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ABSTRACT. The decomposition method is applied to solve the Duffing and Van der Pol
oscillators without customary restrictive assumptions [I-4] and without resort to

perturbation methods.
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I. INTRODUCTION
The Duffing equation is written

+ + By + yy3 x(t) (l.l)

The Van der Pol equation can be written

Y + J} + BY + y(d/dt)y3 x(t) (I.2)

(If -, B l, y /3, we have the form usually given.) Write

L d2/dt2, R e(d/dt) + B, Ny yy3 in (l.l) and y(d/dt)y3 in (I.2) Thus

both are written

Ly + Ry + Ny x(t) (1.3)

in the standard form for the decomposition method [I-3] where

definite integral from 0 to t. Then,

Ly x(t) Ry- Ny.

Assuming initial conditions y(O), y’(O) are specified, let y
define YO by

YO y(O) + ty’(O) + L-Ix(t).

Then

Yn+l -L-l(d/dt)Yn L-I BYn L-I [Ny]

for n>O.

s the two-fol d

(l .4)

Yn and
n=O
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2. SOLUTION OF THE PROBLEM
To get computable solutions, we need only substitute for Ny the sum y Z Ann=O

for the Duffing case and y(d/dt) An for the Van der Pol case where the An are
n=O

Adomian’s polynomials [I-5] generated for the nonlinear term y3 and representing
it exactly in a rapidly converging series [I-5].

A0 yg
A 3yy
A2 3yY2 + 3YoY

+ +

The deterministic problem is now solved.since all components of y are determined.
n-i

We use an n-term approximation n ..^Yi which, because of the rapid convergence,

is generally sufficient with a very sVl n (say half a dozen or so terms) but

easily carried as far as necessary since the integrals do not involve difficult

Green’s functions. Convergence has been previously established by Adomian [2,5]
and has been shown [2] to be quite rapid.

For the stochastic case [2], none of the usual approximations of statistical

inearization are necessary. The x(t) need not be stationary nor Gaussian nor

delta-correlated. Further e,B,Y and the initial conditions can be stochastic.

No "smallnesS’ assumptions are necessary for the stochastic processes and the non-

linearities. No linearization is used. We can allow <=> + {, B <B> + n,

<y>noAny (R)<y> + o and write Ly x <=>(d/dt)y <B>y {(d/dt)y y

o Z A and proceed as before with Y Z^ Yn"n un=OTe result is a stochastic series fro which statistics are obtained without

the problems of statistical separability of quantities such as <Ry> where

R d/dt n which normally require closure approximations.
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