Int. J. Open Problems Comput. Sci. Math., Vol. 2, No. 2, June 2009

A Note On L^{1}-Convergence of the Sine and Cosine Trigonometric Series with Semi-Convex Coefficients

Xhevat Z. Krasniqi
Faculty of Education, University of Prishtina Rr. Agim Ramadani, Prishtinë 10000, Republic of Kosova
e-mail address: xheki00@hotmail.com

Abstract

We introduce new modified cosine and sine sums and study their L^{1}-convergence to the sine and cosine trigonometric series respectively and deduce a result of Bala and Ram [1] as a corollary.

Keywords: L^{1}-convergence, new modified sine and cosine sums, semiconvex sequences.

2000 Mathematics Subject Classification: 42A20, $42 A 32$.

1 Introduction and Preliminaries

Let

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} \sin k x \tag{2}
\end{equation*}
$$

be cosine and sine trigonometric series respectively with their partial sums denoted by $S_{n}^{c}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos k x, S_{n}^{s}(x)=\sum_{k=1}^{n} a_{k} \sin k x$ and let $f(x)=$ $\lim _{n \rightarrow \infty} S_{n}^{c}(x), g(x)=\lim _{n \rightarrow \infty} S_{n}^{s}(x)$.

For convenience, in the following of this paper we shall assume that $a_{-1}=$ $a_{0}=0$.

A sequence $\left(a_{n}\right)$ is said to be semi-convex if $a_{n} \rightarrow 0, n \rightarrow \infty$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} a_{n-1}+\Delta^{2} a_{n}\right|<\infty \tag{3}
\end{equation*}
$$

where $\Delta^{2} a_{k}=\Delta\left(\Delta a_{k}\right)=a_{k}-2 a_{k+1}+a_{k+2}$.
R. Bala and B. Ram [1] have proved that for series (1) with semi-convex null coefficients the following theorem holds true.

Theorem A. If $\left(a_{n}\right)$ is a semi-convex null sequence, then for the convergence of the cosine series (1) in the metric L^{1}, it is necessary and sufficient that $a_{n-1} \log n=o(1), n \rightarrow \infty$.

Garret and Stanojević [2] have introduced modified cosine sums

$$
f_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} \Delta a_{k}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_{j} \cos k x .
$$

Garret and Stanojević [3], Ram [4], Singh and Sharma [5], and Kaur and Bhatia [6], [7] studied the L^{1}-convergence of this cosine sum under different sets of conditions on the coefficients a_{n}.

Kumari and Ram [8] introduced new modified cosine and sine sums as

$$
\begin{gathered}
h_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j}\right) k \cos k x \\
g_{n}(x)=\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j}\right) k \sin k x
\end{gathered}
$$

and have studied their L^{1}-convergence under the condition that the coefficients a_{n} belong to different classes of sequences. Likewise, they deduced some results about L^{1}-convergence of cosine and sine series as corollaries.
N. Hooda, B. Ram and S. S. Bhatia [9] introduced new modified cosine sums as

$$
r_{n}(x)=\frac{1}{2}\left(a_{1}+\sum_{k=0}^{n} \Delta^{2} a_{k}\right)+\sum_{k=1}^{n}\left(a_{k+1}+\sum_{j=k}^{n} \Delta^{2} a_{j}\right) \cos k x
$$

and studied the L^{1}-convergence of these cosine sums.
Later on, K. Kaur [10] introduced new modified sine sums as

$$
K_{n}(x)=\frac{1}{2 \sin x} \sum_{k=1}^{n} \sum_{j=k}^{n}\left(\Delta a_{j-1}-\Delta a_{j+1}\right) \sin k x
$$

and studied the L^{1}-convergence of this modified sine sum with semi-convex coefficients proving the following theorem.

Theorem B. Let $\left(a_{n}\right)$ be a semi-convex null sequence, then $K_{n}(x)$ converges to $f(x)$ in L^{1}-norm.

We introduce here new modified cosine and sine sums as

$$
\begin{aligned}
H_{n}(x) & =-\frac{1}{2 \sin x} \sum_{k=0}^{n} \sum_{j=k}^{n} \Delta\left[\left(a_{j-1}-a_{j+1}\right) \cos j x\right] \\
G_{n}(x) & =\frac{1}{2 \sin x} \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left[\left(a_{j-1}-a_{j+1}\right) \sin j x\right] .
\end{aligned}
$$

The main goal of the present work is to study the L^{1}-convergence of these new modified sine and cosine sums with semi-convex coefficients and to deduce Theorem A as a corollary.

As usually with $D_{n}(x)$ and $\tilde{D}_{n}(x)$ we shall denote the Dirichlet and its conjugate kernels respectively, defined by

$$
D_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x, \quad \tilde{D}_{n}(x)=\sum_{k=1}^{n} \sin k x .
$$

Everywhere in this paper the constants in the O-expressions denote positive constants and they may be different in different relations.

2 Main Results

Regarding the series (2) we prove the following result:

Theorem 1. Let $\left(a_{n}\right)$ be a semi-convex null sequence, then $H_{n}(x)$ converges to $g(x)$ in L^{1}-norm.

Proof. We have

$$
\begin{align*}
H_{n}(x)= & -\frac{1}{2 \sin x} \sum_{k=0}^{n} \sum_{j=k}^{n} \Delta\left[\left(a_{j-1}-a_{j+1}\right) \cos j x\right] \\
= & -\frac{1}{2 \sin x} \sum_{k=0}^{n}\left[\left(a_{k-1}-a_{k+1}\right) \cos k x-\left(a_{n}-a_{n+2}\right) \cos (n+1) x\right] \\
= & -\frac{1}{2 \sin x} \sum_{k=0}^{n}\left(a_{k-1}-a_{k+1}\right) \cos k x \\
& \quad+(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} \\
=- & \frac{1}{2 \sin x} \sum_{k=0}^{n}\left(\Delta a_{k-1}+\Delta a_{k}\right) \cos k x \\
& \quad+(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} . \tag{4}
\end{align*}
$$

Applying Abel's transformation in (4) (see [11], p. 17), we have

$$
\begin{align*}
& H_{n}(x)=-\frac{1}{2 \sin x}\left\{\sum_{k=0}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(D_{k}(x)+\frac{1}{2}\right)\right. \\
&\left.+\left(\Delta a_{n-1}+\Delta a_{n}\right)\left(D_{n}(x)+\frac{1}{2}\right)\right\} \\
&+(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} \\
&=- \frac{1}{2 \sin x}\left\{\sum_{k=0}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) D_{k}(x)\right. \\
& \quad\left(\Delta a_{n-1}-\Delta a_{n+1}\right) D_{n}(x) \\
&\left.+\frac{1}{2} \sum_{k=0}^{n-1}\left(\Delta a_{k-1}-\Delta a_{k+1}\right)+\frac{\Delta a_{n-1}+\Delta a_{n}}{2}\right\} \\
&+(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} \\
&=-\frac{1}{2 \sin x} \sum_{k=0}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) D_{k}(x) \\
&+(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} \tag{5}
\end{align*}
$$

On the other side we have

$$
\begin{align*}
S_{n}^{s}(x)= & \frac{1}{\sin x} \sum_{k=1}^{n} a_{k} \sin k x \sin x \\
= & -\frac{1}{2 \sin x} \sum_{k=1}^{n} a_{k}[\cos (k+1) x-\cos (k-1) x] \\
= & -\frac{1}{2 \sin x} \sum_{k=0}^{n}\left(a_{k-1}-a_{k+1}\right) \cos k x \\
& \quad-a_{n+1} \frac{\cos n x}{2 \sin x}-a_{n} \frac{\cos (n+1) x}{2 \sin x} \\
=- & -\frac{1}{2 \sin x} \sum_{k=0}^{n}\left(\Delta a_{k-1}+\Delta a_{k}\right) \cos k x \\
& \quad-a_{n+1} \frac{\cos n x}{2 \sin x}-a_{n} \frac{\cos (n+1) x}{2 \sin x} . \tag{6}
\end{align*}
$$

Applying Abel's transformation to the equality (6) we get

$$
\begin{align*}
& S_{n}^{s}(x)=-\frac{1}{2 \sin x}\{ \sum_{k=0}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(D_{k}(x)+\frac{1}{2}\right) \\
&\left.+\left(\Delta a_{n-1}+\Delta a_{n}\right)\left(D_{n}(x)+\frac{1}{2}\right)\right\} \\
&-a_{n+1} \frac{\cos n x}{2 \sin x}-a_{n} \frac{\cos (n+1) x}{2 \sin x} \\
&=-\frac{1}{2 \sin x}\left\{\sum_{k=0}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) D_{k}(x)+\frac{1}{2} \sum_{k=0}^{n-1}\left(\Delta a_{k-1}-\Delta a_{k+1}\right)\right. \\
&\left.+\left(\Delta a_{n}+\Delta a_{n+1}\right) D_{n}(x)+\frac{\Delta a_{n-1}+\Delta a_{n}}{2}\right\} \\
&=-\frac{1}{2 \sin x} \sum_{k=0}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) D_{k}(x) \\
& \quad-\left(a_{n}-a_{n+2}\right) \frac{D_{n}(x)}{2 \sin x}-a_{n+1} \frac{\cos n x}{2 \sin x}-a_{n} \frac{\cos (n+1) x}{2 \sin x}-a_{n} \frac{\cos (n+1) x}{2 \sin x} .
\end{align*}
$$

Since $\left(a_{n}\right)$ is semi-convex sequence, then from (3) we have

$$
\begin{align*}
\left|(n+1)\left(a_{n}-a_{n+2}\right)\right| & =(n+1)\left|\sum_{k=n}^{\infty}\left(\Delta a_{k}-\Delta a_{k+2}\right)\right| \\
& =(n+1)\left|\sum_{k=n+1}^{\infty}\left(\Delta a_{k-1}-\Delta a_{k+1}\right)\right| \\
& \leq \sum_{k=n+1}^{\infty} k\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|=o(1), n \rightarrow \infty . \tag{8}
\end{align*}
$$

Using (8) and when we pass on limit as $n \rightarrow \infty$ to (5) and (7) we get

$$
\begin{align*}
g(x) & =\lim _{n \rightarrow \infty} S_{n}^{S}(x) \\
& =\lim _{n \rightarrow \infty} H_{n}(x)=-\frac{1}{2 \sin x} \sum_{k=0}^{\infty}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) D_{k}(x) . \tag{9}
\end{align*}
$$

Applying well-known inequality $D_{k}(x) \leq 1 / 2+k, k=1,2, \ldots$, and relations (5), (8) and (9) we have

$$
\begin{aligned}
& \int_{-\pi}^{\pi}\left|g(x)-H_{n}(x)\right| d x= \\
= & \int_{-\pi}^{\pi} \left\lvert\, \frac{1}{2 \sin x} \sum_{k=n+1}^{\infty}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) D_{k}(x)\right. \\
& \left.+(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} \right\rvert\, d x \\
= & O\left(\sum_{k=n+1}^{\infty} k\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|\right) \\
& +O\left(\left|(n+1)\left(a_{n}-a_{n+2}\right)\right|\right)=o(1), n \rightarrow \infty,
\end{aligned}
$$

which fully proves the Theorem 1.
Corollary 1. Let $\left(a_{n}\right)$ be a semi-convex null sequence, then the necessary and sufficient condition for L^{1}-convergence of the series (2) is $a_{n} \log n=$ $o(1), n \rightarrow \infty$.

Proof. Let $\left\|S_{n}^{s}(x)-g(x)\right\|=o(1), n \rightarrow \infty$. We would show that $a_{n} \log n=$
$o(1), n \rightarrow \infty$. Indeed, we have

$$
\begin{align*}
& \left\|g(x)-H_{n}(x)\right\|+\left\|S_{n}^{s}(x)-g(x)\right\| \\
& +\|(n+1) \\
& \begin{aligned}
& \left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x}\|+\|\left(a_{n}-a_{n+2}\right) \frac{D_{n}(x)}{2 \sin x} \| \\
& \geq\left\|a_{n+1} \frac{\cos n x}{2 \sin x}+a_{n} \frac{\cos (n+1) x}{2 \sin x}\right\| \\
& \geq a_{n+1} \int_{-\pi}^{\pi}\left|\frac{\cos n x}{2 \sin x}+\frac{\cos (n+1) x}{2 \sin x}\right| d x \\
& =a_{n+1} \int_{-\pi}^{\pi}\left|\tilde{D}_{n}(x)-\frac{1}{2} \operatorname{ctg} \frac{x}{2}\right| d x \\
& =a_{n+1}\left(\int_{-\pi}^{\pi}\left|\tilde{D}_{n}(x)\right| d x-\int_{0}^{\pi}\left|\operatorname{ctg} \frac{x}{2}\right| d x\right) \\
& =O\left(a_{n+1} \log n\right)
\end{aligned}
\end{align*}
$$

(see [11], p. 116).
Since $\left\|g(x)-H_{n}(x)\right\|=o(1)$ by Theorem $1,\left\|S_{n}^{s}(x)-g(x)\right\|=o(1)$ by assumption of Corollary, third and fourth term at the left side of relation (10) tend to 0 by (8), consequently $a_{n} \log n=o(1), n \rightarrow \infty$.

Conversely, let $a_{n} \log n=o(1), n \rightarrow \infty$. Then by (8)

$$
\begin{align*}
\left\|S_{n}^{s}(x)-g(x)\right\| \leq & \left\|H_{n}(x)-g(x)\right\|+\left\|H_{n}(x)-S_{n}^{s}(x)\right\| \\
= & \left\|H_{n}(x)-g(x)\right\|+\|(n+1)\left(a_{n}-a_{n+2}\right) \frac{\cos (n+1) x}{2 \sin x} \\
& +\left(a_{n}-a_{n+2}\right) \frac{D_{n}(x)}{2 \sin x}+a_{n+1} \frac{\cos n x}{2 \sin x}+a_{n} \frac{\cos (n+1) x}{2 \sin x} \| \\
= & o(1)+O\left((n+1)\left|a_{n}-a_{n+2}\right|\right)+O\left(n\left|a_{n}-a_{n+2}\right|\right) \\
& +\left\|a_{n+1} \frac{\cos n x}{2 \sin x}+a_{n} \frac{\cos (n+1) x}{2 \sin x}\right\| \\
= & o(1)+\left\|a_{n+1} \frac{\cos n x}{2 \sin x}+a_{n} \frac{\cos (n+1) x}{2 \sin x}\right\| \tag{11}
\end{align*}
$$

But

$$
\begin{gathered}
\int_{-\pi}^{\pi}\left|a_{n+1} \frac{\cos n x}{2 \sin x}+a_{n} \frac{\cos (n+1) x}{2 \sin x}\right| d x \leq a_{n} \int_{-\pi}^{\pi}\left|\frac{\cos n x+\cos (n+1) x}{2 \sin x}\right| d x \\
=a_{n} \int_{-\pi}^{\pi}\left|\frac{1}{2} \operatorname{ctg} \frac{x}{2}-\tilde{D}_{n}(x)\right| d x=O\left(a_{n} \log n\right)=o(1)
\end{gathered}
$$

therefore from (11) we get $\left\|S_{n}^{s}(x)-g(x)\right\|=o(1), n \rightarrow \infty$, which implies the conclusion of the Corollary.

Regarding the series (1) the following statements are true:
Theorem 2. Let (a_{n}) be a semi-convex null sequence, then $G_{n}(x)$ converges to $f(x)$ in L^{1}-norm.

Corollary 2. Let $\left(a_{n}\right)$ be a semi-convex null sequence, then the necessary and sufficient condition for L^{1}-convergence of the series (1) is $a_{n} \log n=$ $o(1), n \rightarrow \infty$.

The proofs of Theorem 2 and Corollary 2 are similar to the proofs of Theorem 1 and Corollary 2, therefore we omit them.

Remark 1. Kaur K. [10] introduced the modified sine sums $K_{n}(x)$ and studied L^{1}-convergence of cosine series (1). Here we shall introduce the modified cosine sums $F_{n}(x)$, similar with $K_{n}(x)$, as

$$
F_{n}(x)=-\frac{1}{2 \sin x} \sum_{k=0}^{n} \sum_{j=k}^{n}\left(\Delta a_{j-1}-\Delta a_{j+1}\right) \cos k x
$$

where $a_{-1}=a_{0}=0$.
By a similar argument, we can show that the Theorem B also holds for the series (2), when instead of $K_{n}(x)$ we use $F_{n}(x)$.

More precisely, the following statement holds.
Theorem 3. Let $\left(a_{n}\right)$ be a semi-convex null sequence, then $F_{n}(x)$ converges to $g(x)$ in L^{1}-norm.

Remark 2. The Corollary 1 is a consequence of Theorem 3, as well.

3 Open Problem

In [6] Kaur K. and Bhatia S. S. have defined a new class of sequences, so-colled generalized semi-convex sequences, as follows:

A null sequence $\left(a_{n}\right)$ is said to be generalized semi-convex if

$$
\sum_{n=1}^{\infty} n^{\alpha}\left|\Delta^{\alpha+1} a_{n-1}+\Delta^{\alpha+1} a_{n}\right|<\infty, \text { for } \alpha>0,\left(a_{0}=0\right)
$$

Since for $\alpha=1$ a generalized semi-convex sequence reduces to a semiconvex sequence, then the following problem arises :

If we use a generalized semi-convex sequence instead of a semi-convex sequence, how to define the new modified cosine and sine sums $H_{n}(x)$ and $G_{n}(x)$ so that our results in this paper can be as corollaries of new results?

References

[1] Bala R. and Ram B., Trigonometric series with semi-convex coefficients, Tamkang J. Math. Vol. 18, No. 1, (1987) pp. 75-84.
[2] Garret J. W. and Stanojević Č. V., On integrability and L^{1}-convergence of certain cosine sums, Notices, Amer. Math. Soc. Vol. 22, (1975) A-166.
[3] Garret J. W. and Stanojević Č. V., On L^{1}-convergence of certain cosine sums, Proc. Amer. Math. Soc. No. 54, (1976) pp. 101-105.
[4] Ram B., Convergence of certain cosine sums in the metric space L, Proc. Amer. Math. Soc. No. 66, (1977) pp. 258-260.
[5] Singh N. and Sharma K. M., Convergence of certain cosine sums in the metric space L, Proc. Amer. Math. Soc. No. 75, (1978) pp. 117-120.
[6] Kaur K. and Bhatia S. S., Integrability and L^{1}-convergence of RessStanojević sums with generalized semi-convex coefficients, IJMMS 30:11 (2002) pp. 645-650.
[7] Kaur J. and Bhatia S. S., Integrability and L^{1}-convergence of Certain Cosine Sums, KYUNGP. Math. J. No. 47, (2007), pp.323-328.
[8] Kumari S. and Ram, B. L^{1}-convergence of certain trigonometric sums, Indian J. Pure Appl. Math. Vol. 20, No. 9, (1989) pp. 908-914.
[9] Hooda N., Ram B. and Bhatia S. S., On L^{1}-convergence of a modified cosine sum, Soochow J. of Math. Vol. 28, No. 3, (July 2002), pp. 305-310.
[10] Kaur K., On L^{1}-convergence of a modified sine sums, An electronic J. of Geogr. and Math. Vol. 14, Issue 1, (2003).
[11] Bary K. N., Trigonometric series, Moscow, (1961)(in Russian).

