Construction of Real Abelian Fields of Degree p
 With $\lambda_{p}=\mu_{p}=0$

Manabu Ozaki
Department of Mathematics, School of Science and Engineering,
Kinki University,
Kowakae 3-4-1, Higashi-Osaka, 577-8502, JAPAN
e-mail: ozaki@math.kindai.ac.jp

Abstract

For any prime number p, we shall construct a real abelian extension k over \mathbb{Q} of degree p such that the Iwasawa module associated with the cyclotomic \mathbb{Z}_{p}-extension k_{∞} / k is finite and has arbitrarily large p-rank.

Keywords: Iwasawa theory, \mathbb{Z}_{p}-extension, Greenberg's conjecture
2000 Mathematics Subject Classification: 11R23, 11R29

1 Introduction

In the theory of \mathbb{Z}_{p}-extensions, Greenberg's conjecture is one of the most fascinating open problem:

Greenberg's conjecture. For any totally real number field k and prime number p, the both of Iwasawa λ-invariant $\lambda_{p}(k)$ and μ-invariant $\mu_{p}(k)$ of the cyclotomic \mathbb{Z}_{p}-extension k_{∞} / k are vanished. In other words, the Galois group $X_{k_{\infty}}$ of the maximal unramified abelian p-extension over k_{∞}, which is called the Iwasawa module associated with k_{∞} / k, is finite.

In connection with this conjecture, many research papers, as Greenberg [3], Iwasawa [4], Ozaki-Taya [8], Yamamoto [10], Fukuda [1], [2], Komatsu [5], deal with the construction of families of totally real p-extension fields k over \mathbb{Q} with $\lambda_{p}(k)=\mu_{p}(k)=0$.

We are interested in not only constructing various families of totally real p extension k / \mathbb{Q} with $\lambda_{p}(k)=\mu_{p}(k)=0$ but also what kind of finite \mathbb{Z}_{p}-modules appear as $X_{k_{\infty}}$.

In the present paper, we shall construct real abelian extensions k over \mathbb{Q} of degree p such that $\lambda_{p}(k)=\mu_{p}(k)=0$ and the Iwasawa module associated with the cyclotomic \mathbb{Z}_{p}-extension k_{∞} / k has arbitrarily large p-rank. Our main result is;

Theorem 1. Let p be any prime number. For any $M \geq 0$, there is a real abelian field k of degree p such that $\lambda_{p}(k)=\mu_{p}(k)=0, p-\operatorname{rank} X_{k_{\infty}}:=$ $\operatorname{dim}_{\mathbb{F}_{p}} X_{k_{\infty}} / p X_{k_{\infty}} \geq M$, and the prime p is inert in k, where $X_{k_{\infty}}$ is the Iwasawa module associated with the cyclotomic \mathbb{Z}_{p}-extension k_{∞} / k.

We shall also give some applications of our construction.

2 Proof of Theorem 1.

We first introduce some notations, which we shall use below; In what follows, We fix a prime number p once for all. For any number field F, we denote by E_{F}, I_{F} and $\mathrm{Cl}(F)$ the unit group, the ideal group and the ideal class group of F, respectively, and we write $A(F)$ for the p-part of $\mathrm{Cl}(F)$. Let F_{n} denote the n-th layer of the cyclotomic \mathbb{Z}_{p}-extension F_{∞} / F for any number field F of finite degree and $n \geq 0$. For any module $M, r \in \mathbb{Z}$, and a prime number p, we put $M[r]=\{m \in M \mid r m=0\}$ and $p-\operatorname{rank} M=\operatorname{dim}_{\mathbb{F}_{p}} M / p M$. Also we define $M\left[p^{\infty}\right]$ to be $\bigcup_{n \geq 1} M\left[p^{n}\right]$.

Since $X_{k_{\infty}} \simeq \lim A\left(k_{n}\right)$, the projective limit being taken with respect to the norm maps, and the norm map $A\left(k_{m}\right) \longrightarrow A\left(k_{n}\right)$ is surjective if k_{∞} / k_{n} is totally ramified at some prime, $p-\operatorname{rank} X_{k_{\infty}} \geq M$ is equivalent to that $p-\operatorname{rank} A\left(k_{n}\right) \geq$ M for such $n \geq 0$.

Assume that prime numbers q and r satisfy
(C1) $q \equiv 1\left(\bmod 2 p^{N+1}\right), r \equiv 1(\bmod 2 p), r \not \equiv 1\left(\bmod 2 p^{2}\right)$,
(C2) $q^{\frac{r-1}{p}} \not \equiv 1(\bmod r)$,
(C3) $p^{\frac{r-1}{p}} \not \equiv 1(\bmod r)$,
for a given integer $N \geq 1$. Denote by $\mathbb{Q}^{(p)}(q)$ and $\mathbb{Q}^{(p)}(r)$ the real abelian fields of degree p with conductors q and r, respectively. Such abelian fields certainly exist by conditions (C1). Let k be a subfield of $\mathbb{Q}^{(p)}(q) \mathbb{Q}^{(p)}(r)$ with conductor $q r$ such that $[k: \mathbb{Q}]=p$ and the prime p remains prime in k. Such k certainly exists because p remains prime in $\mathbb{Q}^{(p)}(r)$ by condition (C3), and, in the case where $p=2$, the prime 2 splits in $\mathbb{Q}^{(p)}(q)$ by condition (C1). Then $\mathbb{Q}^{(p)}(q) \mathbb{Q}^{(p)}(r)$ is the genus p-class field of k / \mathbb{Q}, that is, the maximal abelian p-extension field over \mathbb{Q} which is unramified over k, and we have
$\operatorname{Gal}\left(\mathbb{Q}^{(p)}(q) \mathbb{Q}^{(p)}(r) / k\right) \simeq A(k) /(\sigma-1) A(k)$ by class field theory, where σ is a generator of $\operatorname{Gal}(k / \mathbb{Q})$. Since the prime \mathfrak{q} of k lying above q does not split in $\mathbb{Q}^{(p)}(q) \mathbb{Q}^{(p)}(r) / k$ by $(\mathrm{C} 2)$, the ideal class containing the prime \mathfrak{q} generates $A(k) /(\sigma-1) A(k)$, which implies that it generates $A(k)$ itself and that $A(k)$ is cyclic by Nakayama's lemma. We shall show that the prime \mathfrak{q} capitulates in k_{∞}, which is equivalent to $\lambda_{p}(k)=\mu_{p}(k)=0$ by [3, Theorem 1], and that $p-\operatorname{rank} A\left(k_{N}\right) \geq M$ under some additional conditions on q and N.

Lemma 1. Let p be a prime number and F^{\prime} / F a degree p cyclic extension of number fields of finite degree. We assume that $\lambda_{p}(F)=\mu_{p}(F)=0$. Let \mathfrak{l}^{\prime} be a prime ideal of F^{\prime} which ramifies in F^{\prime} / F. If \mathfrak{l}^{\prime} splits completely in F_{n}^{\prime} and p-rank $A\left(F_{n}^{\prime}\right)<p^{n}$ for some $n \geq 0$, then we have $\pi_{F_{\infty}^{\prime}}\left(\mathfrak{l}^{\prime}\right)=0$ for the natural projection map $\pi_{F_{\infty}^{\prime}}: I_{F_{\infty}^{\prime}} \longrightarrow A\left(F_{\infty}^{\prime}\right)$.

Proof. Let $H_{n}=\operatorname{Ker}\left(j_{n, \infty}: A\left(F_{n}^{\prime}\right) \longrightarrow A\left(F_{\infty}^{\prime}\right)\right)$, where $j_{n, \infty}$ is the natural map induced by the inclusion $I_{F_{n}^{\prime}} \subseteq I_{F_{\infty}^{\prime}}$. We write \mathfrak{L}^{\prime} for a prime of F_{n}^{\prime} lying above \mathfrak{l}^{\prime}. Since $\mathfrak{L}^{\prime p} \in I_{F_{n}}$ and $A\left(F_{\infty}\right)=0$ by our assumption $\lambda_{p}(F)=\mu_{p}(F)=$ 0 , we have $\pi_{F_{n}^{\prime}}\left(\mathfrak{L}^{\prime}\right)^{p} \in H_{n}$ for the natural projection map $\pi_{F_{n}^{\prime}}: I_{F_{n}^{\prime}} \longrightarrow A\left(F_{n}^{\prime}\right)$. We consider the homomorphism $\psi: \mathbb{F}_{p}\left[\operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)\right] \longrightarrow\left(A\left(F_{n}^{\prime}\right) / H_{n}\right)[p], \alpha \mapsto$ $\left.\alpha \pi_{F_{n}^{\prime}} \mathfrak{L}^{\prime}\right) \bmod H_{n}$. It follows from the assumption that

$$
\#\left(A\left(F_{n}^{\prime}\right) / H_{n}\right)[p]<p^{p^{n}}=\# \mathbb{F}_{p}\left[\operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)\right] .
$$

Hence $\operatorname{Ker}(\psi) \neq 0$, which implies $\operatorname{Ker}(\psi)^{\operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)} \neq 0$. Because

$$
\mathbb{F}_{p}\left[\operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)\right]^{\operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)}=\mathbb{F}_{p} \sum_{\gamma \in \operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)} \gamma,
$$

we have $\sum_{\gamma \in \operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)} \gamma \in \operatorname{Ker}(\psi)$. Therefore

$$
\pi_{F_{n}^{\prime}}\left(\mathfrak{l}^{\prime}\right)=\sum_{\gamma \in \operatorname{Gal}\left(F_{n}^{\prime} / F^{\prime}\right)} \gamma \pi_{F_{n}^{\prime}}\left(\mathfrak{L}^{\prime}\right) \in H_{n}
$$

which implies $\pi_{F_{\infty}^{\prime}}\left(\mathfrak{l}^{\prime}\right)=0$.
Since $\lambda_{p}(\mathbb{Q})=\mu_{p}(\mathbb{Q})=0$, and the prime \mathfrak{q} splits completely in k_{N} by $(\mathrm{C} 1)$, if p-rank $A\left(k_{N}\right)<p^{N}$ then \mathfrak{q} capitulates in k_{∞} and $\lambda_{p}(k)=\mu_{p}(k)=0$ by Lemma 1. Hence we shall control the p-rank of $A\left(k_{N}\right)$ in what follows.

Lemma 2. We have

$$
\begin{aligned}
p^{N}-p-\operatorname{rank}\left(E_{\mathbb{Q}_{N}} /\left(E_{\mathbb{Q}_{N}} \cap\right.\right. & \left.\left.N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times}\right)\right) \\
& \leq p-\operatorname{rank} A\left(k_{N}\right) \\
& \leq p\left(p^{N}-p-\operatorname{rank}\left(E_{\mathbb{Q}_{N}} /\left(E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times}\right)\right)\right) .
\end{aligned}
$$

Proof. Since $A\left(\mathbb{Q}_{N}\right)$ is trivial, $A\left(k_{N}\right) /(\sigma-1) A\left(k_{N}\right)$ is an elementary abelian p-group. The number of primes of \mathbb{Q}_{N} which ramify in k_{N} is $p^{N}+1$ because the prime q splits completely and the prime r remains prime in $\mathbb{Q}_{N} / \mathbb{Q}$ by (C1). Hence it follows from genus formula for k_{N} / \mathbb{Q}_{N} that

$$
\begin{aligned}
p-\operatorname{rank} A\left(k_{N}\right) \geq p-\operatorname{rank}\left(A\left(k_{N}\right) /\right. & \left.(\sigma-1) A\left(k_{N}\right)\right) \\
& =p^{N}-p-\operatorname{rank}\left(E_{\mathbb{Q}_{N}} /\left(E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times}\right)\right),
\end{aligned}
$$

It follows from the filtration of submodules of $A\left(k_{N}\right)$

$$
A\left(k_{N}\right) \supseteq(\sigma-1) A\left(k_{N}\right) \supseteq(\sigma-1)^{2} A\left(k_{N}\right) \cdots \supseteq(\sigma-1)^{p} A\left(k_{N}\right),
$$

and $(\sigma-1)^{p} A\left(k_{n}\right) \subseteq p A\left(k_{n}\right)$ that

$$
p-\operatorname{rank} A\left(k_{N}\right) \leq p\left(p-\operatorname{rank}\left(A\left(k_{N}\right) /(\sigma-1) A\left(k_{N}\right)\right)\right) .
$$

Thus we have the lemma.
Let γ be a fixed generator of $\operatorname{Gal}\left(k_{N} / k\right)$ and $\left(k_{N}\right)_{\overline{\mathfrak{D}}_{0}}$ the completion of k_{N} at the unique prime $\overline{\mathfrak{Q}}_{0}$ above a fixed prime \mathfrak{Q}_{0} of \mathbb{Q}_{N} lying over q.

By virtue of Lemma 2, we can control the p-rank of $A\left(k_{N}\right)$ by controlling $E_{\mathbb{Q}_{N}} / E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times}$. Hence we shall investigate the map

$$
\rho: E_{\mathbb{Q}_{N}} \longrightarrow \operatorname{Gal}\left(k_{N} / \mathbb{Q}_{N}\right)^{\oplus p^{N}}, \rho(\varepsilon)=\left(\left(\gamma^{-i}(\varepsilon),\left(k_{N}\right)_{\overline{\mathfrak{g}}}^{0} / ~ / \mathbb{Q}_{q}\right)\right)_{i=0}^{p^{N}-1},
$$

where $\left(*,\left(k_{N}\right)_{\overline{\mathfrak{Z}}_{0}} / \mathbb{Q}_{q}\right)$ denotes the local Artin symbol for $\left(k_{N}\right)_{\overline{\mathfrak{Z}}_{0}} / \mathbb{Q}_{q}$. Then it follows from the Hasse norm theorem and the product formula of the local Artin symbols that

$$
\operatorname{Ker}(\rho)=E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times},
$$

since the ramified primes of k_{N} / \mathbb{Q}_{N} are exactly the primes lying above q and the unique prime lying above r,

Hence we have

$$
\begin{equation*}
E_{\mathbb{Q}_{N}} / E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times} \simeq \operatorname{Im}(\rho) . \tag{2.1}
\end{equation*}
$$

Let $\eta=N_{\mathbb{Q}\left(\zeta_{p^{N+1}}\right) / \mathbb{Q}_{N}}\left(\zeta_{p^{N+1}}-1\right)^{\gamma-1}($ when $p \neq 2)$, or $\eta=\zeta_{2^{N+2}}^{-2} \frac{\zeta_{2^{N+2}}^{5}-1}{\zeta_{2^{N+2}}-1}$ (when $p=2$), where ζ_{m} denotes a primitive m-th root of unity for $m \geq 1$. Then $C_{\mathbb{Q}_{N}}=\left\langle-1, \gamma^{i} \eta \mid 0 \leq i \leq p^{N}-2\right\rangle$ is the cyclotomic unit group of \mathbb{Q}_{N} and $p \nmid\left[E_{\mathbb{Q}_{N}}: C_{\mathbb{Q}_{N}}\right]$ as well known. Hence we have $\operatorname{Im}(\rho)=\rho\left(C_{\mathbb{Q}_{N}}\right)=$ $\rho\left(\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{Q}_{N} / \mathbb{Q}\right)\right] \eta\right)$ since $\rho(-1)=1$.

Lemma 3. Let σ be a fixed generator of $\operatorname{Gal}\left(k_{N} / \mathbb{Q}_{N}\right)$. If we assume that

$$
\left(\gamma^{-j} \eta,\left(k_{N}\right)_{\overline{\mathfrak{\Sigma}}_{0}} / \mathbb{Q}_{q}\right)=\left\{\begin{array}{l}
\sigma\left(0 \leq j \leq p^{N-1}-1\right) \tag{2.2}\\
1\left(p^{N-1} \leq j \leq p^{N}-1\right)
\end{array}\right.
$$

Then we have $p-\operatorname{rank}\left(E_{\mathbb{Q}_{N}} / E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times}\right)=p^{N}-p^{N-1}+1$.
Proof. It follows from the definition of the map ρ and (2.2) that

$$
\rho\left(\gamma^{i} \eta\right)=\left\{\begin{array}{l}
\left(1, \cdots, 1, \stackrel{i+1}{\stackrel{i}{\sigma}}, \cdots, \stackrel{i+p^{N-1}}{\sigma}, 1 \cdots, 1\right) \quad \text { if } 0 \leq i \leq p^{N}-p^{N-1} \\
\left(\sigma, \cdots, \stackrel{i-\left(p^{N}-p^{N-1}\right)}{\check{\sigma}}, 1, \cdots, \stackrel{i}{1}, \sigma, \cdots, \sigma\right) \\
\quad \text { if } p^{N}-p^{N-1}+1 \leq i \leq p^{N}-1 .
\end{array}\right.
$$

Clearly $\rho\left(\gamma^{i} \eta\right)\left(0 \leq i \leq p^{N}-p^{N-1}\right)$ are independent in $\operatorname{Gal}\left(k_{N} / \mathbb{Q}_{N}\right)^{\oplus p^{N}} \simeq$ $\left(\mathbb{F}_{p}\right)^{\oplus p^{N}}$. For $p^{N}-p^{N-1}+1 \leq i \leq p^{N}-1$, we have

$$
\rho\left(\gamma^{i} \eta\right)=\rho(\eta) \prod_{j=0}^{p-2}\left(\rho\left(\gamma^{(j+1) p^{N-1}} \eta\right) \rho\left(\gamma^{i-\left(p^{N}-p^{N-1}\right)+j p^{N-1}} \eta\right)^{-1}\right) .
$$

Therefore $\operatorname{Im}(\rho)$ is generated by $\left\{\rho\left(\gamma^{i} \eta\right) \mid 0 \leq i \leq p^{N}-p^{N-1}\right\}$, from which we conclude that

$$
\begin{aligned}
p-\operatorname{rank} E_{\mathbb{Q}_{N}} / E_{\mathbb{Q}_{N}} \cap N_{k_{N} / \mathbb{Q}_{N}} k_{N}^{\times} & =p-\operatorname{rank} \operatorname{Im}(\rho) \\
& =p-\operatorname{rank} \rho\left(\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{Q}_{N} / \mathbb{Q}\right)\right] \eta\right)=p^{N}-p^{N-1}+1
\end{aligned}
$$

by using (2.1)
If assumption (2.2) of Lemma 3 holds, then we have

$$
p^{N-1}-1 \leq p-\operatorname{rank} A\left(k_{N}\right) \leq p^{N}-p<p^{N}
$$

by Lemma 2. Hence it follows that $\lambda_{p}(k)=\mu_{p}(k)=0$ and p-rank $X_{k_{\infty}} \geq$ p-rank $A\left(k_{N}\right) \geq p^{N-1}-1$. If we take an integer N so that $p^{N-1}-1 \geq M$, the field k certainly satisfies the requirement of the statement of Theorem 1.

Now we choose primes q and r such that conditions (C1), (C2), (C3), and (2.2) hold.

Since $\gamma^{-i} \eta\left(0 \leq i \leq p^{N}-2\right)($ and -1 if $p=2)$ are independent in $\mathbb{Q}_{N}\left(\zeta_{p}\right)^{\times}$ as well known, $\gamma^{-i} \eta \bmod \left(\mathbb{Q}_{N}^{\times}\right)^{p}\left(0 \leq i \leq p^{N}-2\right)\left(\right.$ and $-1 \bmod \left(\mathbb{Q}_{N}^{\times}\right)^{2}$ if $p=2$) are independent in $\mathbb{Q}_{N}^{\times} /\left(\mathbb{Q}_{N}^{\times}\right)^{p}$. Hence, by taking the norm $N_{\mathbb{Q}_{N}\left(\zeta_{p}\right) / \mathbb{Q}_{N}}$, we can see that $\gamma^{-i} \eta \bmod \left(\mathbb{Q}_{N}\left(\zeta_{p}\right)^{\times}\right)^{p}\left(0 \leq i \leq p^{N}-2\right)\left(\operatorname{and}-1 \bmod \left(\mathbb{Q}_{N}^{\times}\right)^{2}\right.$ if $p=2$) are independent also in $\mathbb{Q}_{N}\left(\zeta_{p}\right)^{\times} /\left(\mathbb{Q}_{N}\left(\zeta_{p}\right)^{\times}\right)^{p}$. Therefore there exists a
degree one prime $\tilde{\mathfrak{Q}}$ of $\mathbb{Q}_{N}\left(\zeta_{p}\right)\left(=\mathbb{Q}\left(\zeta_{p^{N+1}}\right)(\right.$ if $p \neq 2),=\mathbb{Q}_{N}=\mathbb{Q}\left(\zeta_{2^{N+2}}+\zeta_{2^{N+2}}^{-1}\right)$ (if $p=2$)) such that

$$
\sqrt[p]{\gamma^{-i} \eta}\left(\frac{\mathbb{Q}_{N}\left(\sqrt[p]{\gamma^{-i},}, \zeta_{p}\right) / \mathbb{Q}_{N}\left(\zeta_{p}\right)}{\tilde{\Sigma}}\right)-1=\left\{\begin{array}{l}
\zeta_{p}\left(0 \leq i \leq p^{N-1}-1\right) \tag{2.3}\\
1\left(p^{N-1} \leq i \leq p^{N}-2\right)
\end{array}\right.
$$

by Čebotarev density theorem, where $\left(\frac{* / *}{*}\right)$ denotes the Artin symbol. Note that $N(\tilde{\mathfrak{Q}})$ is a prime number with $N(\tilde{\mathfrak{Q}}) \equiv 1\left(\bmod p^{N+1}\right)($ if $p \neq 2)$, or $N(\tilde{\mathfrak{Q}}) \equiv \pm 1\left(\bmod 2^{N+2}\right)($ if $p=2)$.

Furthermore, in the case where $p=2$, we can choose the prime $\tilde{\mathfrak{Q}}$ so that

$$
\begin{equation*}
\left(\frac{\mathbb{Q}_{N}(\sqrt{-1}) / \mathbb{Q}_{N}}{\tilde{\mathfrak{Q}}}\right)=1, \tag{2.4}
\end{equation*}
$$

which is equivalent to $N(\tilde{\mathfrak{Q}}) \equiv 1\left(\bmod 2^{N+2}\right)$. We note that if $\tilde{\mathfrak{Q}}$ satisfies (2.3), then

$$
\begin{equation*}
\sqrt[p]{\gamma^{-\left(p^{N}-1\right)} \eta}\left(\frac{\mathbb{C}_{N}\left(\sqrt[p]{\gamma^{-\left(p^{N}-1\right)}, \zeta_{p}}\right) / \mathbb{Q}_{N}\left(\zeta_{p}\right)}{\tilde{S}}\right)-1=1 \tag{2.5}
\end{equation*}
$$

because $\prod_{i=0}^{p^{N}-1} \gamma^{-i} \eta= \pm 1$. We take the prime number $N(\tilde{\mathfrak{Q}})$ as a prime number q. Then $q \equiv 1\left(\bmod 2 p^{N+1}\right)$. We choose a degree one prime \mathfrak{r} of $\mathbb{Q}\left(\zeta_{p}\right)$ (degree one implies that $N(\mathfrak{r})$ is a prime number with $N(\mathfrak{r}) \equiv 1(\bmod p)$) such that

$$
\left(\frac{\mathbb{Q}\left(\zeta_{p}, \sqrt[p]{p}\right) / \mathbb{Q}\left(\zeta_{p}\right)}{\mathfrak{r}}\right) \neq 1,\left(\frac{\mathbb{Q}\left(\zeta_{p}, \sqrt[p]{q}\right) / \mathbb{Q}\left(\zeta_{p}\right)}{\mathfrak{r}}\right) \neq 1,
$$

which is equivalent to $p^{\frac{N(\mathfrak{r})-1}{p}} \not \equiv 1(\bmod N(\mathfrak{r}))$ and $q^{\frac{N(\mathfrak{r})-1}{p}} \not \equiv 1(\bmod N(\mathfrak{r}))$, respectively, and that

$$
\left(\frac{\mathbb{Q}\left(\zeta_{p^{2}}\right) / \mathbb{Q}\left(\zeta_{p}\right)}{\mathfrak{r}}\right) \neq 1(\text { if } p \neq 2),\left(\frac{\mathbb{Q}(\sqrt{-1}) / \mathbb{Q}}{\mathfrak{r}}\right)=1(\text { if } p=2),
$$

which is equivalent to $N(\mathfrak{r}) \not \equiv 1\left(\bmod p^{2}\right) \quad($ when $p \neq 2)$ and $N(\mathfrak{r}) \equiv 1$ $(\bmod 4)($ when $p=2)$, respectively. This is possible by the Cebotarev density theorem because $p \bmod \left(\mathbb{Q}\left(\zeta_{p}\right)^{\times}\right)^{p}, q \bmod \left(\mathbb{Q}\left(\zeta_{p}\right)^{\times}\right)^{p}$, and $\zeta_{p} \bmod \left(\mathbb{Q}\left(\zeta_{p}\right)^{\times}\right)^{p}$ are independent in $\mathbb{Q}\left(\zeta_{p}\right)^{\times} /\left(\mathbb{Q}\left(\zeta_{p}\right)^{\times}\right)^{p}$ as one can see easily by taking the norm to \mathbb{Q}. We take the prime number $N(\mathfrak{r})$ as a prime number r. Then prime numbers q and r satisfy conditions (C1), (C2) and (C3) (In the case where $p=2$, it follows from $2^{\frac{N(\mathfrak{r})-1}{2}} \not \equiv 1(\bmod N(\mathfrak{r}))$ that $\left.N(\mathfrak{r}) \not \equiv 1(\bmod 8)\right)$. And let k be a real abelian field of degree p with conductor $q r$ in which the prime p does not split. We shall verify the field k and a certain prime \mathfrak{Q}_{0} of \mathbb{Q}_{N} lying above q satisfy the assumption (2.2) of Lemma 3 in the following.

Let us take the prime of \mathbb{Q}_{N} below $\tilde{\mathfrak{Q}}$ as \mathfrak{Q}_{0}, and let $\delta \in \mathbb{Q}_{q}$ be a uniformizer such that $\mathbb{Q}_{q}(\sqrt[p]{\delta})=\left(k_{N}\right)_{\overline{\mathfrak{Z}}_{0}}$. Then we can see

$$
\sqrt[p]{\delta}\left(\gamma^{-i} \eta,\left(k_{N}\right) \overline{\mathfrak{Z}}_{0} / \mathbb{Q}_{q}\right)-1 \quad=\sqrt[p]{ }_{\gamma^{-i} \eta}^{1-\left(\frac{\mathbb{Q}_{N}\left(\sqrt[p]{\left.\gamma^{-i} \eta, \zeta_{p}\right) / \mathbb{Q}_{N}\left(\zeta_{p}\right)}\right.}{\overline{\mathfrak{Q}}}\right) .}
$$

by a property of local and global Artin symbols. Therefore we see that

$$
\left(\gamma^{-i} \eta,\left(k_{N}\right)_{\overline{\mathfrak{Z}}_{0}} / \mathbb{Q}_{q}\right)=\left(\eta,\left(k_{N}\right)_{\overline{\mathfrak{D}}_{0}} / \mathbb{Q}_{q}\right) \neq 1
$$

for $1 \leq i \leq p^{N-1}-1$, and $\left(\gamma^{-i} \eta,\left(k_{N}\right)_{\overline{\mathfrak{Z}}_{0}} / \mathbb{Q}_{q}\right)=1$ for $p^{N-1} \leq i \leq p^{N}-1$ by (2.3) and (2.5). Therefore condition (2.2) holds. Thus the above abelian field k satisfies $\lambda_{p}(k)=\mu_{p}(k)=0$ and $p-\operatorname{rank} X_{k_{\infty}} \geq p-\operatorname{rank} A\left(k_{N}\right) \geq p^{N-1}-1 \geq M$. We have completed the proof of Theorem 1.

3 Applications of Theorem 1

We shall give some applications of Theorem 1 in this section.
As a corollary to Theorem 1, we have the following result on the maximal unramified p-extensions of \mathbb{Z}_{p}-extension fields over totally real number fields:

Corollary 1. For any prime number p, there exists a real abelian fields k with $[k: \mathbb{Q}]=p$ such that the maximal unramified abelian p-extension $L\left(k_{\infty}\right) / k_{\infty}$ is finite but the maximal unramified p-extension $\tilde{L}\left(k_{\infty}\right) / k_{\infty}$ is infinite, k_{∞} being the cyclotomic \mathbb{Z}_{p}-extension field of k.

Proof. In the proof of Theorem 1, we have shown that for any given number N, there exists a real abelian field k of degree p such that $\lambda_{p}(k)=$ $\mu_{p}(k)=0$ and $p-\operatorname{rank} A\left(k_{N}\right) \geq p^{N-1}-1$. If we choose N so that $p^{N-1}-$ $1 \geq 2+2 \sqrt{r\left(k_{N}\right)}, r\left(k_{N}\right)=p^{N+1}$ being the number of archimedean places of k_{N}, it follows from Golod-Shafarevich criterion (see for example [7, Theorem (10.8.6)]) that the maximal unramified p-extension $\tilde{L}\left(k_{N}\right)$ over k_{N} is infinite. Therefore the extension $\tilde{L}\left(k_{\infty}\right) / k_{\infty}$ is infinite since $\tilde{L}\left(k_{N}\right) k_{\infty} \subseteq \tilde{L}\left(k_{\infty}\right)$. Also, the finiteness of $\left[L\left(k_{\infty}\right): k_{\infty}\right]$ follows from the condition $\lambda_{p}(k)=\mu_{p}(k)=0$.

Remark 1. Mizusawa [6] give an different type example of \mathbb{Z}_{p}-extension field k_{∞} with $\left[L\left(k_{\infty}\right): k_{\infty}\right]<\infty$ and $\left[\tilde{L}\left(k_{\infty}\right): k_{\infty}\right]=\infty$. Let $p=3$ and $k=$ $\mathbb{Q}(\sqrt{39345017})$. In this case, $\tilde{L}(k) / k$ is an infinite extension. Mizusawa verified $\lambda_{3}(k)=\mu_{3}(k)=0$ by numerical computation. Hence $\left[L\left(k_{\infty}\right): k_{\infty}\right]<\infty$ and $\left[\tilde{L}\left(k_{\infty}\right): k_{\infty}\right]=\infty$ for the cyclotomic \mathbb{Z}_{3}-extension k_{∞} over k.

We also obtain a result concerning the delay of the stabilization of $\# A\left(k_{n}\right)$ in the Iwasawa class number formula as a corollary to Theorem 1.

For any number field k and prime number p, we let $n_{0}(k, p)$ be the minimum non-negative integer such that

$$
\mathrm{Cl}\left(k_{n}\right)\left[p^{\infty}\right]=p^{\lambda_{p}(k) n+\mu_{p}(k) p^{n}+\nu_{p}(K)}
$$

for all $n \geq n_{0}(k, p)$, where k_{n} is the n-th layer of the cyclotomic \mathbb{Z}_{p}-extension k_{∞} / k, and $\lambda_{p}(k), \mu_{p}(k)$ and $\nu_{p}(k)$ denote Iwasawa invariants of k_{∞} / k.

Corollary 2. For any prime number p and integer M, there exists a real abelian field k of degree p such that $\lambda_{p}(k)=\mu_{p}(k)=0$ and $n_{0}(k, p) \geq M$

Proof. By the construction in the proof of Theorem 1, for any give $N \geq 1$, there exists a real abelian field k of degree p such that $\lambda_{p}(k)=\mu_{p}(k)=0$, p-rank $A\left(k_{N}\right) \geq p^{N-1}-1, A(k)$ is a cyclic group, and the prime p remains prime in k. Since k_{∞} has a unique prime lying over p, we have

$$
A\left(k_{n}\right) \simeq X_{k_{\infty}} /\left(\gamma^{p^{n}}-1\right) X_{k_{\infty}},
$$

where γ is a fixed generator of $\Gamma:=\operatorname{Gal}\left(k_{\infty} / k\right)$. It follows from the above isomorphism and the cyclicity of $A(k)$ that $X_{k_{\infty}}$ is a cyclic $\mathbb{Z}_{p}[[\Gamma]]$-module by Nakayama's lemma, $\mathbb{Z}_{p}[[\Gamma]]$ being the completed group ring of Γ over \mathbb{Z}_{p}. Hence, by using the assumption $\# X_{k_{\infty}}<\infty$, we may assume that

$$
X_{k_{\infty}} / p X_{k_{\infty}} \simeq \mathbb{F}_{p}[[\Gamma]] /(\gamma-1)^{e},
$$

for some $e \geq 0$. Thus we have

$$
A\left(k_{n}\right) / p A\left(k_{n}\right) \simeq \mathbb{F}_{p}[[\Gamma]] /\left((\gamma-1)^{e},(\gamma-1)^{p^{n}}\right)=\mathbb{F}_{p}[[\Gamma]] /(\gamma-1)^{\min \left\{e, p^{n}\right\}}
$$

for $n \geq 0$, from which we find that

$$
\begin{equation*}
e \geq \min \left\{e, p^{N}\right\}=p-\operatorname{rank} A\left(k_{N}\right) \geq p^{N-1}-1 . \tag{3.1}
\end{equation*}
$$

On the other hand, we see that

$$
\begin{equation*}
p^{n_{0}(k, p)} \geq e, \tag{3.2}
\end{equation*}
$$

since

$$
\begin{aligned}
\min \left\{e, p^{n_{0}(k, p)}\right\} & =p-\operatorname{rank} A\left(k_{n_{0}(k, p)}\right) \\
& =p-\operatorname{rank} A\left(k_{n_{0}(k, p)+1}\right)=\min \left\{e, p^{n_{0}(k, p)+1}\right\} .
\end{aligned}
$$

Thus we conclude from (3.1) and (3.2) that

$$
p^{n_{0}(k, p)} \geq p^{N-1}-1 .
$$

Because N is an arbitrarily given number, the proof have been completed.

Example 1. Here we give an example of Theorem 1. Let $p=2$ and $k=\mathbb{Q}(\sqrt{5 \cdot 732678913})$ (732678913 is a prime number). Then we can see that $\lambda_{2}(k)=\mu_{2}(k)=0$ and 2-rank $X_{k_{\infty}}=19$, where k_{∞} / k is the cyclotomic \mathbb{Z}_{2}-extension (cf. Theorem 1).

For this real quadratic field k, we see that $\left[L\left(k_{\infty}\right): k_{\infty}\right]<\infty$ and $\left[\tilde{L}\left(k_{\infty}\right)\right.$: $\left.k_{\infty}\right]=\infty$, where $L\left(k_{\infty}\right) / k_{\infty}$ and $\tilde{L}\left(k_{\infty}\right) / k_{\infty}$ are the maximal unramified abelian 2 -extension and the maximal unramified 2-extension, respectively (cf. Corollary 1).

Also we find that $n_{0}(k, 2) \geq 5$ (cf. Corollary 2). Specifically, we can see $2-\operatorname{rank} \mathrm{Cl}\left(k_{n}\right)=2^{n}$ for $0 \leq n \leq 4$ and $2-\operatorname{rank} \mathrm{Cl}\left(k_{n}\right)=19$ for $n \geq 5$.

4 Open Question

The paper [9] shows that for any given finite \mathbb{Z}_{p}-module X there exists a totally real number field k of finite degree such that $X_{k_{\infty}} \simeq X$. The author would like to know whether we can always choose the above k to be a real abelian field of degree p.

ACKNOWLEDGMENTS. The author would like to express thanks to Professor Ralph Greenberg for improving an earlier version of Lemma 1. The proof of Lemma 1 included in this paper was given by him.

References

[1] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of \mathbb{Q} with prime degree, Proc. Japan Acad., 73 (1997), 108-110.
[2] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of \mathbb{Q} with prime degree II, Proc. Japan Acad., 74 (1997), 160-164.
[3] R.Greenberg: On the Iwasawa invariants of totally real number fields, Amer. J. of Math., 98 (1976), 263-284.
[4] K. Iwasawa, A note on capitulation problem for number fields II, Proc. Japan Acad., 65 (1989), 183-186.
[5] K. Komatsu, On the Iwasawa λ-invariants of quaternion extensions, Acta. Arith., 87 (1999), 219-221.
[6] Y. Mizusawa, On Greenberg's conjecture on a certain real quadratic field, Proc. of Japan Acad., 76 (2000), 163-164.
[7] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften 323, Springer-Verlag, Berlin Heidelberg, 2000. ${ }^{\text {' }}$
[8] M. Ozaki and H. Taya, On the Iwasawa λ_{2}-invariant of certain families of real quadratic fields, Manuscripta Math. 94 (1997), 437-444.
[9] M. Ozaki, Construction of \mathbb{Z}_{p}-extensions with prescribed Iwasawa modules, J. Math. Soc. Japan 56 (2004), 787-801.
[10] G. Yamamoto, On the vanishing of Iwasawa invariants of certain (p, p) extensions of \mathbb{Q}. Proc. Japan Acad., 73 (1997), 45-47.

