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ABSTRACT. Let E and F be Banach spaces. An operator T L(E,F) is called

p-representable if there exists a finite measure u on the unit ball, B(E*), of E*
+ such thatand a function g Lq(,F), -=

Tx x,x*> g( x*) d x*)
B(E*)

for all x E The object of this paper is to investigate the class of all

p-representable operators. In particular, it is shown that p-representable operators
form a Banach ideal which is stable under injective tensor product. A characteriza-

tion via factorization through LP-spaces is given.
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I. NT RODU CT ON.

Let L(E,F) be the space of all bounded linear operators from E into F
and B(E*) the unit ball of E*, the dual of E The completion of the injective

tensor product of E and F is denoted by E F Integral operators in L(E,F)
were first defined by Grothendieck, 12], as those operators which can be identified

with elements in (E F)*. These operators turn to have a nice integral representa-

tion. We refer to Jarchow, 14], for statements and proofs of such representations.

Later on, Persson and Pietsch, [5] defined p-integral operators in L(E,F) as

those operators T" E F such that Tx / <x,x*> dg-(x*), for all x C E*
B(E*)

where G is a vector measure on B(E*) with values in F and

lifB(E,) q(x*)dG(x*)ll i(x*)IPd)l/P<-(JB(E*) for some finite measure on B(E*)

and all continuous functions on B(E*) The representing vector measure for T

need not be of bounded variation. Further, if G is of bounded variation and F

doesn’t have the RadonoNikodym property, then T need not be a kernel integral operator.

The object of this paper is to study operators which are in some sense kernel

ingegral operators. Such operators is a sub-class of Pietsch p-integral operators.

Throughout this paper, if E is a Banach space, then E* is the dual of E and

B(E) the closed unit ball of E If K is a set then 1K is the characteristic

function of K If (,u) is a measure space, then LP(.c,,E) is the space of
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all p-Bochner integrable functions defr,e on with values in E, for p .. If

p L’(’,,E) is the space of es3ecia!]y bounded functions on L with values

+ Most ofir, E. The real q always denote the conjugate of p
P q

our terminology and notations are from Pletsch [6] and Diestel and Uhl [I]. We refer

to these texts for any notion cited but not defined in this paper.

2. Rp(E,F).
DEFINITION 2.1. An operator T L(E,F) is called p-representable operator if

there exists a finite measure defined on the Borel sets of B(E*) and a function

ilg(x*)ll qd , and Tx x,x* g(x*)d(x*)g’B(E*) --F such that iBfE,,, B(E*)
for all x E.

It follows from the definition that every p-representable operator is Pietsch-p-

integral operator, but not the converse. Let Rp(E,F) be the set of all p-repre-

sentable operators from E into F.

LEMMA 2.2. Rp(E,F) is a vector space.

PROOF. Let TI,T2 Rp(E,F) such that

Ti(x) x,x* gi(x*)di(x*).
B(*)

Set I +
2" Then . Consequently, d; fi d Further, since

hi(K) #(K) for all Borel sets K on B(E*), it follows that 0 <_. fi(x*) <__ a.e.

1,2. Let (x*) gl(x*)fl(x*) + g2(x/)f2(x*). Since p <-, and

0 fi(x*) we have Lq(B(E*),’,F). Further (TI+T2)(XT= <x,x*>(x*)du,
B(E*)

for all x E. This ends the proof.

For T e Rp(E,F), we define

llT!lo(p) inf {(Illg(x*)l!qd(x*) I/q

where the infimum is taken over all g and u for which T(x) | <x,x*>g(x*)du(x*),
B(E*)

x E It is not difficult toshowthat !I_ is a norm on Rp(E F(p)

LEMMA 2 3 For T Rp(E F) ilTli liTi..... o(p)

PROOF. Let Tx ( <x,x*>g(x*)d(x*) for some and g as in the
B(E*)

Definition 2.1. Choose g and such that . lg(x*)I !qd(x*) I/q _< llTllo(p)_ +
for a given small O. Then, using Holder’s inequality"

]ITxI’ (!, ilg(x*)]Iqd(x*) 111q
B(E*)

i’T’:o(p) +

Hence IITI! ]ITI] (p) +c. Since is arbitrary the result follows

LEMMA 2.Zl. Every element T Rp(E,F) is an approximable operator in L(E,F).

PROOF. Let Tx -x,x* g(x*)d..(x*), for some finite measure on B(E*) and
B(E*)

some g E Lq(B(E *),u, F). Choose and g such that
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Let gn be a sequence of simple functions in Lq(B(E*),., F) such that

IB(E*) !g(x*) gn (x*)lq du(x*) 0. Define Tn(X*)=E,)<x,x*> gn(X*) d;:(x*). Then each

Tn is a finite rank operator, and lit (p) O. Then by definition of approxi-

mable operators, Pietsch 16] T is approximable. This ends the proof.

THEOREM 2.5. Let H, E,: F and G be Banach spaces, and T Rp(E,F), A L(F,G)

IIBIII:T I(p)and B L(H,E). Then ATB Rp(H,G) and

PROOF. Let Tx fB(E*) <x’x*> g(x*)d(x*) for all x ( E and some finite

measure u on B(E*) and some g ( Lq(B(E*),u,F). Then

ATx =, x,x*> Ag(x*)du(x*)
JB(E*)

llg(x*)ll qdu(x*) Hence AT ( Rp(E G) andand B(E*) flAg(x*) llqdu(x*) _< I!aI, !BiE*)
IIATII(p) <- llallllTlio(p)"

To show TB Rp(H,F), let gn be a sequence of simple functions converging to g

be the associated operators in R (E F). Soin Lq(B(E*), F) and Tn p

TnX x,x* gn(x*)du(x*)
B(I*)

With no loss of generality we assume I!BI I. Define the vector measures G on B(H*)

into F via:

(y*)dG(y*)Gn(K) B’(E*) K

(B*x*)Sn(X*)du(x*)
B(*) K

Clearly, Gn is a countably additive vector measure of bounded variation. Further, if

we define the measure \, on B(H*) via

v(K) 1K(B*x*)d(x*),
B(*)

then, using Holder’s inequality:

lign(X*)l! q d;(x*) l’q .[,CK) I/p
llGn(K)! BIE*)

Hepce G . Since the range of G is finite dimensional, it has the Radon-Nikodym
n n

property and consequently *here exists S e (B(H*) F) such that dG Snd,,.n n
Further, it is easy to check tha Sn

Lq(B(H*) ,F).

An application of the Hahn-Banach theorem, we get:

BV By,x* a (x*)d...(x*)’n B(*)
y,y*. Sn(Y*)d..(y* ).

B(h*)
Since ti function By,* is pounded on B(E*), the sequence (. By,.>gn) is Cauchy in

Lq(B(E *) F). Consequently the sequence(-y,. -S n) is Cauchy in Lq(B(H*), ,,,F). Let

y,. S be the limit of (. y,. -Sn) in Lq(B(H*),,.,F). It is not difficult to see

that T [I converges in the operator norm to the operator Jy y,y*. S(y*)d (y*).
n
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However T B TB In the operaLor norm. hence TBy =.f <y,y*. S(y*)d(y*), andn B(H*)
TB e Rp(H,F). Further ,ITB !’T I’. Bil This enos 1;he proof.

Theorem 2.5 states nat (,,p (p)) is a normed operator ideal, [6]

DEFINITION 2.6. Let (-,) be a measure space and F a Banach space. An operator

T e L(LP(.-.,),F) is called B-vecLor Integral operator if there exists g Lq(,p,F)
such nat

for all f LP(,).

Tf / f(t)g(t)d(t)

if the function g is only Peztis q-integrable and the integral defining Tf is

the Pettis integral, then T is known to be called veczor integral operator [I]
Now using Theorem 2.5 we can prove-

THEOREM 2.7. Let E,F be Banach spaces and T L(E,F). The following are

equivalent"

(i) T e Rp(E,F)
(ii) There exists operators T e L(E,LP(2,)) and T2 e L(LP(,),F) for some

measure space (a,) such that T2 is B-vector integral operator and T T2T1.

PROOF. (i) (ii). Let T e Rp(E,F) and

Tx x,x* g(x*)d(x*)

for some finite measure on B(E*) and g Lq(B(E*),,F). Define

and

T "E LP(B(E*))

(TlX)(X*) <x,x* >,

T2 LP(B(E*), ) ----> F

T2(f) HIE*) f(x*)g(x*)d

Then T2 is a B-vector integral operator and T T2T I.
(ii) (i). Let T T2TI, TI(E,LP(,)) and T2 is a B-vector integral

operator in L(LP(.,), F). Then T2 Rp(LP(,), F). Using Theorem 2.6,

T2T Rp(E,F). This ends the proof.

Let Ip(E,F) be the space of Pietsch p-integral operators from E into F, and

IFFlli(p) be the p-integral norm for T e Ip(E,F). Clearly Rp(E,F)
__

Ip(E,F) and

IFFIli(p) < IITllo(p) for all T Rp(E,F). This, together with the fact that Ip(E,F)
is complete, [5] one can prove"

THEOREM 2.8. (Rp(E,F), llo(p)) is a Banach space.

If F has the Radon Nikodym property, then RI(E,F) II(E,F), and by using

Corollary 5 in [i], we see that RI(C(c),F) II(E,F) NI(C(p,),F), where NI(E,F)
is the class of nuclear operators from E into F.

Further if 5p(E,F) is the class of p-summing operators from E into F, then it

follows from the Grothendieck-Pietsch represenation theorem [6], that Rp(E,F) IIp(E,F)
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3. IDEAL PROPERTIES OF P,p.
We let R denote the operator ideal of a’ p-representable operators. The fol-

P
lowing notions are taken from Pietsch [5] and Holu, 13].

(i) An operator ideal J is called regular if for all Banach spaces E and F,
T J(E,F) if and only if KFT J(,F**), where K F is the natural embedding of F
Into F**.

(ii) J is called closed if the closure of J(E,F) in L(E,F) is J(E,F) for

all Banach spaces E and F.

(iii) J is called injective if whenever JFT ( J(E,=(B(F*))), then T (E,F)
for all Banach spaces E and F. Here JF is the natural embedding of F into

(B(F*)).
(iv) J is called stable with respect to the injective tensor product if

T J(Ei,Fi), then T ( T2 J(E E 2, F F2), for all Banach spaces EI,E2,FI,F2.
THEOREM 3.1. R is regular.

P
PROOF. Let E and F be any Banach spaces and let KFT Rp(E,F*), for

T L(E,F). Then KFTX B(E*) <x,x*> g(x*)d(x*) for some and g as in

Definition 2.1.

Now g(x*) ( KF(F) for all x* B(E*). Since KF’F KF(F) is an isometric

onto operator, the function g(x*) Kl(g(x*)) is well defined measurable and

( Lq(B(E *),, F). Further

Tx <x,x*>](x*)d(x*).
B([*)

Hence T Rp(E,F). This ends the proof.

In a similar way one can prove-

THEOREM 3.2. R is injective
P

THEOREM 3.3. R is stable.
P

PROOF. Let T Rp(Ei,Fi), 1,2 and

TlX / x,x*> gl(X*)d;l(X*)

T2x ./" x,x* g2(x*)dJ2(x*),
B(E)

where ui and gi be the associated measures and functions as in Definition 2.1. If

E C$ F i, 1,2, is the completion of the injective tensor product of E with Fi,
Ill, then T ( T2 L(E 0 F I, E 2 F2). Further"

(T ( T2)(x y) / x,x*> gl(X*)dUl(X*) ,y,y,> g2(Y*)du2(y*).
B(E) B(E)

Let K be the w*-closure of B(E) B(E) {x* 8 y*" x* B(E), y* ( B(E)} in

(E E2)*. Since the map - E ) E ET B Eo*,. the projective tensor product of

E with E2, is continuous, [7], it follows that the map B(E)
B(E) B(E), (x*,y*) x* 0 y* is continuous. This induces an isometric into
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operator " C(K) C(B(E) B(E)) defined by ,(f) f o- Consequently,
there exists a measure on K such that

f(z*)d(z*) f o ,(x*,y*)d( .2)(x*,y*).
K B(E) B(E)

Extend to B(E @ E2)* by putting =-0 on B(E @ E2)* K. Further define

g’B(E @ E2)*----. F @ F2 via g(x* @ y*) gl(x*) @ g2(y*) if x B(E),
y* ( B(E), and g(z*) 0 otherwise. Then it is not difficult to see that

(T @ T2)(z) z,z*>g(z*)d(z*)
B(E @ E2)*

for all z E @ E2. Since g Lq(B(E @ E2)*,p, F 0 F2), it follows that

T @ T 2 Rp(E @ E2. F @ F2). This ends the proof.

A negative result for R is the following-
P

THEOREM 3.4. R is not closed.
P

PROOF: Assume R is closed. Since the ideal of finite rank operator is con-
P

tained in Rp, one has the ideal of approximable operators is contained in Rp. By

Lema 2.4, one gets R the ideal of approximable operators. Theorem 2.8, together
P

with the open mapping theorem we get that Ii ll(p) and II are equivalent on Rp.
This is a contradiction. Hence Rp is not closed.
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