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ABSTRACT. For a non-negative integer n, let s(n) denote the digital sum of n. Cheo

and Yien proved that for a positive integer x, the sum of the terms of the sequence

{s(n) n 0, I, 2 (x-l)}

is (4.5)xlogx + O(x) In this paper we let k be a positive integer and determine that

the sum of the sequence

{s(kn) n 0, I, 2 (x-l)}

is also (4.5)xlogx + O(x) The constant implicit in the big-oh notation is dependent

on k.
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INTRODUCTION.

In Cheo and Yien [1] it was proven that for a positive integer x

x-
s(n) (4.5)xlogx + 0(x) (1.1)

where s(n) denotes the digital sum of n. Here, we will show that, in fact, for any

positive integer k,

x-
s(kn) (4.5)xlogx + 0(x) (1.2)

where the constant implicit in the big-oh notation is dependent on k.

The following notation will be used to facilitate the proof of (1.2). For integers

x and y,

x rood y (I .3)

will be the remainder when x is divided by y and, as usual, square brackets will denote

the integral part operator. In addition, for non-negative integers m, i, and j we let

[m]j m mod 10j (1 4)

[m]o [m/10i] (1.5)
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and

[m]J [[m]JJ (I 6)i i

for i j.

Thus, the j right-most digits of m are given by (1.4) and the number determined by

dropping the i right-most digits of m is given by (1.5). Therefore, the number

determined from the jth right-most digit of m to the (i + l)st right-most digit of m

is given by (1.6).

2. A PROOF OF (1.2) WHEN k AND i0 ARE RELATIVE PRIME.

Let (k,10) i, x be a positive integer, and L [logx] Then

x- x- x-
s(kn) s([kn]L) + s([kn]L) (2.1)

n=0 n=0 n=O

x-
s([kn] L) + 0(x)

n 0

This follows since for non-negative integers L and m,

m [m]L + lOL[m]
Lan so

s(m) s([m]L) + s([m]e. (2.4)

Also, since each s([kn] L) is bounded by a constant (dependent on k), we have that the

second term of (2.1) is 0(x)

Next, for i O, i, 2 L define

x [x] i0
L+l-i

i L+l-i
(2.5)

Then,

(2.2)

(2.3)

x- x x-
L)[ s([kn]L) [ s([kn]L) + [ s([kn]

n 0 n=O n=x

In the same way,

x
L)

x- x-. s([kn] + s([kn]
L
e_l

+ . s([kn]e-l).
n 0 n x n x

(2.6)

x x
2

x
s([kn] L-l) s([kn] L-l) + s([kn] L-Ie_2

n x n x n x
2

x
+ s([kn] e-2)

n x
2

Continuing in this manner and combining terms, we have

(2.7)

x- L x.
s([knl L) . i s([knlL+l-i)

n 0 i n xi_
L x

L+I-1+ s([kn]L_i
i= n=x

i

(2.8)
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Since
L+l-i.

s([kn]L_i (2.9)

is a decimal digit and

L+l-i
x- x. Ix]

for each i, it follows that

__-< i0
L+l-i (2.10)

L x
L+l-i.

s([kn]e_i 0(x) (2.11)
i n xi

To determine the value of the first term of (2.8), we need the following lemma.

Its proof is straight forward and will not be given.

LEMMA 2. Let d and i be non-negative integers. Then for (k,10) i,

{[kn] i
n d,d+l d+10i-l} {n: n 0,I lOi-l}. (2.12)

By this lemma and the fact that

x
i xi_ [x -L+2-ilL+l_i 10

L+l-i

it follows that

x.
L+2-i.1 I S ([kn] e+l-i) ([X]e+l_i

n xi_

for each i.

Now since

lOL+l-i-
s(n) 4.5(L + i)10

L+l-i

n 0

by [2], we have that

10L+l-i
s(n)

n 0

(2.13)

(2.14)

(2.15)

L xi
s([kn] u+l-i) (4.5)xlogx + 0(x) (2.16)

i n xi_

Using (2.16) and (2.11) in (2.8), by (2.2) we have the expression given in (1.2). The

constant implicit in the big-oh notation is dependent on k with k and I0 relatively

prime.

3. CONCLUSION.

For any positive integer k, there exists non-negative integers a, b, and r such that

k 2a5br with (r,10) i. Note that if k r, then we have (1.2). However, by use of

the following generalization to Lemma 2, and some technical modifications, it can be

shown that the restriction that k and I0 be relatively prime can be removed in the

derivation of (2.1). That is,

x-. s(kn) (4.5)xlogx + 0(x)
n 0

(3.1)

for any positive integer k.

LEMMA 3. Let k 2a5br with (r,lO) and i max {a,b}. Then for any non-
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negative integer d,

{[kn]
i

n d, d+l, d+2 d + (lOi/2a5b) I}

{2a5bn n O, i, 2 (lOi/2a5b) I} (3.2)

Finally, based on the above techniques, it is strongly conjectured that for any

positive integers k and k
2

it again follows that

x

S(kln + k2) (4.5)xlogx + 0(x)
n 0

(3.3)
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