CHARACTERIZATIONS OF SOME NEAR-CONTINUOUS FUNCTIONS AND NEAR-OPEN FUNCTIONS

C.W. BAKER

Department of Mathematics Indiana University Southeast New Albany, Indiana 47150

(Received April 7, 1986)

ABSTRACT. A subset N of a topological space is defined to be a θ -neighborhood of x if there exists an open set U such that x ε U \subseteq Cl U \subseteq N. This concept is used to characterize the following types of functions: weakly continuous, θ -continuous, strongly θ -continuous, almost strongly θ -continuous, weakly δ -continuous, weakly open and almost open functions. Additional characterizations are given for weakly δ -continuous functions. The concept of θ -neighborhood is also used to define the following types of open maps: θ -open, strongly θ -open, almost strongly θ -open, and weakly δ -open functions.

KEY WORDS AND PHRASES. θ -neighborhood, weakly continuous function, θ -continuous function, strongly θ -continuous function, almost strongly θ -continuous function, weakly δ -continuous function, weakly open function, almost open function, θ -open function, strongly θ -open function, almost strongly θ -open function, weakly δ -open function. 1980 AMS SUBJECT CLASSIFICATION CODE. 54C10.

1. INTRODUCTION.

Near-continuity has been investigated by many authors including Levine [1], Long and Herrington [2], Noiri [3], and Rose [4]. Near-openness has been developed by Rose [5] and Singal and Singal [6]. The purpose of this note is to characterize several types of near-continuity and near-openness in terms of the concept of θ neighborhood. These characterizations clarify both the nature of these functions and the relationships among them. Additional characterizations of weak δ -continuity are given. The concept of θ -neighborhood also leads to the definition of several new types of near-open functions.

2. DEFINITIONS AND NOTATION.

The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. Let U be a subset of a space X. The closure of U and the interior of U are denoted by Cl U and Int U respectively. The set U is said to be regular open (regular closed) if U = Int Cl U (U = Cl Int U). The θ -closure (δ -closure) (Velicko [7]) of U is the set of all x in X such that every closed neighborhood (the interior of every closed neighborhood) of x intersects C. W. BAKER

U. The θ -closure and the δ -closure of U are denoted by $\operatorname{Cl}_{\theta}$ U and $\operatorname{Cl}_{\delta}$ U respectively. The set U is called θ -closed (δ -closed) if U = $\operatorname{Cl}_{\theta}$ U (U = $\operatorname{Cl}_{\delta}$ U). A set is said to be θ -open (δ -open) if its complement is θ -closed (δ -closed). For a given space X the collection of all θ -open sets and the collection of all δ -open sets both form topologies. The space X with the θ -open (δ -open) topology will be signified by X_{θ} (X_{e}).

DEFINITION 1, A function f: $X \rightarrow Y$ is said to be weakly continuous (Levine [1]) (θ -continuous (Fomin [8]), strongly θ -continuous (Long and Herrington [2]), almost strongly θ -continuous (Noiri and Kang [9]), weakly δ -continuous (Baker [10])) if for each x ϵ X and each open neighborhood V of f(x), there exists an open neighborhood U of x such that f(U) \leq Cl V (f(Cl U) \leq Cl V, f(Cl U) \leq V, f(Cl U) \leq Int Cl V, f(Int Cl U) \leq Cl V).

DEFINITION 2. A function f: $X \neq Y$ is said to be weakly open (Rose [5]) (almost open (Rose [5])) provided that for each open subset U of X, $f(U) \subseteq$ Int f(Cl U) (f(U) \subseteq Int Cl f(U)).

DEFINITION 3. A subset N of a space X is said to be a θ -neighborhood (δ -neighborhood) of a point x in X if there exists an open set U such that x ϵ U \subseteq Cl U \subseteq N (x ϵ U \subseteq Int Cl U \equiv N).

Note that a θ -neighborhood is not necessarily a neighborhood in the θ -topology, but a δ -neighborhood is a neighborhood in the δ -topology.

3. NEAR-CONTINUOUS FUNCTIONS.

The main results can be paraphrased as follows: weak continuity corresponds to "f⁻¹ (θ -neighborhood) = neighborhood"; θ -continuity corresponds to "f⁻¹ (θ neighborhood) = θ -neighborhood"; strong θ -continuity corresponds to "f⁻¹ (neighborhood) = θ -neighborhood"; almost strong θ -continuity corresponds to "f⁻¹ (δ -neighborhood" = θ -neighborhood", and weak δ -continuity corresponds to "f⁻¹ (θ -neighborhood) = δ -neighborhood".

THEOREM 1. A function f: $X \rightarrow Y$ is weakly continuous if and only if for each x in X and each θ -neighborhood N of f(x), $f^{-1}(N)$ is a neighborhood of x. PROOF. Assume f is weakly continuous. Let $x \in X$ and let N be a θ neighborhood of f(x). Then there exists an open set V such that $f(x) \in V \subseteq Cl V$ $\subseteq N$. Since f is weakly continuous, there exists an open neighborhood U of x such that $f(U) \subseteq Cl V \subseteq N$. Thus $x \in U \subseteq f^{-1}(N)$ and hence $f^{-1}(N)$ is a neighborhood of x.

Assume for each $x \in X$ and each θ -neighborhood N of x that $f^{-1}(N)$ is a neighborhood of x. Let $x \in X$ and let V be an open neighborhood of f(x). Since Cl V is a θ -neighborhood of f(x), $f^{-1}(Cl V)$ is a neighborhood of x. Thus there is an open set U for which $x \in U \subseteq f^{-1}(Cl V)$ and $f(U) \subseteq Cl V$ which proves f is weakly continuous.

THEOREM 2. A function f: $X \rightarrow Y$ is θ -continuous if and only if for each x in X and each θ -neighborhood N of f(x), f⁻¹(N) is a θ -neighborhood of x.

716

PROOF. Assume f: X + Y is θ -continuous. Let $x \in X$ and let N be a θ neighborhood of f(x). Then there exists an open set V for which $f(x) \in V \subseteq ClV \subseteq$ N. By the θ -continuity of f, there exists an open neighborhood U of x such that $f(Cl U) \subseteq Cl V \subseteq N$. Thus $x \in U \subseteq Cl U \subseteq f^{-1}(N)$ and hence $f^{-1}(N)$ is a θ neighborhood of x.

Assume for each x in X and for each θ -neighborhood N of f(x) that $f^{-1}(N)$ is a θ -neighborhood of x. Let x ε X and let V be an open neighborhood of f(x). Since Cl V is a θ -neighborhood of f(x), $f^{-1}(Cl V)$ is a θ -neighborhood of x. Hence there exists an open set U for which x ε U \subseteq Cl U \subseteq $f^{-1}(Cl V)$. That is, $f(Cl U) \subseteq$ Cl V and thus f is θ -continuous.

The proof of the following theorem is similar to that of Theorem 2 and is omitted. THEOREM 3. A function f: $X \rightarrow Y$ is strongly θ -continuous if and only if for

each x in X and each neighborhood N of f(x), $f^{-1}(N)$ is a θ -neighborhood of x. THEOREM 4. A funciton f: X \rightarrow Y is almost strongly θ -continuous if and only if for each x in X and each δ -neighborhood N of f(x), $f^{-1}(N)$ is a θ -neighborhood of x.

PROOF. Assume f: $X \rightarrow Y$ is almost strongly θ -continuous. Let $x \in X$ and let N be a δ -neighborhood of f(x). Then there exists an open set V such that $f(x) \in V \subseteq$ Int Cl $V \subseteq$ N. Since f is almost strongly θ -continuous, there exists an open neighborhood U of x for which $f(Cl U) \subseteq$ Int Cl $V \subseteq$ N. Then $x \in U \subseteq$ Cl U $\subseteq f^{-1}(N)$ which proves that $f^{-1}(N)$ is a θ -neighborhood of x.

Assume for each $x \in X$ and each δ -neighborhood N of f(x) that $f^{-1}(N)$ is a θ -neighborhood of x. Let $x \in X$ and let V be an open neighborhood of f(x). Since Int Cl V is a δ -neighborhood of f(x), $f^{-1}(Int Cl V)$ is a θ -neighborhood of x. Hence there is an open set U such that $x \in U \subseteq Cl U \subseteq f^{-1}(Int Cl V)$. That is, $f(Cl U) \subseteq Int Cl V$ and hence f is almost strongly θ -continuous.

THEOREM 5. A function f: $X \rightarrow Y$ is weakly δ -continuous if and only if for each $x \in X$ and each θ -neighborhood N of f(x), $f^{-1}(N)$ is a δ -neighborhood of x.

The proof of this theorem is similar to that of Theorem 4. The following theorem gives additional characterizations of weak δ -continuity. These results are analogous to those obtained by Noiri and Kang in [9] for almost strongly θ -continuous functions.

LEMMA. Let X be a space and $H \subseteq X$. Then

(a) $Cl_{\theta} H = \{x \in X: every \theta \text{-neighborhood of } x \text{ intersects } H\}$ and

(b) $Cl_{\delta} H = \{x \in X: every \delta \text{-neighobrhood of } x \text{ intersects } H\}.$

The proof follows easily from the definitions.

THEOREM 6. For f: $X \rightarrow Y$ the following statements are equivalent:

- (a) f: $X \rightarrow Y$ is weakly δ -continuous.
- (b) For each $H \subseteq X$, $f(Cl_{\delta} H) \subseteq Cl_{\theta} f(H)$.

(c) For each $K \subseteq Y$, $Cl_{\delta} f^{-1}(K) \subseteq f^{-1}(Cl_{\theta} K)$.

(d) f: $X_{c} \rightarrow Y$ is weakly continuous.

PROOF. (a) => (b). Let $H \subseteq X$ and let $y \in f(Cl_{\delta} H)$. Then there exists an x in Cl_{δ} H such that y = f(x). Let N be a θ -neighborhood of f(x). By Theorem 5 $f^{-1}(N)$ is a δ -neighborhood of x. Since $x \in Cl_{\delta} H$, $f^{-1}(N) \cap H \neq \phi$. That is, $N \cap f(H) \neq \phi$. Hence $y \in Cl_{\theta} f(H)$. Thus $f(Cl_{\delta} H) \subseteq Cl_{\theta} f(H)$. (b) => (c). Let $K \subseteq Y$. By (b) $f(Cl_{\delta} f^{-1}(K)) \subseteq Cl_{\theta} f(f^{-1}(K)) \subseteq Cl_{\theta} K$. Thus $Cl_{\mathfrak{s}} f^{-1}(K) \stackrel{\leq}{=} f^{-1}(Cl_{\mathfrak{s}} K).$ (c) => (d). Let $x \in X$ and let V be an open neighborhood of f(x). Since C1 V is a θ -neighborhood of f(x), f(x) $\notin Cl_{\theta}$ (Y - Cl V). Hence x $\notin f^{-1}$ (Cl_{θ} (Y - Cl V). By (c) $x \notin Cl_s f^{-1}$ (Y - Cl V). Thus there is a neighborhood U of x such that $(Int Cl U) \cap f^{-1} (Y - Cl V) = \phi$. Then $f(Int Cl U) \subseteq Cl V$. Since Int Cl U is a regular open, f: $X_{c} \rightarrow Y$ is weakly continuous. (d) => (a). Let $x \in X$ and let V be an open neighborhood of f(x). Since f: $X_{c} \rightarrow Y$ is weakly continuous, there exists a δ -open set W containing x such that f(W) \subseteq Cl V. Then there is a regular open set U for which x ϵ U \subseteq W. Then $f(Int C1 U) = f(U) \subseteq f(W) \subseteq C1 V$ and hence f is weakly δ -continuous. 4. NEAR-OPEN FUNCTIONS. In this section weak openness and almost openness are characterized in terms of the concept of θ -neighborhood. THEOREM 7. A function f: $X \rightarrow Y$ is weakly open if and only if for each $x \in X$ and each θ -neighborhood N of x, f(N) is a neighborhood of f(x). PROOF. Assume f is weakly open. Let $x \ \epsilon \ X$ and let N be a $\theta\text{-neighborhood}$ of x. Then there is an open set U such that x ϵ U \subseteq Cl U \subseteq N. Since f is weakly open $f(x) \in f(U) \subset Int f(Cl U) \subseteq Int f(N)$. Hence f(N) is a neighborhood of f(x). Assume for each x in X and each θ -neighborhood N of x that f(N) is a neighborhood of f(x). Let U be an open set in X. Suppose $x \in U$. Since Cl U

is a θ -neighborhood of x, f(Cl U) is a neighborhood of f(x). Hence f(x) ε Int f(Cl U). Thus f(U) \subseteq Int f(Cl U) and f is weakly open.

The proof of the following theorem is similar and is omitted.

THEOREM 8. A function f: $X \rightarrow Y$ is almost open if and only if for each $x \in X$ and each neighborhood N of x, Cl f(N) is a θ -neighborhood of f(x).

Theorem 7 and the characterizations of near-continuous functions in Section 3 suggest the following definitions of near-open functions.

DEFINITION 4. A function f: $X \rightarrow Y$ is said to be θ -open (strongly θ -open, almost strongly θ -open, weakly δ -open) if for each $x \in X$ and each θ -neighborhood (neighborhood, δ -neighborhood, θ -neighborhood) N of x, f(N) is a θ -neighborhood (θ -neighborhood, θ -neighborhood, δ -neighborhood) of f(x).

The following theorems characterize these near-open functions in terms of the closure and interior operators. Since the proofs are all similar, only the first theorem is proved.

THEOREM 9. A function f: $X \rightarrow Y$ is θ -open if and only if for each $x \in X$ and each open neighborhood U of x, there exists an open neighborhood V of f(x) such that Cl V \subseteq f(Cl U).

PROOF. Assume f: $X \rightarrow Y$ is θ -open. Let $x \in X$ and let U be an open neighborhood of x. Since f(Cl U) is a θ -neighborhood of f(x), there exists an open set V such that $f(x) \in V \subseteq Cl V \subset f(Cl U)$.

Assume that for each $x \in X$ and each open neighborhood U of x there exists an open neighborhood V of f(x) for which $Cl V \subseteq f(Cl U)$. Let $x \in X$ and let N be a θ -neighborhood of x. Then there is an open set U for which $x \in U \subseteq Cl U \subseteq N$. There exists an open set V such that $f(x) \in V \subseteq Cl V \subseteq f(Cl U) \subseteq f(N)$. Hence f(N)is a θ -neighborhood of f(x) and f is θ -open.

THEOREM 10. A function f: $X \rightarrow Y$ is strongly θ -open if and only if for each $x \in X$ and each open neighborhood U of x, there exists an open neighborhood V of f(x) such that C1 V \subseteq f(U).

THEOREM 11. A function f: $X \rightarrow Y$ is almost strongly θ -open if and only if for each x ε X and each open neighborhood U of x there exists an open neighborhood V of f(x) such that Cl V \leq f(Int Cl U).

THEOREM 12. A function f: $X \rightarrow Y$ is weakly δ -open if and only if for each $x \in X$ and each open neighborhood U of x, there exists an open neighborhood V of f(x) such that Int Cl V \subseteq f(Cl U).

We have the following implications: almost open <= st. θ -open => almost st. θ -open => θ -open => weak δ -open => weak open. The following examples show that these implications are not reversible.

EXAMPLE 1. Let $X = \{a, b\}$, $T_1 = \{X, \phi, \{a\}\}$, $Y = \{a, b, c\}$, and $T_2 = \{Y, \phi, \{a\}, \{a, b\}\}$. The inclusion mapping: $(X, T_1) \neq Y, T_2$) is weak open but not weak δ -open.

In the next example the space (Y, T_2) is from Example 2.2 in Noiri and Kang [9]. EXAMPLE 2. Let (X, T_1) be as in Example 1. Let $Y = \{a, b, c, d\}$ and $T_2 = \{Y, \phi \ \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. The inclusion mapping: $(X, T_1) \rightarrow (Y, T_2)$ is weak δ -open, but not θ -open.

EXAMPLE 3. Let (Y, T_2) be as in Example 2. The identity mapping: $(Y, T_2) \rightarrow (Y, T_2)$ is θ -open but not almost strongly θ -open.

EXAMPLE 4. Let $X = \{a, b, c\}, T_1 = \{X, \phi, \{a\}, \{a, c\}\}$ and $T_2 = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. The identity mapping: $(X, T_1) \rightarrow (X, T_2)$ is almost strongly θ -open and almost open, but not strongly θ -open.

REFERENCES

- LEVINE, Norman, A Decomposition of Continuity in Topological Spaces, <u>Amer. Math.</u> <u>Monthly</u> <u>68</u>(1961) 44-46.
- LONG, Paul E. and HERRINGTON, Larry L., Strongly θ-Continuous Functions, <u>J. Korean</u> <u>Math. Soc.</u> <u>18</u>(1981) 21-28.

3. NOIRI, Takashi, On &-Continuous Functions, J. Korean Math. Soc. 16(1980) 161-166.

- ROSE, David A., Weak Continuity and Almost Continuity, <u>Internat. J. Math. Math.</u> <u>Sci.</u> 7(1984) 311-318.
- ROSE, David A., Weak Openness and Almost Openness, <u>Internat. J. Math. Math. Sci.</u> <u>7</u>(1984) 35-40.

- SINGAL, M. K. and SINGAL, Asha Rani, Almost Continuos Mappings, <u>Yokohama Math. J.</u> <u>16</u>(1968) 63-73.
- VELICKO, N. V., H-Closed Topological Spaces, <u>Amer. Math. Soc. Transl.</u> <u>78</u>(1968) 103-118.
- 8. FOMIN, S., Extensions of Topological Spaces, Ann. Math. 44(1943) 471-480.
- NOIRI, T. and KANG, Sin Min, On Almost Strongly θ-Continuous Functions, <u>Indian</u> J. Pure Appl. Math <u>15</u>(1984) 1-8.
- BAKER, C. W., On Super-Continuous Functions, <u>Bull. Korean Math. Soc.</u>, <u>22</u>(1985) 17-22.