(i+l))(i) O, i i, m-l. (2.&)
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PROOF

Cn(m

(ii) dim(Ej) # i, j 2 m, then for every (i m-I with a int I
e

e 1 ,m-2 there exists a u N(M) having a multiple ordinaryand ae ae+l’
branching at (’2 m-1 )"

It is enough to find numbers, Cll ,Cln(1), C21 C2n(2) Cm/,
so that u C

n(l )(I). Therefore we must have

n(1) n(2)
(k)(%)(k)() g cgju2jZ CljUlj

j =z j =i

n(3)
(k)() ZZ c2ju2j

j=i j =l
c 3ju3j (k)(2), k 0,I n(1)

n(m)n(-z)
(kl(x) I %0%0 (kl(%-Z)C U

j=l
m-lj m-lj

j=l

CASE (i). In this case (2.5) becomes

n(e) (k) (e+l). CeU c
j=l e (ae Uln(e+l)(e) 0, e=1,2 m-l, k 0,1,...,n(1) (2.6)

where Cln(e+l # 0 (we take Cln(e+l i). The homogeneous equation (2.6) has a

nontrivial solution if and only if (2.4) holds.

Note that it is easy to verify that

W
e (%) We(ule,u2e ,Un(e)e,Ul(e+l)(De)

-i (e)We (Ule e(e) )(e e=l,2 ,m-ien e U2e Un e LeUl e+l

CASE (ii). If (LeUs (e+l))(e) 0 e 1,2 m-1 we let c 1 ands (e+l)
e e

the rest coefficients zero. We then work as in Case (i). Otherwise we write (2.5)
as

n e+ln(e) (k) (e. CejUej Cln(e+l)Uln(e+l)(e) Z cj (e)
j=l J=l

n(e+l)Ujn(e+l)

e 1,2 m-l, k 0,I n(1).

Note now, that the rank of the coefficients matrix on the left hand side is

(n(1)+l) and thus we have a unique solution for the coefficients on the left hand

side for any choice of the coefficients on the right hand side and for any I,e
e 1,2,...,m-l.

The next theorem characterizes the conditions with the coefficients in (2.2) must

satisfy in order that multiple branching can occur at (l,a2 m_l with

e 1 ,m-2 and I.
e e+l’ e

THEOREM 2. The following are equivalent:

u N(M) on [c,d] c I and u is as in (2.2).

n(e+l)
(L i Ce+ljUe+lj (e) 0, e i m-2.

e
j

k n(e)

(Le+l[j= CejUej])(%) 0, ke 0,i, n(e+l) n(e)

(2.8)

(2.9)
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In particular, (2.8) with Ce+lj # 0 for at least one Ue+lj Ej and (2.9) with

Cej # 0 for at least on Uej E Be- Ee+l are both necessary and sufficient conditions

for U N(M) to have a multiple branching at (,{z2 am_1 on [c,d].

PROOF. If B E # 0, e 1,2 ..,m-2 the result is trivially true. Other-
e e+l

wise as in Theorem i, we have that u N(M) if and only if

n(e) (k) n(e+l). CejUej (e) Z c + u +e lJ e lJJ =i j =i

(k (e)’ k 0,i n(1),

e 1,2,... ,m-l.

The above can be written in the form

n(e (k) -(ae- CejUej
j=l

n(e+l) (k)
Ce+ljUe+lj (e)’

J=l
k 0,i n(1),

]n(e+l) and at least onewhere [Ue+lJ’J=l Ee+l
c’. c otherwise.if Ue+lj B 13 Ee+l, e

(?.0)

e 1,2,...,m-i

Ce+lj # 0. Here c’eJ Cej Ce+lJ
e eJ

Now set c’ -i and u (x)e(n(e)+l) eCn(e)+l)
can ,be written

n(e)+l- C .U

j=l eo ej

n(e+l)
(k)(x) and (2.10)Ce+ljUe+lJj=l

(k)(e) O, k 0,i n(1), e 1,2 m-l.

Now, (2 ii) has a nontrivial solution for c’ if and only if
ej

We(uli,u2i Un(e)i,Un(e)+li)(ge O,

We (Uli ’u2i Un(e)i ’Un (e)+li )(e
-1

a (e)Ween( e Uli ’u2i Un( e )i )(Ce )LeUe (n(e)+i (Ce)’

but

(.u.)

(k)(x)

(k)
Ce+ljUe+lj (e) 0, k 0,1,2 n(1), e 1 m-i

or

in matrix form, where A is the coefficient matrix in (2.12) and the unknowne e
vector. There will exist a nontrivial solution d # 0, e 1,2,...,m-1 if and onlye
if the rank of A e 1,2 m-1 n(e+l) But the n(e+l) X n(e+l) principlee
submatrix of A is the Wronskianmatrix evaluated at a Hence the rank ofe e
A a n(e+l) Therefore (2 13) will have a nontrivial solution if and only if the ranke

(2.12)

Ad =0
e e (2.13)

before we set c -i and
e((e+l )+i

n(e)
Uee+l,+l(X) Z c’.u

J=l ej ej

and (2.10) can now be written as

n(e+l)+l

j=l

i.e., if and only if (2.8) holds and at least one Cp+lj # 0.

On the other hand, u has a nontrivial branching at (l m-1 if and only

if (2.10) has a nontrivial solution for the coefficients on the right hand side. As
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of A is n(e+l). Now elementary row operations on A show that this is equivalent
e e

to (2.9).

We now show that N(M) may contain infinitely many linearly independent functions.

THEOREM 3. Assume that either Case (i) holds in theorem for infinitely many

(li’a2 m-li )’ i 1,2 or Case (ii) holds. In either case, there is a

sequence u i=l N(M) such that u has a multiple
i’"%- %’"%-.

branching at (li,2i...m_li) with ei < e+li’ e i m-2, i 1,2 and

the set [Uli2i" "m-li ]n,i=l is linearly independent on I for every n.

PROOF. We proceed by induction. We may assume without loss of generality that

ei < ei+l’ i 1,2, e 1,2, m-2. Choose Ue+lj’s Ee+I then

n(e+l)
L i Ce+ljUe+lj (x) # 0, x [e]_ ’(e+l) ]"
P

Hence u (x) # 0 on --[el’’e+l)l]’ so
el

u
ae’" "%-i (x) # o

on I [a,b].
Now suppose that u

---%_
Suppose that there exist constants , i 1,2,...,n+l-

n+l
Z .u (x) 0

= %i...%_

i 1,2,...,n are linearly independent.

]n+l[ui2i...m_l.i=l is linearly in-if dn+I 0 then d.1 0, i 1,2,...,n and

dependent. If dn+I # 0
n

(x) - I .udn+l
i=l

i li2i ..m_li
u
in+la2n+l "m-ln+l

for all x I in particular for each x (e_li,ae+li), but

L u (x) 0, x (aen_en+l)e en+l
whereas

n
-i

d u span(dn+l i ei Ee+l
l=l

when x (en’aen+l)’ so LeUaen+l(X) # 0 for some x (aen,aen+l) a contradiction.

DEFINITION 2. Define the set S. by setting
1

S. Ix I/(Liu)(x) 0.
1

Then since L.u, i 1,2,...,m are continuous functions on I the S.’s,
1 1

i 1,2,3,...,m are closed sets and S
1
U S

2
U... Sm I. In particular, any point

ae [ae-l’e+l at which an ordinary branching occurs on [ae_l,ae+l] e 1,2, ,m-i

must belong to Se_1 Se+1 together with any limit point of the set of points at

which ordinary branching occurs since Se_1 Se+1 is closed.

We show that Se_1 Se+1 is nowhere dense in [e-l’e+l ]’ e 1,2,... ,m-l.

THEOREM h Assume that u N(M) as in (2.2) and B E Then
e e+l

Se_1 Se+1 is nowhere dense in [@e-l’&e+l ]’ e 1,2,... ,m-l.
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PROOF. Suppose that Se_I N Se+I, e 1,2,... ,m-I contains a maximal closed

interval ae-l’ ’ae+l’ with le+l’ a’e-1 # 0 e 1 ,2 ,m-1 Then

u(x)
n e+l

C .LI
j=l e0 e0

for x [ae_l,ae+I]
Now let ("e-l’ae+l" c [ae_I’ ,ae+I’ ]. Then by Case (i) in Theorem i there exist con-

such that

ne)c (x) a x a"
j=l e3 Uej e-i e-i

n( e+l
U(" "e-I e+ljx c .u .(x) x

J=l eo ej e-I e+l

ne) (2)uc (x) x<
j=l eo ej ae+l e+l

(:L) (2)stants Cej Cej

belongs to N(M) since
n e+l

L ] )(z) 0
e CejUej

j=l

at z. "e-1 "e+l" But
n e+l

Le( Z CejUej)(x) 0
j=l

n e+l
on [e-i ’e+l ]" Hence U(’_’e_+/- ’ag+ljx) N(Le )" Since j=l" CejUej" (x) N(Le
e 1,2, m-i the proof of Theorem 3 shows that the set Be U {u(a"e_l,a"e+ljX)]
linearly independent. But this contradicts d(L n(e), e 1,2 ,m.e

We now assume that n(1) N(2) n(m) for simplicity (the other cases

can be dealt analogously) and consider the following problem: given

(z0,zI ,Zn(1)_l) ]Rn(1) and z I find u such that

is

Mu (LIU)(L2u)’’" (LmU) 0

Dn(1)u(z) zi, i 0,i n(1)-l. (2.1h)

if N(Le # N(Le+I), e 1,2,...,m-l, then we have at least m solutions, the

unique solutions belonging to N(L ), e 1,2,...,m-1. In addition according toe
Theorems 1 and 2 we may have solutions with one or many multiple ordinary branchings.

e 1,2, ,m have constant coefficients we proceed asIn the event that Le,
follows:- let Sje, J 1,2,...,n(1), e 1,2, m denote the solutions of the

characteristic equation L and assume u N(L on some subinterval I(z) ofe e
containing z, then the restriction u of u on I(z) can be written

where {eSjeXn(l spans N(L
J=l e

n(1 sj eXU(X) E c. e
J-1 3e

and Cje are uniquely determined by (2.1h). By

(2.9) we must have

Le+l(U(e)) O, e 1,2 m-l.

It follows that
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where

n(l tj. dj ee ee

j=l

n(1)
d. c. 0 Cie+itje je e

i=

0 (2.15)

i 1,2 n(1) (2.16)

t s. s
n

e 1,2, ,mie le (1)e (2.17)

Note that each one of the equations in (2.15) can have at most n(1)-i real

’s and tj’s are all real [7].solutions if the dje e
thDenote by apl,p2 pn(1)-i the solutions obtained in the equation in

(2.15), p 1,2,...,m-i and assume that (the other cases can be dealt analogously)

Inequality (2.18) shows that we can have at most (n(1)-l)m-I ordinary multiple

branchings, e.g. (i’21 am-ll is one of them. We have thus proved.

THEOREM 5. If Li, i 1,2,...,m have constant coefficients, then there exists

a solution u E N(M) (u as in (2.2)) to the intial value problem (2.1h) having a

multiple ordinary branching (al,2 m_l with e E I, e 1,2 m-1 if and

only if ge is a root of the exponential polynomial (2.15), where the

tj’s are all real and they are given by (2.16) and (2.17)e
Moreover if (2.18) holds there are at most (n(1)-l)m-1 solutions

(u as in (2.2)).
THEOREM 6. Assume that the hypotheses of Theorem 5 are satisfied.

are at most

solutions u (u

tiple branchings

e 1,2,... ,m-1.

Moreover in this case if there are no solutions with

then the total number of solutions to the problem

dj e s and

u

Then there

(2.18)

(m-i)(n(l )-i )(n(1)-2 )n-i (2.19)

as in (2.2)) to the initial value problem having exactly n mul-

(52 ,m_l in I where any m-2 of the e’S are fixed

n+l multiple branchings

Mu=O

is bounded by
n-i

(m-1)(n(1)-l) E (n(1)-2)j. (2.20)
J=0

PROOF. Without loss of generality we can assume that l denote the first

point at which a branching occurs and u N(Ll) on some subinterval I(z) [z,all].
Then u N(L2) on [ii,//+ ], for some > 0. There are at most m-i possi-

ble values for I" Suppose w > ii is the next point at which a multiple branching

of u occurs. Then u N(L2) on [ll,W]. Hence there exist uniquely determined

cJ2(ll )’ j 1,2 ,n(1) such that
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u(x)
n(). dj2 (ail)Uj2(x)
J=l

]n(1)on [l,W] where uj2oj=l span N(L2). By Theorem 2,

n()
ILl( E dj(ll)Uj2)](v) 0

j=l

at v GII and v w. Hence there are m-2 possible w’s with w > Ii" This

argument applies again for the next branching. Since this argument can be applied in

any of the m-1 rows in (2.18), this proves (2.19).

Finally (2.20) can easily be proved if we use (2.19) for J 0,1,2 n and

add the results.

REMARK i. (a) We can assume in Theorem 6 that any h points h E [1,2 m-lS
are fixed from (al,a2 am_I) then proceeding as in Theorem 6 we can prove that

the corresponding relations for (2.19) and (2.20) are respectively

(m-].- (h-1) )(m(1 )-l )h(n(i)-2 )h-1 2.21

and

(b)

above by assuming that (2.18) is true and u as in (2.2). But (2.2) can be written

in (m-l)’. different ways by interchanging the role of the L.’s, i 1,2,...,m.

Therefore in general all the cardinality results obtained up till now can be multi-

plied by (m-i).’

(c) If the Li, i 1,2, m are nonconstant but continuous (as in the

Introduction) we can restate Theorem 5 and (2.2. However the conclusions and the

proofs are going to be exactly analogous.

We now provide examples for Theorems and 6 and (1.4).

Then

APPLICATIONS.

EXAMPLE i. Let

or

(m-l- (h-i) (n(l)-l hnl(n(1)-2 )h 2.22
J=0

Up till now we obtained the cardinality results in Theorems 5, 6 and in (a)

and consider the function f defined bym=2

8 1
xl, x#0

f(x)
xe

0 x=0

Ul(X) e
f(x) up(x) e

2f(x)
LlU u’ f’(x)u, L2u u’ 2f’(x)u

u N(M) can be written as

f(x)ce - x0 >0

de
2F(x)

0 x

ce2f(x), - g x m 0
>0

defxl 0 x

u
I N(LI), u

2
N(L2) and a

u(x) /
u(x)

[
That is, 0 is a limit point of branching points of u.
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In the event that the characteristic equations of Li, i 1,2,...,m have com-

plex roots (2.15) may have infinite solutions to the initial value problem on (-,)
even if we have one ordinary multiple branching in (-,).

EXAMPLE 2. Let m 2, L
1

D
2 + l, L

2
D
2 + h, u(O) O, u’(O) i. Let

u N(LI) on [-g,] for some > 0. Then

i ix i -ix
UlX - e + e

and (2.15) due to (2.16) and (2.17) becomes

e 1

therefore nu, n 0,1,2,...
n

1 2ix 1 -2ixu_x,.. y e e

sin x

1
sin 2x etc

EXAMPLE 3. Consider the equation

kM= 07.
dx

Let

Then

and

L
1

(D-I)(D-2)(D-3), L
2

(D-4)(D-5)(D-6), L
3

(D-7)(D-8)(D-9) and

3xul(x) 2e
x

3e
2x + e

u2(x) 5e
4x

9e5x + &e6x

u3(x) 8e7x 15e
8x + 7e9x

For example we can have the solution u N(M) given by
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2e
x

3e
2x + e3x

u(x) 5e
4x

9e5x + 4e6x

8e7x 15e
8x + 7e9x,

< x in 2

in P X in()
12

ln(4+llO) x < +,12

etc.

The above are solutions corresponding to the order (LI,L2,L3). But we can ob-

tain additional solutions corresponding to (L1,L3,L2), (L2,L1,L3) (L2,L3,L1)
(L3,LI,L2) and (L3,L2,LI).

l,

2.
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