ON A GENERALIZATION OF THE CORONA PROBLEM

GRAZIANO GENTILI and DANIELE C. STRUPPA

Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa, Italy

(Received May 7, 1985)

ABSTRACT. Let g, $f_1, \ldots, f_m \in H^{\infty}(\Delta)$. We provide conditions on f_1, \ldots, f_m in order that $|g(z)| \leq |f_1(z)| + \ldots + |f_m(z)|$, for all z in Δ , imply that g, or g^2 , belong to the ideal generated by f_1, \ldots, f_m in H^{∞} .

KEY WORDS AND PHRASES. Corona problem, congenial functions. 1980 AMS SUBJECT CLASSIFICATION CODE. 30D55, 30D50.

1. INTRODUCTION.

Let $H(\Delta)=H$ be the space of all holomorphic functions on $\Delta = \{z \in \mathbb{C}: |z| < 1\}$, and let $H^{\tilde{\omega}}(\Delta) = H^{\tilde{\omega}}$ be the subspace of all bounded functions of $H(\Delta)$. Let f_1, \ldots, f_m be functions in $H^{\tilde{\omega}}$ and let $g \in H^{\tilde{\omega}}$ satisfy the following condition:

$$|g(z)| \leq |f_1(z)| + \ldots + |f_m(z)|$$
 (any $z \in \Delta$). (1.1)

As a generalization of the corona problem (which was first solved by Carleson [1]) it is natural to ask if (1.1) implies that g belongs to the ideal $I_{H^{\infty}}(f_{1},...,f_{m})$ generated in H^{∞} by $f_{1},...,f_{m}$, i.e. if (1.1) implies the existence of $g_{1},...,g_{m}$ in H^{∞} such that, on Δ ,

$$g = f_1 g_1 + \dots + f_m g_m.$$
 (1.2)

Rao, [2], has shown that the answer to this question is negative in general. On the other hand Wolff (see [3], th. 2.3) has proved that (1.1) implies that g^3 belongs to $I_{H^{\infty}}(f_1, \ldots, f_m)$. The question whether (1.1) implies the existence of g_1, \ldots, g_m in H^{∞} such that

$$g^2 = f_1 g_1 + \dots + f_m g_m$$
 (1.3)

is still open, as Garnett has pointed out ([4], problem 8.20).

In this work we obtain some results on this generalized corona problem, making use of techniques which appear in the theory of A spaces, the spaces of entire functions with growth conditions introduced by Hörmander [5].

With the same aim of Berenstein and Taylor [6] in A_p , we introduce in H^{∞} the notion of jointly invertible functions (definition 3) and prove that if f_1, \ldots, f_m are jointly invertible, condition (1.1) implies that g belongs to $I_{H^{\infty}}(f_1, \ldots, f_m)$ (proposition 5). We also prove that if the ideal $I_{H^{\infty}}(f_1, \ldots, f_m)$ contains a weakly invertible

function having simple interpolating zeroes (see [3]), then again (1.1) implies that g belongs to $I_{H^{\infty}}(f_1, \ldots, f_m)$ (theorem 6).

Finally, in the same spirit of Kelleher and Taylor [7] we introduce the notion of congeniality for m-tuples of functions in H^{∞} , and give a partial answer to the problem posed by Garnett ([4]): we prove that if $(f_1, \ldots, f_m) \in (H^{\infty})^m$ is congenial, then (1.1) implies $g^2 \in I_{H^{\infty}}(f_1, \ldots, f_m)$ (theorem 8).

2. WEAK INVERTIBILITY.

We first study some conditions under which (1.1) implies that $g\in I_{H^{\infty}}(f_1,\ldots,f_m)$. DEFINITION 1. A function f in $H^{\infty}(\Delta)$ is called weakly invertible if there exists a Blaschke product B such that $f(z)=B(z)\tilde{f}(z)$ (z in Δ) with \tilde{f} invertible in H^{∞} .

The reason for this definition is the following simple criterion of divisibility for functions in H^{∞} .

PROPOSITION 2. Let $f \in \mathbb{H}^{\infty}$. Then f is weakly invertible if, and only if, for all $q \in \mathbb{H}^{\infty}$ the fact that $q/f \in \mathbb{H}$ implies $q/f \in \mathbb{H}^{\infty}$.

_PROOF. Suppose f is weakly invertible: then there exists a Blaschke product B such that $f(z)=B(z)\tilde{f}(z)$, with \tilde{f} invertible in H^{∞} . Since g/f is holomorphic and since B contains exactly the zeroes of f, it follows that g/BEH; however, since B is a Blaschke product, g/BEH implies, [8], that g/BEH^{∞}. Since $1/\tilde{f}$ EH^{∞} one has g/f=(g/B)(1/\tilde{f}), i.e. g/fEH^{∞}. Conversely, suppose that for all gEH^{∞} such that g/fEH, it follows g/fEH^{∞}. Write $f(z)=B(z)\tilde{f}(z)$, where B is the Blaschke product of all the zeroes of f (see [8]). Then B/f is holomorphic on Δ and therefore $1/\tilde{f}$ must belong to H^{∞}.

An extension of the notion of weak invertibility to m-tuples of functions in H^{∞} is given by the following definition, analogous to the one given by Berenstein and Taylor for the spaces $A_{_{D}}$ in [6].

DEFINITION 3. The functions $f_1, \ldots, f_m \in H^{\infty}$ are called jointly invertible if the ideal generated by f_1, \ldots, f_m in H^{∞} coincides with $I_{loc}(f_1, \ldots, f_m) = \{g \in H^{\infty}(\Delta): \text{ for any } z \in \Delta,$ there exists a neighborhood U of z and $\lambda_1, \ldots, \lambda_m$ in H(U) such that $g = \lambda_1 f_1 + \ldots + \lambda_m f_m$ on $U^{\}}$.

In view of Cartan's theorem B, it follows immediately that f_1, \ldots, f_m are jointly invertible if, and only if, $I_{H^{\infty}}(f_1, \ldots, f_m) = I_H(f_1, \ldots, f_m)$, the latter being the ideal generated by f_1, \ldots, f_m in $H(\Delta)$. As a consequence of the corona theorem, all m-tuples f_1, \ldots, f_m in H^{∞} for which there exists $\delta > 0$ such that $|f_1(z)| + \ldots + |f_m(z)| \ge \delta$ for all z in Δ , are jointly invertible $(I_H = I_H^{\infty} = H^{\infty})$. More generally one has:

PROPOSITION 4. Let $b\in H^{\infty}$ be weakly invertible, and let $f_1(z)=b(z)\tilde{f}_1(z),\ldots,f_m(z)=b(z)\tilde{f}_m(z)$, for $\tilde{f}_1,\ldots,\tilde{f}_m$ in H^{∞} such that $|\tilde{f}_1(z)|+\ldots+|\tilde{f}_m(z)| \ge \delta > 0$ for some δ and all z in Δ . Then f_1,\ldots,f_m are jointly invertible.

PROOF. Let $g \in H^{\infty}$ belong to $I_{H}(f_{1}, \ldots, f_{m})$. There exist $\lambda_{1}, \ldots, \lambda_{m}$ in $H(\Delta)$ such that $g(z) = \lambda_{1}(z)f_{1}(z) + \ldots + \lambda_{m}(z)f_{m}(z)$ (all $z \in \Delta$) (2.1)

i.e., for all z in Δ ,

$$g(z) = b(z) \left[\lambda_1(z) \tilde{f}_1(z) + \ldots + \lambda_m(z) \tilde{f}_m(z) \right].$$
 (2.2)

Since b is invertible, and g/bEH, it follows that $\tilde{g}=g/b=\lambda_1\tilde{f}_1+\ldots+\lambda_m\tilde{f}_m\in H^{\infty}$. By the corona theorem, then, it follows that there are h_1,\ldots,h_m in H^{∞} such that

$$\tilde{g}(z) = h_1(z)\tilde{f}_1(z)+...+h_m(z)\tilde{f}_m(z),$$
 (2.3)

therefore

$$g(z) = \tilde{g}(z)b(z) = h_1(z)f_1(z)+\ldots+h_m(z)f_m(z)$$
 (2.4)

and the assertion is proved.

Let now $f_1, \ldots, f_m, g \in H^{\infty}(\Delta)$, and suppose that (1.1) holds. It is well known, [2], that in general (1.1) does not imply that $g \in I_{H^{\infty}}(f_1, \ldots, f_m)$. However, (1.1) certainly implies that $g \in I_{loc}(f_1, \ldots, f_m)$ and hence

PROPOSITION 5. Let f_1, \ldots, f_m be jointly invertible. Then if g satisfies condition (1.1), it follows that $g \in I_{H^{\infty}}(f_1, \ldots, f_m)$.

A different situation in which (1.1) implies that $g\in I_{H^{\infty}}(f_1,\ldots,f_m)$ occurs when at least one of the f_j 's, say f_1 , is weakly invertible and has simple zeroes which form an interpolating sequence ([3]); this happens, for example, when f_1 is an interpolating Blaschke product with simple zeroes ([3]). Indeed, following an analogous result proved in [7] for the space of entire functions of exponential type, one has:

THEOREM 6. Let $f_1, \ldots, f_m \in H^{\infty}$, and suppose f_1 is weakly invertible with simple, interpolating zeroes. Then if $g \in H^{\infty}$ satisfies condition (1.1) it follows that g belongs to $I_{H^{\infty}}(f_1, \ldots, f_m)$.

PROOF. Choose $a_{ij} \in \mathbb{C}$, i=2,...m, j>1, such that for $\{z_j\} = \{z \in \Delta: f_1(z) = 0\}$ it is $|a_{ij}| = 1$ and $a_{ij}f_i(z_j) \ge 0$. Define now $b_{ij} \in \mathbb{C}$ (i,j as before) by

$$\mathbf{b}_{ij} = \begin{cases} 0 \text{ if } \mathbf{f}_{2}(z_{j}) = \dots = \mathbf{f}_{m}(z_{j}) = 0 \\ \\ \mathbf{a}_{ij} \mathbf{g}(z_{j}) / (|\mathbf{f}_{2}(z_{j})| + \dots + |\mathbf{f}_{m}(z_{j})|) & \text{otherwise} \end{cases}$$

By (1.1) it follows $|b_{ij}| \leq 1$ (all i,j), and since $\{z_j\}$ is interpolating, one finds h_2 , ..., h_m in H^{∞} such that $h_i(z_j) = b_{ij}$. Therefore the function $h = g - (h_2 f_2 + ... + h_m f_m)$ belongs to H^{∞} and vanishes at each z_j . The simplicity of the zeroes of f_1 shows that $f/f_1 \in H$, and the invertibility of f_1 implies $h/f_1 = h_1 \in H^{\infty}$. The thesis now follows, since $g = f_1 h_1 + \dots + f_m h_m$.

It is worthwhile noticing that the hypotheses of Proposition 5 and Theorem 6 are not comparable. Consider, indeed, the following conditions on $f_1, \ldots, f_m \in H^{\infty}$: (C₁) f_1, \ldots, f_m are jointly invertible.

(C₂) there exists j $(1 \le j \le m)$ such that f_j is invertible, with an interpolating sequence of zeroes, all of which are simple.

Then (C_1) does not imply (C_2) : take m=1 and f_1 weakly invertible with non-simple zeroes. On the other hand, also (C_2) does not imply (C_1) : consider f_1 invertible with simple interpolating zeroes $\{z_n\}$; let $f_2 \in \mathbb{H}^{\infty}$ be a function such that $f_2(z_n)=1/n$ (such a function certainly exists since $\{z_n\}$ is an interpolating sequence); now f_1 and f_2 have no common zeroes, and hence $1 \in I_{loc}(f_1, f_2)$; however $1 \notin I_{\mathbb{H}^{\infty}}(f_1, f_2)$ since if $1=\lambda_1 f_1+\lambda_2 f_2$, then it is $\lambda_2(z_n)=n$, i.e. $\lambda_2 \notin \mathbb{H}^{\infty}$. Therefore the pair (f_1, f_2) satisfies (C_2) but not (C_1) . 3. CONGENIALITY.

In this section we describe a class of m-tuples of functions in $H^{\infty}(\Delta)$, for which condition (1.1) implies that $g^2 \in I_{H^{\infty}}(f_1, \ldots, f_m)$.

DEFINITION 7. An m-tuple (f_1, \ldots, f_m) of functions in H^{∞} is called congenial if, for all i, j=1,...,m,

$$(f_{i}f_{j}'-f_{j}f_{i}') / \|f\|^{2} \|f'\| \text{ belongs to } L^{\infty}(\Delta),$$

where $\|f(z)\|^{2} = \|f_{1}(z)\|^{2} + \ldots + \|f_{m}(z)\|^{2}, \|f'(z)\|^{2} = \|f_{1}'(z)\|^{2} + \ldots + \|f_{m}'(z)\|^{2}, \text{ and } f_{i}' = \partial f_{i} / \partial z$

Notice that the class of congenial m-tuples is not empty. Indeed, one might consider pairs f_1, f_2 in H[∞] which, at their common zeroes, satisfy some simple conditions on their vanishing order easily deducible from Definition 7. For example, one can ask that $f_1(z_0)=f_2(z_0)=0$, $f'_2(z_0)\neq 0$, $f'_1(z_0)=0$. As a partial answer to problem 8.20 in [4], we prove the following

THEOREM 8. Let $f_1, \ldots, f_m, g \in H^{\infty}(\Delta)$, and suppose (f_1, \ldots, f_m) be congenial. If g satisfies (1.1), then $g^2 \in I_{H^{\infty}}(f_1, \ldots, f_m)$, i.e. there are g_1, \ldots, g_m in H^{∞} such that (on Δ)

$$g^{2}(z) = f_{1}(z)g_{1}(z) + \dots + f_{m}(z)g_{m}(z)$$
 (3.1)

PROOF. We mainly follow the proof due to Wolff, [3], of the fact that (1.1) implies that $g^{3} \in I_{H^{\infty}}$. We can assume $\|f_{j}\|_{\infty} \leq 1$, $\|g\|_{\infty} \leq 1$, and $f_{j}, g \in H(\overline{\Delta})$ $(j=1,\ldots,m)$. Put $\psi_{j} = g\overline{f}_{j}/\|f\|^{2}$ $(\psi_{j} \text{ is bounded and } C^{\infty} \text{ on } \overline{\Delta})$ and consider the differential equation

$$\partial b_{j,k} / \partial \overline{z} = \psi_j \partial \psi_k / \partial \overline{z} = g^2 G_{j,k}$$
 (1≤j,k≤m) (3.2)

for

$$G_{j,k} = \overline{f}_{j} \sum_{\ell} f_{\ell} (\overline{f_{\ell} f_{k}^{\dagger} - f_{k} f_{\ell}^{\dagger}}) / |f|^{6}.$$

If solutions $b_{j,k} \in L^{\infty}$ exist, then clearly $g_j = g\psi_j + \sum_{k} (b_{j,k} - b_{k,j}) f_k \in H^{\infty}$ and (3.1) holds (indeed $\overline{\partial} g_j = 0$ and g_j is bounded on Δ). In order to prove that (3.2) admits a solution in L^{∞} it is enough to show that $|g^2G_{j,k}|^2 \log(1/|z|) dxdy$ and $\partial(g^2G_{j,k})/\partial z$ are Carleson measures for $1 \le j,k \le m$.

As far as $|g^2G_{j,k}|^2\log(1/|z|)dxdy$ is concerned, notice that, by the congeniality of (f_1, \ldots, f_m) , it is

$$|g^{2}G_{j,k}|^{2} \leq |g|^{4} |\overline{f}_{j}|^{2} |\sum_{\ell} f_{\ell} (\overline{f_{\ell}} \overline{f_{k}}^{-} \overline{f_{k}} \overline{f_{\ell}})|^{2} / |f|^{12} \leq c |f'|^{2}.$$

On the other hand,

$$\partial (g^2 G_{j,k}) / \partial z = 2gg' G_{j,k} + g^2 \partial G_{j,k} / \partial z;$$

again by the congeniality of (f_1, \ldots, f_m) , one has

$$\begin{aligned} |gg'G_{j,k}| &\leq |g||g'||\overline{f}_{j}||\sum_{\ell} f_{\ell}(\overline{f_{\ell}f_{k}'} - f_{k}f_{\ell}')|/|f|^{6} &\leq c(|g'|^{2} + ||f'||^{2})/|f| &\leq c(|g'|^{2} + ||f'||f|)/|f| &\leq c(|g'|^{2} + ||f|)/|f| &\leq c(|g'|^{2} + ||f'||f|)/|f| &\leq c(|g'|^{2} + ||f|)/|f| &\leq$$

and

$$\begin{split} |g^{2} \partial G_{j,k} / \partial z| &= |g|^{2} \cdot |f_{j}| |\sum_{\ell} \overline{f}_{\ell} f_{\ell}^{i}| \cdot |\sum_{\ell} f_{\ell} (\overline{f_{\ell} f_{k}^{i} - f_{k} f_{\ell}^{i}}) / |f|^{8} + \\ &+ |g|^{2} |\overline{f}_{j}| / |f|^{2} \cdot (|\sum_{\ell} f_{\ell}^{i} (\overline{f_{\ell} f_{k}^{i} - f_{k} f_{\ell}^{i}}) / |f|^{4} + 2 |\sum_{\ell} f_{\ell}^{i} \overline{f_{\ell}}| |\sum_{\ell} f_{\ell} (\overline{f_{\ell} f_{k}^{i} - f_{k} f_{\ell}^{i}}) | / |f|^{6}) \leq \\ &\leq c \sum_{\ell} |f_{\ell}^{i}|^{2} / |f_{\ell}|. \end{split}$$

۹

This concludes the proof.

ACKNOWLEDGHENT. Theauthors wish to thank Professor Carlos A. Berenstein for reading a preliminary version of this paper. They also gladlyacknowledge the Ministero P.I. of the Italian Government and the University of Maryland for their financial support.

REFERENCES

- CARLESON, L. Interpolation by Bounded Analytic Functions and the Corona Problem, Ann. of Math. (2)76 (1963), 547-559.
- 2. RAO, K.V.R. On a Generalized Corona Problem, J. Anal. Math. 18(1967), 277-278.
- 3. GARNETT, J.B. Bounded Analytic Functions, Academic Press, New York, 1981.
- 4. BARTH, K.F., BRANNAN, D.A. AND HAYMAN, W.K. Research Problems in Complex Analysis, <u>Bull. London Math. Soc.</u> <u>16</u> (1984), 490-517.
- HORMANDER, L. Generators for Some Rings of Analytic Functions, <u>Bull. Amer. Math.</u> Soc. 73 (1967), 943-949.
- BERENSTEIN, C.A. and TAYLOR, B.A. Interpolation Problems in dⁿ with Applications to Harmonic Analysis, <u>J. Anal. Math.</u> <u>38</u> (1980), 188-254.
- 7. KELLEHER, J.J. and TAYLOR, B.A. FInitely Generated Ideals in Rings of Analytic Functions, <u>Math. Ann.</u> <u>193</u> (1971), 225-237.
- 8. HOFFMAN, K. <u>Banach Spaces of Analytic Functions</u>, Prentice Hall Inc., Englewood Cliffs, 1962.