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Abstract

The continuity for some multilinear operators generated
by certain integral operators and Lipschitz functions on some
Hardy and Herz-type spaces are obtained. The operators in-
clude Littlewood-Paley operators, Marcinkiewicz operators and
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1 Introduction and Preliminaries

As the development of singular integral operators T , their commutators
and multilinear operators have been well studied (see [1],[4-7]). From [8] and
[9], we know that the commutators and multilinear operators generated by T
and the BMO functions are bounded on Lp(Rn) for 1 < p < ∞. Chanillo
(see [2]) proves a similar result when T is replaced by the fractional integral
operator. However, it was observed that the commutators and multilinear
operators are not bounded, in general, from Hp(Rn) to Lp(Rn) for 0 < p ≤ 1.
But, the boundedness holds if the BMO functions are replaced by the the
Lipschitz functions (see [3], [11], [16] and [19]). This show the difference of
the BMO functions and the Lipschitz functions. The purpose of this paper is
to establish the continuity properties for some multilinear operators generated
by certain non-convolution type integral operators and Lipschitz functions on
some Hardy and Herz-type spaces. The operators include Littlewood-Paley
operators, Marcinkiewicz operators and Bochner-Riesz operator.
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First, let us introduce some notations(see [10], [17-21]). Throughout this
paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube
Q and a locally integrable function f , let fQ = |Q|−1

∫
Q
f(x)dx. Denote the

Hardy spaces by Hp(Rn). It is well known that Hp(Rn)(0 < p ≤ 1) has the
atomic decomposition characterization (see [20],[21]). For β > 0, the Lipschitz
space Lipβ(R

n) is the space of functions f such that (see [19])

||f ||Lipβ
= sup

x,h∈Rn, h>0
|f(x+ h)− f(x)|/|h|β <∞.

Definition 1.1 Let 0 < p, q < ∞, α ∈ R. For k ∈ Z, define Bk = {x ∈
Rn : |x| ≤ 2k} and Ck = Bk \ Bk−1. Denote by χk the characteristic function
of Ck and χ0 the characteristic function of B0.

(1) The homogeneous Herz space is defined by

K̇α,p
q (Rn) = {f ∈ Lqloc(R

n \ {0}) : ||f ||K̇α,p
q

<∞},

where

||f ||K̇α,p
q

=

[
∞∑

k=−∞

2kαp||fχk||pLq

]1/p

;

(2) The nonhomogeneous Herz space is defined by

Kα,p
q (Rn) = {f ∈ Lqloc(R

n) : ||f ||Kα,p
q

<∞},

where

||f ||Kα,p
q

=

[
∞∑
k=1

2kαp||fχk||pLq + ||fχ0||pLq

]1/p

.

Definition 1.2 Let α ∈ R, 0 < p, q <∞.
(1) The homogeneous Herz type Hardy space is defined by

HK̇α,p
q (Rn) = {f ∈ S ′(Rn) : G(f) ∈ K̇α,p

q (Rn)},

and
||f ||HK̇α,p

q
= ||G(f)||K̇α,p

q
;

(2) The nonhomogeneous Herz type Hardy space is defined by

HKα,p
q (Rn) = {f ∈ S ′(Rn) : G(f) ∈ Kα,p

q (Rn)},

and
||f ||HKα,p

q
= ||G(f)||Kα,p

q
;

where G(f) is the grand maximal function of f .
The Herz type Hardy spaces have the atomic decomposition characteriza-

tion.
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Definition 1.3 Let α ∈ R, 1 < q <∞. A function a(x) on Rn is called a
central (α, q)-atom (or a central (a, q)-atom of restrict type), if

1) Suppa ⊂ B(0, r) for some r > 0 (or for some r ≥ 1),
2) ||a||Lq ≤ |B(0, r)|−α/n,
3)
∫
a(x)xγdx = 0 for |γ| ≤ [α− n(1− 1/q)].

Lemma 1.1(see[10],[18]]) Let 0 < p <∞, 1 < q <∞ and α ≥ n(1− 1/q).
A temperate distribution f belongs to HK̇α,p

q (Rn)(or HKα,p
q (Rn)) if and only

if there exist central (α, q)-atoms(or central (α, q) -atoms of restrict type)aj
supported on Bj = B(0, 2j) and constants λj,

∑
j |λj|p < ∞ such that f =∑∞

j=−∞ λjaj(or f =
∑∞

j=0 λjaj)in the S ′(Rn) sense, and

||f ||HK̇α,p
q

( or ||f ||HKα,p
q

) ≈

(∑
j

|λj|p
)1/p

.

2 Theorems

In this paper, we will study a class of multilinear operators related to some
integral operators, whose definitions are follows.

Fixed 0 ≤ δ < n and ε > 0. Let mi be the positive integers(i = 1, · · ·, l),
m1 + · · ·+ml = m and Ai be the functions on Rn (i = 1, · · ·, l). Set

Rmi+1(Ai;x, y) = Ai(x)−
∑
|γ|≤mi

1

γ!
DγAi(y)(x− y)γ

and

Qmi+1(Ai;x, y) = Rmi
(Ai;x, y)−

∑
|γ|=mi

1

γ!
DγAi(x)(x− y)γ.

Let Ft(x, y) define on Rn ×Rn × [0,+∞). Set

Ft(f)(x) =

∫
Rn

Ft(x, y)f(y)dy

and

FA
t (f)(x) =

∫
Rn

∏l
j=1Rmj+1(Aj;x, y)

|x− y|m
Ft(x, y)f(y)dy

for every bounded and compactly supported function f . Let H be the Ba-
nach space H = {h : ||h|| < ∞} such that, for each fixed x ∈ Rn, Ft(f)(x)
and FA

t (f)(x) may be viewed as a mapping from [0,+∞) to H. Then, the
multilinear operator related to Ft is defined by

TA(f)(x) = ||FA
t (f)(x)||,
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where Ft satisfies:
||Ft(x, y)|| ≤ C|x− y|−n+δ

and
||Ft(y, x)− Ft(z, x)|| ≤ C|y − z|ε|x− z|−n−ε+δ

if 2|y − z| ≤ |x− z|. Let T (f)(x) = ||Ft(f)(x)||. We also consider the variant
of TA, which is defined by

T̃A(f)(x) = ||F̃A
t (f)(x)||,

where

F̃A
t (f)(x) =

∫
Rn

∏l
i=1Qmi+1(Ai;x, y)

|x− y|m
Ft(x, y)f(y)dy.

Note that when m = 0, TA is just higher order commutator of the operators
T and A(see [1],[12-14],[19]), while when m > 0, it is non-trivial generalizations
of the commutator. It is well known that multilinear operators are of great
interest in harmonic analysis and have been widely studied by many authors
when A has derivatives of order m in BMO(Rn)(see [4-6],[9]). The purpose
of this paper is to prove the continuity properties of the multilinear operators
TA and T̃A on Hardy and Herz-type spaces. In Section 4, some examples of
Theorems in this paper are given.

We shall prove the following theorems in Section 3.
Theorem 2.1 Let 0 < β ≤ 1, 0 ≤ δ < n − lβ and DγAi ∈ Lipβ(R

n) for
all γ with |γ| = mi and i = 1, · · ·, l.

(a) Suppose that TA maps Ls(Rn) continuously into Lr(Rn) for any 1 <
r < n/µ and 1/s = 1/r − µ/n. If max(n/(n + β), n/(n + ε)) < p ≤ 1,
1/p− 1/q = (δ + lβ)/n, then TA maps Hp(Rn) continuously into Lq(Rn).

(b) Suppose that T̃A maps Ls(Rn) continuously into Lr(Rn) for any 1 <
r < n/µ and 1/s = 1/r − µ/n. If 0 < β < min(1/l, ε/l), then T̃A maps
Hn/(n+lβ)(Rn) continuously into Ln/(n−δ)(Rn).

Theorem 2.2 Let 0 < β ≤ 1, 0 ≤ δ < n− lβ, 0 < p <∞, 1 < q1, q2 <∞,
1/q1 − 1/q2 = (δ + lβ)/n and DγAi ∈ Lipβ(R

n) for all γ with |γ| = mi and
i = 1, · · ·, l.

(i) Suppose that TA maps Ls(Rn) continuously into Lr(Rn) for any 1 <
r < n/µ and 1/s = 1/r−µ/n. If n(1−1/q1) ≤ α < min(n(1−1/q1)+ lβ, n(1−
1/q1) + ε), then TA maps HK̇α,p

q1
(Rn) continuously into K̇α,p

q2
(Rn).

(ii) Suppose that T̃A maps Ls(Rn) continuously into Lr(Rn) for any 1 <
r < n/µ and 1/s = 1/r − µ/n. If 0 < p ≤ 1 and 0 < β < min(1/l, ε/l), then

T̃A maps HK̇
n(1−1/q1)+lβ,p
q1 (Rn) continuously into K̇

n(1−1/q1)+lβ,p
q2 (Rn).

Remark. Theorem 2 also hold for the nonhomogeneous Herz and Herz
type Hardy space.

3 Proofs of Theorems
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We begin with a preliminary lemma.
Lemma 3.1(see [6]) Let A be a function on Rn such that DγA ∈ Lqloc(Rn)

for |γ| = m and some q > n. Then

|Rm(A;x, y)| ≤ C|x− y|m
∑
|γ|=m

(
1

|Q̃(x, y)|

∫
Q̃(x,y)

|DγA(z)|qdz
)1/q

,

where Q̃(x, y) is the cube centered at x and having side length 5
√
n|x− y|.

Proof of Theorem 2.1(a). It suffices to show that there exists a constant
C > 0 such that for every Hp-atom a, there is

||TA(a)||Lq ≤ C.

Without loss of generality, we may assume l = 2. Let a be a Hp-atom, that is
that a supported on a cubeQ = Q(x0, d), ||a||L∞ ≤ |Q|−1/p and

∫
Rn a(x)x

ηdx =
0 for |η| ≤ [n(1/p− 1)]. We write∫

Rn

|TA(a)(x)|qdx =

(∫
|x−x0|≤2d

+

∫
|x−x0|>2d

)
|TA(a)(x)|qdx = I1 + I2.

For I1, taking q1 > q and 1 < p1 < n/(δ + 2β) such that 1/p1 − 1/q1 =
(δ + 2β)/n, by Hölder’s inequality and the (Lp1 , Lq1)-boundedness of TA, we
get

I1 ≤ C||TA(a)||qLq1 |2Q|1−q/q1 ≤ C||a||qLp1 |Q|1−q/q1 ≤ C.

To estimate I2, we need to estimate TA(a)(x) for x ∈ (2Q)c. Let Ãi(x) =
Ai(x)−

∑
|γ|=mi

1
γ!

(DγAi)Qx
γ. ThenRmi

(Ai;x, y) = Rmi
(Ãi;x, y) andDγÃi(y) =

DγAi(y)− (DγAi)Q. We write, by the vanishing moment of a,

FA
t (a)(x)

=

∫
Rn

[
Ft(x, y)

|x− y|m
− Ft(x, x0)

|x− x0|m

]
Rm1(Ã1;x, y)Rm2(Ã2;x, y)a(y)dy

+

∫
Rn

Ft(x, x0)

|x− x0|m
[Rm1(Ã1;x, y)−Rm1(Ã1;x, x0)]Rm2(Ã2;x, y)a(y)dy

+

∫
Rn

Ft(x, x0)

|x− x0|m
[Rm2(Ã2;x, y)−Rm2(Ã2;x, x0)]Rm1(Ã1;x, x0)a(y)dy

−
∑

|γ2|=m2

1

γ2!

∫
Rn

Rm1(Ã1;x, y)D
γ2Ã2(y)(x− y)γ2

|x− y|m
Ft(x, y)a(y)dy

−
∑

|γ1|=m1

1

γ1!

∫
Rn

Rm2(Ã2;x, y)D
γ1Ã1(y)(x− y)γ1

|x− y|m
Ft(x, y)a(y)dy

+
∑

|γ1|=m1,|γ2|=m2

1

γ1!

1

γ2!

∫
Rn

Dγ1Ã1(y)D
γ2Ã2(y)(x− y)γ1+γ2

|x− y|m
Ft(x, y)a(y)dy;
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By Lemma 3.1 and the following inequality

|b(x)− bQ| ≤
1

|Q|

∫
Q

||b||Lipβ
|x− y|βdy ≤ ||b||Lipβ

(|x− x0|+ d)β,

we get

|Rmi
(Ãi;x, y)| ≤

∑
|γ|=mi

||DγAi||Lipβ
(|x− y|+ d)mi+β;

By the formula (see [6]):

Rmi
(Ãi;x, y)−Rmi

(Ãi;x, x0) =
∑
|η|<m

1

η!
Rmi−|η|(D

ηÃi;x0, y)(x− x0)
η,

and note that |x− y| ∼ |x− x0| for y ∈ Q and x ∈ Rn \ 2Q, we obtain

|TA(a)(x)| = ||FA
t (a)(x)|| ≤ C

2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

∫
Q

[
|y − x0|

|x− x0|n+1−δ−2β

+
|y − x0|ε

|x− x0|n+ε−δ−2β
+

|y − x0|β

|x− x0|n−δ−β
+

|y − x0|2β

|x− x0|n−δ

]
|a(y)|dy

≤ C
2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

[ |Q|1/n+1−1/p

|x− x0|n+1−δ−2β
+

|Q|ε/n+1−1/p

|x− x0|n+ε−δ−2β

+
|Q|β/n+1−1/p

|x− x0|n−δ−β
+
|Q|2β/n+1−1/p

|x− x0|n−δ

]
;

Thus

I2 ≤
∞∑
k=1

∫
2k+1Q\2kQ

|TA(a)(x)|qdx

≤ C

 2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

q

×
∞∑
k=1

[
2kqn(1/p−(n+1)/n) + 2kqn(1/p−(n+ε)/n) + 2kqn(1/p−(n+β)/n)

]
≤ C

 2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

q ≤ C,

which together with the estimate for I1 yields the desired result.
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(b). Without loss of generality, we may assume l = 2. It is only to prove
that there exists a constant C > 0 such that for every Hn/(n+2β)-atom a sup-
ported on Q = Q(x0, d), there is

||T̃A(a)||Ln/(n−δ) ≤ C.

We write∫
Rn

|T̃A(a)(x)|n/(n−δ)dx =

[∫
|x−x0|≤2d

+

∫
|x−x0|>2d

]
|T̃A(a)(x)|n/(n−δ)dx := J1+J2.

For J1, by the (Lp, Lq)-boundedness of T̃A for 1 < p < n/(δ + 2β), q >
n/(n− δ)and 1/q = 1/p− (δ + 2β)/n, we get

J1 ≤ C||T̃A(a)||n/(n−δ)Lq |2Q|1−n/((n−δ)q) ≤ C||a||n/(n−δ)Lp |Q|1−n/((n−δ)q) ≤ C.

To obtain the estimate of J2, we denote Ãi(x) = Ai(x)−
∑

|γ|=mi

1
γ!

(DγAi)2Qx
γ.

Then Qmi
(Ai;x, y) = Qmi

(Ãi;x, y). We write, by the vanishing moment of a
and Qmi+1(Ai;x, y) = Rmi

(Ai;x, y)−
∑

|γ|=mi

1
γ!
DγAi(x)(x−y)γ, for x ∈ (2Q)c,

F̃A
t (a)(x)

=

∫
Rn

[
Ft(x, y)

|x− y|m
− Ft(x, x0)

|x− x0|m

]
Rm1(Ã1;x, y)Rm2(Ã2;x, y)a(y)dy

+

∫
Rn

Ft(x, x0)

|x− x0|m
[Rm1(Ã1;x, y)−Rm1(Ã1;x, x0)]Rm2(Ã2;x, y)a(y)dy

+

∫
Rn

Ft(x, x0)

|x− x0|m
[Rm2(Ã2;x, y)−Rm2(Ã2;x, x0)]Rm1(Ã1;x, x0)a(y)dy

−
∑

|γ2|=m2

∫
Rn

[
Ft(x, y)(x− y)γ2

|x− y|m
− Ft(x, x0)(x− x0)

γ2

|x− x0|m

]
×Rm1(Ã1;x, y)D

γ2Ã2(x)a(y)dy

−
∑

|γ2|=m2

∫
Rn

Ft(x, x0)(x− x0)
γ2

|x− x0|m
[Rm1(Ã1;x, y)−Rm1(Ã1;x, x0)]

×Dγ2Ã2(x)a(y)dy

−
∑

|γ1|=m1

∫
Rn

[
Ft(x, y)(x− y)γ1

|x− y|m
− Ft(x, x0)(x− x0)

γ1

|x− x0|m

]
×Rm2(Ã2;x, y)D

γ1Ã1(x)a(y)dy
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−
∑

|γ1|=m1

∫
Rn

Ft(x, x0)(x− x0)
γ1

|x− x0|m
[Rm2(Ã2;x, y)−Rm2(Ã2;x, x0)]

×Dγ1Ã1(x)a(y)dy

+
∑

|γ1|=m1,|γ2|=m2

∫
Rn

[
Ft(x, y)(x− y)γ1+γ2

|x− y|m
− Ft(x, x0)(x− x0)

γ1+γ2

|x− x0|m

]
×Dγ1Ã1(x)D

γ2Ã2(x)a(y)dy,

then, similar to the proof of (a), we obtain

|T̃A(a)(x)|

≤ C
2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

∫
Q

[
|y − x0|

|x− x0|n+1−δ−2β
+

|y − x0|ε

|x− x0|n+ε−δ−2β

]
|a(y)|dy

≤ C
2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

[ |Q|(1−2β)/n

|x− x0|n+1−δ−2β
+

|Q|(ε−2β)/n

|x− x0|n+ε−δ−2β

]
,

thus

J2 ≤ C

 2∏
i=1

 ∑
|γi|=mi

||DγiAi||Lipβ

n/(n−δ) ∞∑
k=1

[2kn(2β−1)/(n−δ)+2kn(2β−ε)/(n−δ)] ≤ C,

which together with the estimate for J1 yields the desired result. This com-
pletes the proof of Theorem 2.1.

Proof of Theorem 2.2(i). Without loss of generality, we may assume
l = 2. Let f ∈ HK̇α,p

q1
(Rn) and f(x) =

∑∞
j=−∞ λjaj(x) be the atomic decom-

position for f as in Lemma 1.1. We write

||TA(f)||p
K̇α,p

q2

≤
∞∑

k=−∞

2kαp

(
k−3∑
j=−∞

|λj|||TA(aj)χk||Lq2

)p

+
∞∑

k=−∞

2kαp

(
∞∑

j=k−2

|λj|||TA(aj)χk||Lq2

)p

= K1 +K2.
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For K2, by the (Lq1 , Lq2) boundedness of TA, we have

K2 ≤ C
∞∑

k=−∞

2kαp

(
∞∑

j=k−2

|λj|||aj||Lq1

)p

≤

 C
∑∞

j=−∞ |λj|p
(∑j+2

k=−∞ 2(k−j)αp
)
, 0 < p ≤ 1

C
∑∞

j=−∞ |λj|p
(∑j+2

k=−∞ 2(k−j)αp/2
)(∑j+2

k=−∞ 2(k−j)αp′/2
)p/p′

, p > 1

≤ C

∞∑
j=−∞

|λj|p ≤ C||f ||p
HK̇α,p

q1

.

For K1, similar to the proof of Theorem 2.1 (a), we get, for x ∈ Ck, j ≤ k− 3,

|TA(aj)(x)|

≤ C

(
|Bj|1/n

|x|n+1−δ−2β
+

|Bj|ε/n

|x|n+ε−δ−2β
+

|Bj|β/n

|x|n−δ−β
+
|Bj|2β/n

|x|n−δ

)∫
Rn

|aj(y)|dy

≤ C

(
2j(1+n(1−1/q1)−α)

|x|n+1−δ−2β
+

2j(ε+n(1−1/q1)−α)

|x|n+ε−δ−2β
+

2j(β+n(1−1/q1)−α)

|x|n−δ−β−n

)
,

thus

||TA(aj)χk||Lq2

≤ C2−kα
(
2(j−k)(1+n(1−1/q1)−α) + 2(j−k)(ε+n(1−1/q1)−α) + 2(j−k)(β+n(1−1/q1)−α)

)
;

To be simply, denote W (j, k) = 2(j−k)(1+n(1−1/q1)−α) + 2(j−k)(ε+n(1−1/q1)−α) +
2(j−k)(β+n(1−1/q1)−α) and recall that α < min(n(1− 1/q1) + β, n(1− 1/q1) + ε),
then

K1 ≤ C
∞∑

k=−∞

(
k−3∑
j=−∞

|λj|W (j, k)

)p

≤

{
C
∑∞

j=−∞ |λj|p
∑∞

k=j+3W (j, k)p, 0 < p ≤ 1

C
∑∞

j=−∞ |λj|p
[∑∞

k=j+3W (j, k)p/2
] [∑∞

k=j+3W (j, k)p
′/2
]p/p′

, p > 1

≤ C

∞∑
j=−∞

|λj|p ≤ C||f ||p
HK̇α,p

q1

.

These yield the desired result.

(ii). Without loss of generality, assume l = 2. Let f ∈ HK̇n(1−1/q1)+2β,p
q1 (Rn)

and f(x) =
∑∞

j=−∞ λjaj(x) be the atomic decomposition for f as in Lemma
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1.1. Write

||T̃A(f)||p
K̇

n(1−1/q1)+2β,p
q2

≤
∞∑

k=−∞

2kp(n(1−1/q1)+2β)

(
k−3∑
j=−∞

|λj|||T̃A(aj)χk||Lq2

)p

+
∞∑

k=−∞

2kp(n(1−1/q1)+2β)

(
∞∑

j=k−2

|λj|||T̃A(aj)χk||Lq2

)p

= L1 + L2.

For L2, by the (Lq1 , Lq2) boundedness of T̃A, we get

L2 ≤ C

∞∑
k=−∞

2kp(n(1−1/q1)+2β)

(
∞∑

j=k−2

|λj|||aj||Lq1

)p

≤ C
∞∑

j=−∞

|λj|p
(

j+2∑
k=−∞

2(k−j)p(n(1−1/q1)+2β)

)

≤ C
∞∑

j=−∞

|λj|p ≤ C||f ||p
HK̇

n(1−1/q1)+2β,p
q1

.

For L1, similar to the proof of Theorem 2.1 (b), we get, for x ∈ Ck, j ≤ k− 3,

|T̃A(a)(x)| ≤ C

(
|Bj|1/n

|x|n+1−δ−2β
+

|Bj|ε/n

|x|n+ε−δ−2β

)∫
Rn

|aj(y)|dy

≤ C

(
2j(1−2β)

|x|n+1−δ−2β
+

2j(ε−2β)

|x|n+ε−δ−2β

)
,

thus

L1 ≤ C

∞∑
k=−∞

2kp(n(1−1/q1)+2β)

(
k−3∑
j=−∞

|λj|p
2j(1−2β)

2k(n+1−δ−2β)
+

2j(ε−2β)

2k(n+ε−δ−2β)

)p

2knp/q2

≤ C
∞∑

j=−∞

|λj|p
∞∑

k=j+3

(
2p(1−2β)(j−k) + 2p(ε−2β)(j−k))

≤ C
∞∑

j=−∞

|λj|p ≤ C||f ||p
HK̇

n(1−1/q1)+2β,p
q1

.

These yield the desired result and finish the proof of Theorem 2.2.

4 Examples

Now we give some examples including Littlewood-Paley operators,
Marcinkiewicz operators and Bochner-Riesz operator.
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Example 1 Littlewood-Paley operator.
Fixed ε > 0 and µ > (3n+ 2)/n. Let ψ be a fixed function which satisfies:
(1)

∫
Rn ψ(x)dx = 0,

(2) |ψ(x)| ≤ C(1 + |x|)−(n+1),
(3) |ψ(x+ y)− ψ(x)| ≤ C|y|ε(1 + |x|)−(n+1+ε) when 2|y| < |x|;
We denote that Γ(x) = {(y, t) ∈ Rn+1

+ : |x− y| < t} and the characteristic
function of Γ(x) by χΓ(x). The Littlewood-Paley multilinear operators are
defined by

gAψ (f)(x) =

(∫ ∞

0

|FA
t (f)(x)|2dt

t

)1/2

,

SAψ (f)(x) =

[∫ ∫
Γ(x)

|FA
t (f)(x, y)|2dydt

tn+1

]1/2

and

gAµ (f)(x) =

[∫ ∫
Rn+1

+

(
t

t+ |x− y|

)nµ
|FA
t (f)(x, y)|2dydt

tn+1

]1/2

,

where

FA
t (f)(x) =

∫
Rn

∏l
j=1Rmj+1(Aj;x, y)

|x− y|m
ψt(x− y)f(y)dy,

FA
t (f)(x, y) =

∫
Rn

∏l
j=1Rmj+1(Aj;x, z)

|x− z|m
f(z)ψt(y − z)dz

and ψt(x) = t−nψ(x/t) for t > 0. The variants of gAψ , SAψ and gAµ are defined
by

g̃Aψ (f)(x) =

(∫ ∞

0

|F̃A
t (f)(x)|2dt

t

)1/2

,

S̃Aψ (f)(x) =

[∫ ∫
Γ(x)

|F̃A
t (f)(x, y)|2dydt

tn+1

]1/2

and

g̃Aµ (f)(x) =

[∫ ∫
Rn+1

+

(
t

t+ |x− y|

)nµ
|F̃A
t (f)(x, y)|2dydt

tn+1

]1/2

,

where

F̃A
t (f)(x) =

∫
Rn

∏l
j=1Qmj+1(Aj;x, y)

|x− y|m
ψt(x− y)f(y)dy

and

F̃A
t (f)(x, y) =

∫
Rn

∏l
j=1Qmj+1(Aj;x, z)

|x− z|m
ψt(y − z)f(z)dz.
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Set Ft(f)(y) = f ∗ ψt(y). We also define that

gψ(f)(x) =

(∫ ∞

0

|Ft(f)(x)|2dt
t

)1/2

,

Sψ(f)(x) =

(∫ ∫
Γ(x)

|Ft(f)(y)|2dydt
tn+1

)1/2

and

gµ(f)(x) =

(∫ ∫
Rn+1

+

(
t

t+ |x− y|

)nµ
|Ft(f)(y)|2dydt

tn+1

)1/2

,

which are the Littlewood-Paley operators (see [21]). Let H be the space

H =

{
h : ||h|| =

(∫ ∞

0

|h(t)|2dt/t
)1/2

<∞

}
or

H =

h : ||h|| =

(∫ ∫
Rn+1

+

|h(y, t)|2dydt/tn+1

)1/2

<∞

 ,

then, for each fixed x ∈ Rn, FA
t (f)(x) and FA

t (f)(x, y) may be viewed as the
mapping from [0,+∞) to H, and it is clear that

gAψ (f)(x) = ||FA
t (f)(x)||, gψ(f)(x) = ||Ft(f)(x)||,

SAψ (f)(x) =
∣∣∣∣χΓ(x)F

A
t (f)(x, y)

∣∣∣∣ , Sψ(f)(x) =
∣∣∣∣χΓ(x)Ft(f)(y)

∣∣∣∣
and

gAµ (f)(x) =

∣∣∣∣∣
∣∣∣∣∣
(

t

t+ |x− y|

)nµ/2
FA
t (f)(x, y)

∣∣∣∣∣
∣∣∣∣∣ ,

gµ(f)(x) =

∣∣∣∣∣
∣∣∣∣∣
(

t

t+ |x− y|

)nµ/2
Ft(f)(y)

∣∣∣∣∣
∣∣∣∣∣ .

It is easily to see that gψ, Sψ and gµ satisfy the conditions of Theorem 2.1 and
2.2, thus Theorem 2.1 and 2.2 hold for gAψ and g̃Aψ , SAψ and S̃Aψ , gAµ and g̃Aµ .

Example 2 Marcinkiewicz operator.
Fixed Fix λ > max(1, 2n/(n+2)) and 0 < γ ≤ 1. Let Ω be homogeneous of

degree zero on Rn with
∫
Sn−1 Ω(x′)dσ(x′) = 0. Assume that Ω ∈ Lipγ(S

n−1).
The Marcinkiewicz multilinear operators are defined by

µAΩ(f)(x) =

(∫ ∞

0

|FA
t (f)(x)|2dt

t3

)1/2

,
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µAS (f)(x) =

[∫ ∫
Γ(x)

|FA
t (f)(x, y)|2dydt

tn+3

]1/2

and

µAλ (f)(x) =

[∫ ∫
Rn+1

+

(
t

t+ |x− y|

)nλ
|FA
t (f)(x, y)|2dydt

tn+3

]1/2

,

where

FA
t (f)(x) =

∫
|x−y|≤t

∏l
j=1Rmj+1(Aj;x, y)

|x− y|m
Ω(x− y)

|x− y|n−1
f(y)dy

and

FA
t (f)(x, y) =

∫
|y−z|≤t

∏l
j=1Rmj+1(Aj; y, z)

|y − z|m
Ω(y − z)

|y − z|n−1
f(z)dz;

The variants of µAΩ, µAS and µAλ are defined by

µ̃AΩ(f)(x) =

(∫ ∞

0

|F̃A
t (f)(x)|2dt

t3

)1/2

,

µ̃AS (f)(x) =

[∫ ∫
Γ(x)

|F̃A
t (f)(x, y)|2dydt

tn+3

]1/2

and

µ̃Aλ (f)(x) =

[∫ ∫
Rn+1

+

(
t

t+ |x− y|

)nλ
|F̃A
t (f)(x, y)|2dydt

tn+3

]1/2

,

where

F̃A
t (f)(x) =

∫
|x−y|≤t

∏l
j=1Qmj+1(Aj;x, y)

|x− y|m
Ω(x− y)

|x− y|n−1
f(y)dy

and

F̃A
t (f)(x, y) =

∫
|y−z|≤t

∏l
j=1Qmj+1(Aj; y, z)

|y − z|m
Ω(y − z)

|y − z|n−1
f(z)dz.

Set

Ft(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy;

We also define that

µΩ(f)(x) =

(∫ ∞

0

|Ft(f)(x)|2dt
t3

)1/2

,
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µS(f)(x) =

(∫ ∫
Γ(x)

|Ft(f)(y)|2dydt
tn+3

)1/2

and

µλ(f)(x) =

(∫ ∫
Rn+1

+

(
t

t+ |x− y|

)nλ
|Ft(f)(y)|2dydt

tn+3

)1/2

,

which are the Marcinkiewicz operators(see [22]). Let H be the space

H =

{
h : ||h|| =

(∫ ∞

0

|h(t)|2dt/t3
)1/2

<∞

}
or

H =

h : ||h|| =

(∫ ∫
Rn+1

+

|h(y, t)|2dydt/tn+3

)1/2

<∞

 .

Then, it is clear that

µAΩ(f)(x) = ||FA
t (f)(x)||, µΩ(f)(x) = ||Ft(f)(x)||,

µAS (f)(x) =
∣∣∣∣χΓ(x)F

A
t (f)(x, y)

∣∣∣∣ , µS(f)(x) =
∣∣∣∣χΓ(x)Ft(f)(y)

∣∣∣∣
and

µAλ (f)(x) =

∣∣∣∣∣
∣∣∣∣∣
(

t

t+ |x− y|

)nλ/2
FA
t (f)(x, y)

∣∣∣∣∣
∣∣∣∣∣ ,

µλ(f)(x) =

∣∣∣∣∣
∣∣∣∣∣
(

t

t+ |x− y|

)nλ/2
Ft(f)(y)

∣∣∣∣∣
∣∣∣∣∣ .

It is easily to see that µΩ, µS and µλ satisfy the conditions of Theorem 2.1 and
2.2, thus Theorem 2.1 and 2.2 hold for µAΩ and µ̃AΩ, µAS and µ̃AS , µAλ and µ̃Aλ .

Example 3 Bochner-Riesz operator .
Let δ > (n − 1)/2, Bδ

t (f )̂(ξ) = (1 − t2|ξ|2)δ+f̂(ξ) and Bδ
t (z) = t−nBδ(z/t)

for t > 0. Set

FA
δ,t(f)(x) =

∫
Rn

∏l
j=1Rmj+1(Aj;x, y)

|x− y|m
Bδ
t (x− y)f(y)dy

and

F̃A
δ,t(f)(x) =

∫
Rn

∏l
j=1Qmj+1(Aj;x, y)

|x− y|m
Bδ
t (x− y)f(y)dy.

The maximal Bochner-Riesz multilinear operator and its the variants are de-
fined by

BA
δ,∗(f)(x) = sup

t>0
|BA

δ,t(f)(x)| and B̃A
δ,∗(f)(x) = sup

t>0
|B̃A

δ,t(f)(x)|.
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We also define that
Bδ,∗(f)(x) = sup

t>0
|Bδ

t (f)(x)|,

which is the maximal Bochner-Riesz operator(see [15]). Let H be the space
H = {h : ||h|| = sup

t>0
|h(t)| <∞}, then

BA
δ,∗(f)(x) = ||BA

δ,t(f)(x)||, Bδ
∗(f)(x) = ||Bδ

t (f)(x)||.

It is easily to see that Bδ,∗ satisfies the conditions of Theorem 2.1 and 2.2, thus
Theorem 2.1 and 2.2 hold for BA

δ,∗ and B̃A
δ,∗.

4 Open problem

In this paper, the boundedness properties of the multilinear operators gen-
erated by certain non-convolution type integral operators and Lipschitz func-
tions on some Hardy and Herz-type spaces are obtained. The operators include
Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz oper-
ator.

The open problem is to study the boundedness of the multilinear op-
erators generated by the non-convolution type integral operators and others
locally integrable functions on others spaces.
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