Int. J. Open Problems Compt. Math., Vol. 2, No. 3, September 2009 ISSN 1998-6262; Copyright ©ICSRS Publication, 2009 www.i-csrs.org

Construction of Real Abelian Fields of Degree p

With $\lambda_p = \mu_p = 0$

Manabu Ozaki

Department of Mathematics, School of Science and Engineering, Kinki University, Kowakae 3-4-1, Higashi-Osaka, 577-8502, JAPAN e-mail: ozaki@math.kindai.ac.jp

Abstract

For any prime number p, we shall construct a real abelian extension k over \mathbb{Q} of degree p such that the Iwasawa module associated with the cyclotomic \mathbb{Z}_p -extension k_{∞}/k is finite and has arbitrarily large p-rank.

Keywords: Iwasawa theory, \mathbb{Z}_p -extension, Greenberg's conjecture 2000 Mathematics Subject Classification: 11R23, 11R29

1 Introduction

In the theory of \mathbb{Z}_p -extensions, Greenberg's conjecture is one of the most fascinating open problem:

Greenberg's conjecture. For any totally real number field k and prime number p, the both of Iwasawa λ -invariant $\lambda_p(k)$ and μ -invariant $\mu_p(k)$ of the cyclotomic \mathbb{Z}_p -extension k_{∞}/k are vanished. In other words, the Galois group $X_{k_{\infty}}$ of the maximal unramified abelian p-extension over k_{∞} , which is called the Iwasawa module associated with k_{∞}/k , is finite.

In connection with this conjecture, many research papers, as Greenberg [3], Iwasawa [4], Ozaki-Taya [8], Yamamoto [10], Fukuda [1], [2], Komatsu [5], deal with the construction of families of totally real *p*-extension fields *k* over \mathbb{Q} with $\lambda_p(k) = \mu_p(k) = 0.$ We are interested in not only constructing various families of totally real pextension k/\mathbb{Q} with $\lambda_p(k) = \mu_p(k) = 0$ but also what kind of finite \mathbb{Z}_p -modules appear as $X_{k_{\infty}}$.

In the present paper, we shall construct real abelian extensions k over \mathbb{Q} of degree p such that $\lambda_p(k) = \mu_p(k) = 0$ and the Iwasawa module associated with the cyclotomic \mathbb{Z}_p -extension k_{∞}/k has arbitrarily large p-rank. Our main result is;

Theorem 1. Let p be any prime number. For any $M \ge 0$, there is a real abelian field k of degree p such that $\lambda_p(k) = \mu_p(k) = 0$, p-rank $X_{k_{\infty}} := \dim_{\mathbb{F}_p} X_{k_{\infty}}/pX_{k_{\infty}} \ge M$, and the prime p is inert in k, where $X_{k_{\infty}}$ is the Iwa-sawa module associated with the cyclotomic \mathbb{Z}_p -extension k_{∞}/k .

We shall also give some applications of our construction.

2 Proof of Theorem 1.

We first introduce some notations, which we shall use below; In what follows, We fix a prime number p once for all. For any number field F, we denote by E_F , I_F and $\operatorname{Cl}(F)$ the unit group, the ideal group and the ideal class group of F, respectively, and we write A(F) for the p-part of $\operatorname{Cl}(F)$. Let F_n denote the n-th layer of the cyclotomic \mathbb{Z}_p -extension F_{∞}/F for any number field F of finite degree and $n \geq 0$. For any module $M, r \in \mathbb{Z}$, and a prime number p, we put $M[r] = \{m \in M | rm = 0\}$ and p-rank $M = \dim_{\mathbb{F}_p} M/pM$. Also we define $M[p^{\infty}]$ to be $\bigcup_{n>1} M[p^n]$.

Since $X_{k_{\infty}} \simeq \varprojlim A(k_n)$, the projective limit being taken with respect to the norm maps, and the norm map $A(k_m) \longrightarrow A(k_n)$ is surjective if k_{∞}/k_n is totally ramified at some prime, p-rank $X_{k_{\infty}} \ge M$ is equivalent to that p-rank $A(k_n) \ge M$ for such $n \ge 0$.

Assume that prime numbers q and r satisfy

(C1)
$$q \equiv 1 \pmod{2p^{N+1}}$$
, $r \equiv 1 \pmod{2p}$, $r \not\equiv 1 \pmod{2p^2}$
(C2) $q^{\frac{r-1}{p}} \not\equiv 1 \pmod{r}$,
(C3) $p^{\frac{r-1}{p}} \not\equiv 1 \pmod{r}$,

for a given integer $N \geq 1$. Denote by $\mathbb{Q}^{(p)}(q)$ and $\mathbb{Q}^{(p)}(r)$ the real abelian fields of degree p with conductors q and r, respectively. Such abelian fields certainly exist by conditions (C1). Let k be a subfield of $\mathbb{Q}^{(p)}(q)\mathbb{Q}^{(p)}(r)$ with conductor qr such that $[k : \mathbb{Q}] = p$ and the prime p remains prime in k. Such k certainly exists because p remains prime in $\mathbb{Q}^{(p)}(r)$ by condition (C3), and, in the case where p = 2, the prime 2 splits in $\mathbb{Q}^{(p)}(q)$ by condition (C1). Then $\mathbb{Q}^{(p)}(q)\mathbb{Q}^{(p)}(r)$ is the genus p-class field of k/\mathbb{Q} , that is, the maximal abelian p-extension field over \mathbb{Q} which is unramified over k, and we have $\operatorname{Gal}(\mathbb{Q}^{(p)}(q)\mathbb{Q}^{(p)}(r)/k) \simeq A(k)/(\sigma-1)A(k)$ by class field theory, where σ is a generator of $\operatorname{Gal}(k/\mathbb{Q})$. Since the prime \mathfrak{q} of k lying above q does not split in $\mathbb{Q}^{(p)}(q)\mathbb{Q}^{(p)}(r)/k$ by (C2), the ideal class containing the prime \mathfrak{q} generates $A(k)/(\sigma-1)A(k)$, which implies that it generates A(k) itself and that A(k)is cyclic by Nakayama's lemma. We shall show that the prime \mathfrak{q} capitulates in k_{∞} , which is equivalent to $\lambda_p(k) = \mu_p(k) = 0$ by [3, Theorem 1], and that p-rank $A(k_N) \geq M$ under some additional conditions on q and N.

Lemma 1. Let p be a prime number and F'/F a degree p cyclic extension of number fields of finite degree. We assume that $\lambda_p(F) = \mu_p(F) = 0$. Let \mathfrak{l}' be a prime ideal of F' which ramifies in F'/F. If \mathfrak{l}' splits completely in F'_n and p-rank $A(F'_n) < p^n$ for some $n \ge 0$, then we have $\pi_{F'_{\infty}}(\mathfrak{l}') = 0$ for the natural projection map $\pi_{F'_{\infty}} : I_{F'_{\infty}} \longrightarrow A(F'_{\infty})$.

Proof. Let $H_n = \operatorname{Ker}(j_{n,\infty} : A(F'_n) \longrightarrow A(F'_\infty))$, where $j_{n,\infty}$ is the natural map induced by the inclusion $I_{F'_n} \subseteq I_{F'_\infty}$. We write \mathfrak{L}' for a prime of F'_n lying above \mathfrak{l}' . Since $\mathfrak{L}'^p \in I_{F_n}$ and $A(F_\infty) = 0$ by our assumption $\lambda_p(F) = \mu_p(F) =$ 0, we have $\pi_{F'_n}(\mathfrak{L}')^p \in H_n$ for the natural projection map $\pi_{F'_n} : I_{F'_n} \longrightarrow A(F'_n)$. We consider the homomorphism $\psi : \mathbb{F}_p[\operatorname{Gal}(F'_n/F')] \longrightarrow (A(F'_n)/H_n)[p], \ \alpha \mapsto \alpha \pi_{F'_n}(\mathfrak{L}') \mod H_n$. It follows from the assumption that

$$#(A(F'_n)/H_n)[p] < p^{p^n} = #\mathbb{F}_p[\operatorname{Gal}(F'_n/F')].$$

Hence $\operatorname{Ker}(\psi) \neq 0$, which implies $\operatorname{Ker}(\psi)^{\operatorname{Gal}(F'_n/F')} \neq 0$. Because

$$\mathbb{F}_p[\operatorname{Gal}(F'_n/F')]^{\operatorname{Gal}(F'_n/F')} = \mathbb{F}_p \sum_{\gamma \in \operatorname{Gal}(F'_n/F')} \gamma,$$

we have $\sum_{\gamma \in \operatorname{Gal}(F'_n/F')} \gamma \in \operatorname{Ker}(\psi)$. Therefore

$$\pi_{F'_n}(\mathfrak{l}') = \sum_{\gamma \in \operatorname{Gal}(F'_n/F')} \gamma \pi_{F'_n}(\mathfrak{L}') \in H_n,$$

which implies $\pi_{F'_{\infty}}(\mathfrak{l}') = 0.$

Since $\lambda_p(\mathbb{Q}) = \mu_p(\mathbb{Q}) = 0$, and the prime \mathfrak{q} splits completely in k_N by (C1), if p-rank $A(k_N) < p^N$ then \mathfrak{q} capitulates in k_∞ and $\lambda_p(k) = \mu_p(k) = 0$ by Lemma 1. Hence we shall control the *p*-rank of $A(k_N)$ in what follows.

Lemma 2. We have

$$p^{N} - p\operatorname{-rank}\left(E_{\mathbb{Q}_{N}}/(E_{\mathbb{Q}_{N}}\cap N_{k_{N}/\mathbb{Q}_{N}}k_{N}^{\times})\right)$$

$$\leq p\operatorname{-rank}A(k_{N})$$

$$\leq p(p^{N} - p\operatorname{-rank}\left(E_{\mathbb{Q}_{N}}\cap N_{k_{N}/\mathbb{Q}_{N}}k_{N}^{\times}\right)).$$

Proof. Since $A(\mathbb{Q}_N)$ is trivial, $A(k_N)/(\sigma - 1)A(k_N)$ is an elementary abelian *p*-group. The number of primes of \mathbb{Q}_N which ramify in k_N is $p^N + 1$ because the prime *q* splits completely and the prime *r* remains prime in \mathbb{Q}_N/\mathbb{Q} by (C1). Hence it follows from genus formula for k_N/\mathbb{Q}_N that

 $p\operatorname{-rank} A(k_N) \ge p\operatorname{-rank} \left(A(k_N) / (\sigma - 1) A(k_N) \right)$ $= p^N - p\operatorname{-rank} \left(E_{\mathbb{Q}_N} / (E_{\mathbb{Q}_N} \cap N_{k_N/\mathbb{Q}_N} k_N^{\times}) \right),$

It follows from the filtration of submodules of $A(k_N)$

$$A(k_N) \supseteq (\sigma - 1)A(k_N) \supseteq (\sigma - 1)^2 A(k_N) \cdots \supseteq (\sigma - 1)^p A(k_N),$$

and $(\sigma - 1)^p A(k_n) \subseteq pA(k_n)$ that

$$p$$
-rank $A(k_N) \le p(p$ -rank $(A(k_N)/(\sigma - 1)A(k_N))).$

Thus we have the lemma.

Let γ be a fixed generator of $\operatorname{Gal}(k_N/k)$ and $(k_N)_{\overline{\mathfrak{Q}}_0}$ the completion of k_N at the unique prime $\overline{\mathfrak{Q}}_0$ above a fixed prime \mathfrak{Q}_0 of \mathbb{Q}_N lying over q.

By virtue of Lemma 2, we can control the *p*-rank of $A(k_N)$ by controlling $E_{\mathbb{Q}_N}/E_{\mathbb{Q}_N} \cap N_{k_N/\mathbb{Q}_N}k_N^{\times}$. Hence we shall investigate the map

$$\rho: E_{\mathbb{Q}_N} \longrightarrow \operatorname{Gal}(k_N/\mathbb{Q}_N)^{\oplus p^N}, \rho(\varepsilon) = ((\gamma^{-i}(\varepsilon), (k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q))_{i=0}^{p^N-1},$$

where $(*, (k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q)$ denotes the local Artin symbol for $(k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q$. Then it follows from the Hasse norm theorem and the product formula of the local Artin symbols that

$$\operatorname{Ker}(\rho) = E_{\mathbb{Q}_N} \cap N_{k_N/\mathbb{Q}_N} k_N^{\times}$$

since the ramified primes of k_N/\mathbb{Q}_N are exactly the primes lying above q and the unique prime lying above r,

Hence we have

$$E_{\mathbb{Q}_N}/E_{\mathbb{Q}_N} \cap N_{k_N/\mathbb{Q}_N} k_N^{\times} \simeq \operatorname{Im}(\rho).$$
(2.1)

Let $\eta = N_{\mathbb{Q}(\zeta_{p^{N+1}})/\mathbb{Q}_N}(\zeta_{p^{N+1}}-1)^{\gamma-1}$ (when $p \neq 2$), or $\eta = \zeta_{2^{N+2}}^{-2} \frac{\zeta_{2^{N+2}}^{5}-1}{\zeta_{2^{N+2}}-1}$ (when p = 2), where ζ_m denotes a primitive *m*-th root of unity for $m \geq 1$. Then $C_{\mathbb{Q}_N} = \langle -1, \gamma^i \eta | 0 \leq i \leq p^N - 2 \rangle$ is the cyclotomic unit group of \mathbb{Q}_N and $p \nmid [E_{\mathbb{Q}_N} : C_{\mathbb{Q}_N}]$ as well known. Hence we have $\operatorname{Im}(\rho) = \rho(C_{\mathbb{Q}_N}) = \rho(\mathbb{Z}[\operatorname{Gal}(\mathbb{Q}_N/\mathbb{Q})]\eta)$ since $\rho(-1) = 1$.

Lemma 3. Let σ be a fixed generator of $\operatorname{Gal}(k_N/\mathbb{Q}_N)$. If we assume that

$$(\gamma^{-j}\eta, (k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q) = \begin{cases} \sigma \ (0 \le j \le p^{N-1} - 1), \\ 1 \ (p^{N-1} \le j \le p^N - 1). \end{cases}$$
(2.2)

Then we have $p\operatorname{-rank}(E_{\mathbb{Q}_N}/E_{\mathbb{Q}_N}\cap N_{k_N/\mathbb{Q}_N}k_N^{\times}) = p^N - p^{N-1} + 1.$

Proof. It follows from the definition of the map ρ and (2.2) that

$$\rho(\gamma^{i}\eta) = \begin{cases} (1, \cdots, 1, \overset{i+1}{\sigma}, \cdots, \overset{i+p^{N-1}}{\sigma}, 1 \cdots, 1) & \text{if } 0 \le i \le p^{N} - p^{N-1}, \\ (\sigma, \cdots, \overset{i-(p^{N}-p^{N-1})}{\sigma}, 1, \cdots, \overset{i}{1}, \sigma, \cdots, \sigma) \\ & \text{if } p^{N} - p^{N-1} + 1 \le i \le p^{N} - 1. \end{cases}$$

Clearly $\rho(\gamma^i \eta)$ $(0 \leq i \leq p^N - p^{N-1})$ are independent in $\operatorname{Gal}(k_N/\mathbb{Q}_N)^{\oplus p^N} \simeq (\mathbb{F}_p)^{\oplus p^N}$. For $p^N - p^{N-1} + 1 \leq i \leq p^N - 1$, we have

$$\rho(\gamma^{i}\eta) = \rho(\eta) \prod_{j=0}^{p-2} \left(\rho(\gamma^{(j+1)p^{N-1}}\eta) \rho(\gamma^{i-(p^{N}-p^{N-1})+jp^{N-1}}\eta)^{-1} \right).$$

Therefore $\text{Im}(\rho)$ is generated by $\{\rho(\gamma^i \eta) | \ 0 \le i \le p^N - p^{N-1}\}$, from which we conclude that

$$p\operatorname{-rank} E_{\mathbb{Q}_N}/E_{\mathbb{Q}_N} \cap N_{k_N/\mathbb{Q}_N} k_N^{\times} = p\operatorname{-rank} \operatorname{Im}(\rho)$$
$$= p\operatorname{-rank} \ \rho(\mathbb{Z}[\operatorname{Gal}(\mathbb{Q}_N/\mathbb{Q})]\eta) = p^N - p^{N-1} + 1$$

by using (2.1)

If assumption (2.2) of Lemma 3 holds, then we have

$$p^{N-1} - 1 \le p \operatorname{-rank} A(k_N) \le p^N - p < p^N$$

by Lemma 2. Hence it follows that $\lambda_p(k) = \mu_p(k) = 0$ and p-rank $X_{k_{\infty}} \ge p$ -rank $A(k_N) \ge p^{N-1} - 1$. If we take an integer N so that $p^{N-1} - 1 \ge M$, the field k certainly satisfies the requirement of the statement of Theorem 1.

Now we choose primes q and r such that conditions (C1), (C2), (C3), and (2.2) hold.

Since $\gamma^{-i}\eta$ $(0 \le i \le p^N - 2)$ (and -1 if p = 2) are independent in $\mathbb{Q}_N(\zeta_p)^{\times}$ as well known, $\gamma^{-i}\eta \mod (\mathbb{Q}_N^{\times})^p$ $(0 \le i \le p^N - 2)$ (and $-1 \mod (\mathbb{Q}_N^{\times})^2$ if p = 2) are independent in $\mathbb{Q}_N^{\times}/(\mathbb{Q}_N^{\times})^p$. Hence, by taking the norm $N_{\mathbb{Q}_N(\zeta_p)/\mathbb{Q}_N}$, we can see that $\gamma^{-i}\eta \mod (\mathbb{Q}_N(\zeta_p)^{\times})^p$ $(0 \le i \le p^N - 2)$ (and $-1 \mod (\mathbb{Q}_N^{\times})^2$ if p = 2) are independent also in $\mathbb{Q}_N(\zeta_p)^{\times}/(\mathbb{Q}_N(\zeta_p)^{\times})^p$. Therefore there exists a degree one prime $\tilde{\mathfrak{Q}}$ of $\mathbb{Q}_N(\zeta_p) (= \mathbb{Q}(\zeta_{p^{N+1}})$ (if $p \neq 2$), $= \mathbb{Q}_N = \mathbb{Q}(\zeta_{2^{N+2}} + \zeta_{2^{N+2}}^{-1})$ (if p = 2)) such that

$$\sqrt[p]{\gamma^{-i}\eta} \left(\frac{\mathbb{Q}_N\left(\sqrt[p]{\gamma^{-i}\eta,\zeta_p} \right)/\mathbb{Q}_N(\zeta_p)}{\tilde{\mathfrak{Q}}} \right)^{-1} = \begin{cases} \zeta_p \ (0 \le i \le p^{N-1} - 1), \\ 1 \ (p^{N-1} \le i \le p^N - 2), \end{cases}$$
(2.3)

by Čebotarev density theorem, where $\binom{*/*}{*}$ denotes the Artin symbol. Note that $N(\tilde{\mathfrak{Q}})$ is a prime number with $N(\tilde{\mathfrak{Q}}) \equiv 1 \pmod{p^{N+1}}$ (if $p \neq 2$), or $N(\tilde{\mathfrak{Q}}) \equiv \pm 1 \pmod{2^{N+2}}$ (if p = 2).

Furthermore, in the case where p = 2, we can choose the prime $\tilde{\mathfrak{Q}}$ so that

$$\left(\frac{\mathbb{Q}_N(\sqrt{-1})/\mathbb{Q}_N}{\tilde{\mathfrak{Q}}}\right) = 1, \qquad (2.4)$$

which is equivalent to $N(\tilde{\mathfrak{Q}}) \equiv 1 \pmod{2^{N+2}}$. We note that if $\tilde{\mathfrak{Q}}$ satisfies (2.3), then

$$\sqrt[p]{\gamma^{-(p^N-1)}\eta} \left(\frac{\mathbb{Q}_N\left(\sqrt[p]{\gamma^{-(p^N-1)}\eta,\zeta_p}\right)/\mathbb{Q}_N(\zeta_p)}{\tilde{\mathfrak{Q}}} \right)^{-1} = 1, \qquad (2.5)$$

because $\prod_{i=0}^{p^N-1} \gamma^{-i} \eta = \pm 1$. We take the prime number $N(\tilde{\mathfrak{Q}})$ as a prime number q. Then $q \equiv 1 \pmod{2p^{N+1}}$. We choose a degree one prime \mathfrak{r} of $\mathbb{Q}(\zeta_p)$ (degree one implies that $N(\mathfrak{r})$ is a prime number with $N(\mathfrak{r}) \equiv 1 \pmod{p}$) such that

$$\left(\frac{\mathbb{Q}(\zeta_p, \sqrt[p]{p})/\mathbb{Q}(\zeta_p)}{\mathfrak{r}}\right) \neq 1, \left(\frac{\mathbb{Q}(\zeta_p, \sqrt[p]{q})/\mathbb{Q}(\zeta_p)}{\mathfrak{r}}\right) \neq 1$$

which is equivalent to $p^{\frac{N(\mathfrak{r})-1}{p}} \not\equiv 1 \pmod{N(\mathfrak{r})}$ and $q^{\frac{N(\mathfrak{r})-1}{p}} \not\equiv 1 \pmod{N(\mathfrak{r})}$, respectively, and that

$$\left(\frac{\mathbb{Q}(\zeta_{p^2})/\mathbb{Q}(\zeta_p)}{\mathfrak{r}}\right) \neq 1 \text{ (if } p \neq 2) , \ \left(\frac{\mathbb{Q}(\sqrt{-1})/\mathbb{Q}}{\mathfrak{r}}\right) = 1 \text{ (if } p = 2),$$

which is equivalent to $N(\mathfrak{r}) \not\equiv 1 \pmod{p^2}$ (when $p \neq 2$) and $N(\mathfrak{r}) \equiv 1 \pmod{4}$ (when p = 2), respectively. This is possible by the Čebotarev density theorem because $p \mod (\mathbb{Q}(\zeta_p)^{\times})^p$, $q \mod (\mathbb{Q}(\zeta_p)^{\times})^p$, and $\zeta_p \mod (\mathbb{Q}(\zeta_p)^{\times})^p$ are independent in $\mathbb{Q}(\zeta_p)^{\times}/(\mathbb{Q}(\zeta_p)^{\times})^p$ as one can see easily by taking the norm to \mathbb{Q} . We take the prime number $N(\mathfrak{r})$ as a prime number r. Then prime numbers q and r satisfy conditions (C1), (C2) and (C3) (In the case where p = 2, it follows from $2^{\frac{N(\mathfrak{r})-1}{2}} \not\equiv 1 \pmod{N(\mathfrak{r})}$ that $N(\mathfrak{r}) \not\equiv 1 \pmod{8}$). And let k be a real abelian field of degree p with conductor qr in which the prime pdoes not split. We shall verify the field k and a certain prime \mathfrak{Q}_0 of \mathbb{Q}_N lying above q satisfy the assumption (2.2) of Lemma 3 in the following. Let us take the prime of \mathbb{Q}_N below $\tilde{\mathfrak{Q}}$ as \mathfrak{Q}_0 , and let $\delta \in \mathbb{Q}_q$ be a uniformizer such that $\mathbb{Q}_q(\sqrt[p]{\delta}) = (k_N)_{\overline{\mathfrak{Q}}_0}$. Then we can see

$$\sqrt[p]{\delta}^{(\gamma^{-i}\eta,(k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q)-1} = \sqrt[p]{\gamma^{-i}\eta}^{1-\left(\frac{\mathbb{Q}_N(\sqrt[p]{\gamma^{-i}\eta},\zeta_p)/\mathbb{Q}_N(\zeta_p)}{\mathfrak{Q}}\right)}$$

by a property of local and global Artin symbols. Therefore we see that

$$(\gamma^{-i}\eta, (k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q) = (\eta, (k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q) \neq 1$$

for $1 \leq i \leq p^{N-1} - 1$, and $(\gamma^{-i}\eta, (k_N)_{\overline{\mathfrak{Q}}_0}/\mathbb{Q}_q) = 1$ for $p^{N-1} \leq i \leq p^N - 1$ by (2.3) and (2.5). Therefore condition (2.2) holds. Thus the above abelian field k satisfies $\lambda_p(k) = \mu_p(k) = 0$ and p-rank $X_{k_{\infty}} \geq p$ -rank $A(k_N) \geq p^{N-1} - 1 \geq M$. We have completed the proof of Theorem 1.

3 Applications of Theorem 1

We shall give some applications of Theorem 1 in this section.

As a corollary to Theorem 1, we have the following result on the maximal unramified *p*-extensions of \mathbb{Z}_p -extension fields over totally real number fields:

Corollary 1. For any prime number p, there exists a real abelian fields k with $[k : \mathbb{Q}] = p$ such that the maximal unramified abelian p-extension $L(k_{\infty})/k_{\infty}$ is finite but the maximal unramified p-extension $\tilde{L}(k_{\infty})/k_{\infty}$ is infinite, k_{∞} being the cyclotomic \mathbb{Z}_p -extension field of k.

Proof. In the proof of Theorem 1, we have shown that for any given number N, there exists a real abelian field k of degree p such that $\lambda_p(k) = \mu_p(k) = 0$ and p-rank $A(k_N) \ge p^{N-1} - 1$. If we choose N so that $p^{N-1} - 1 \ge 2 + 2\sqrt{r(k_N)}$, $r(k_N) = p^{N+1}$ being the number of archimedean places of k_N , it follows from Golod-Shafarevich criterion (see for example [7, Theorem (10.8.6)]) that the maximal unramified p-extension $\tilde{L}(k_N)$ over k_N is infinite. Therefore the extension $\tilde{L}(k_\infty)/k_\infty$ is infinite since $\tilde{L}(k_N)k_\infty \subseteq \tilde{L}(k_\infty)$. Also, the finiteness of $[L(k_\infty):k_\infty]$ follows from the condition $\lambda_p(k) = \mu_p(k) = 0$. \Box

Remark 1. Mizusawa [6] give an different type example of \mathbb{Z}_p -extension field k_{∞} with $[L(k_{\infty}) : k_{\infty}] < \infty$ and $[\tilde{L}(k_{\infty}) : k_{\infty}] = \infty$. Let p = 3 and $k = \mathbb{Q}(\sqrt{39345017})$. In this case, $\tilde{L}(k)/k$ is an infinite extension. Mizusawa verified $\lambda_3(k) = \mu_3(k) = 0$ by numerical computation. Hence $[L(k_{\infty}) : k_{\infty}] < \infty$ and $[\tilde{L}(k_{\infty}) : k_{\infty}] = \infty$ for the cyclotomic \mathbb{Z}_3 -extension k_{∞} over k.

We also obtain a result concerning the delay of the stabilization of $#A(k_n)$ in the Iwasawa class number formula as a corollary to Theorem 1.

For any number field k and prime number p, we let $n_0(k, p)$ be the minimum non-negative integer such that

$$\operatorname{Cl}(k_n)[p^{\infty}] = p^{\lambda_p(k)n + \mu_p(k)p^n + \nu_p(K)}$$

for all $n \ge n_0(k, p)$, where k_n is the *n*-th layer of the cyclotomic \mathbb{Z}_p -extension k_{∞}/k , and $\lambda_p(k)$, $\mu_p(k)$ and $\nu_p(k)$ denote Iwasawa invariants of k_{∞}/k .

Corollary 2. For any prime number p and integer M, there exists a real abelian field k of degree p such that $\lambda_p(k) = \mu_p(k) = 0$ and $n_0(k, p) \ge M$

Proof. By the construction in the proof of Theorem 1, for any give $N \ge 1$, there exists a real abelian field k of degree p such that $\lambda_p(k) = \mu_p(k) = 0$, p-rank $A(k_N) \ge p^{N-1} - 1$, A(k) is a cyclic group, and the prime p remains prime in k. Since k_{∞} has a unique prime lying over p, we have

$$A(k_n) \simeq X_{k_{\infty}} / (\gamma^{p^n} - 1) X_{k_{\infty}},$$

where γ is a fixed generator of $\Gamma := \operatorname{Gal}(k_{\infty}/k)$. It follows from the above isomorphism and the cyclicity of A(k) that $X_{k_{\infty}}$ is a cyclic $\mathbb{Z}_p[[\Gamma]]$ -module by Nakayama's lemma, $\mathbb{Z}_p[[\Gamma]]$ being the completed group ring of Γ over \mathbb{Z}_p . Hence, by using the assumption $\#X_{k_{\infty}} < \infty$, we may assume that

$$X_{k_{\infty}}/pX_{k_{\infty}} \simeq \mathbb{F}_p[[\Gamma]]/(\gamma - 1)^e,$$

for some $e \ge 0$. Thus we have

$$A(k_n)/pA(k_n) \simeq \mathbb{F}_p[[\Gamma]]/((\gamma - 1)^e, (\gamma - 1)^{p^n}) = \mathbb{F}_p[[\Gamma]]/(\gamma - 1)^{\min\{e, p^n\}}$$

for $n \ge 0$, from which we find that

$$e \ge \min\{e, p^N\} = p\text{-rank} A(k_N) \ge p^{N-1} - 1.$$
 (3.1)

On the other hand, we see that

$$p^{n_0(k,p)} \ge e,\tag{3.2}$$

since

$$\min\{e, p^{n_0(k,p)}\} = p \operatorname{-rank} A(k_{n_0(k,p)})$$
$$= p \operatorname{-rank} A(k_{n_0(k,p)+1}) = \min\{e, p^{n_0(k,p)+1}\}$$

Thus we conclude from (3.1) and (3.2) that

$$p^{n_0(k,p)} \ge p^{N-1} - 1.$$

Because N is an arbitrarily given number, the proof have been completed. \Box

Example 1. Here we give an example of Theorem 1. Let p = 2 and $k = \mathbb{Q}(\sqrt{5 \cdot 732678913})$ (732678913 is a prime number). Then we can see that $\lambda_2(k) = \mu_2(k) = 0$ and 2-rank $X_{k_{\infty}} = 19$, where k_{∞}/k is the cyclotomic \mathbb{Z}_2 -extension (cf. Theorem 1).

For this real quadratic field k, we see that $[L(k_{\infty}):k_{\infty}] < \infty$ and $[\tilde{L}(k_{\infty}):k_{\infty}] = \infty$, where $L(k_{\infty})/k_{\infty}$ and $\tilde{L}(k_{\infty})/k_{\infty}$ are the maximal unramified abelian 2-extension and the maximal unramified 2-extension, respectively (cf. Corollary 1).

Also we find that $n_0(k, 2) \ge 5$ (cf. Corollary 2). Specifically, we can see 2-rank $\operatorname{Cl}(k_n) = 2^n$ for $0 \le n \le 4$ and 2-rank $\operatorname{Cl}(k_n) = 19$ for $n \ge 5$.

4 Open Question

The paper [9] shows that for any given finite \mathbb{Z}_p -module X there exists a totally real number field k of finite degree such that $X_{k_{\infty}} \simeq X$. The author would like to know whether we can always choose the above k to be a real abelian field of degree p.

ACKNOWLEDGMENTS. The author would like to express thanks to Professor Ralph Greenberg for improving an earlier version of Lemma 1. The proof of Lemma 1 included in this paper was given by him.

References

- T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree, *Proc. Japan Acad.*, 73 (1997), 108–110.
- [2] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree II, Proc. Japan Acad., 74 (1997), 160–164.
- [3] R.Greenberg: On the Iwasawa invariants of totally real number fields, Amer. J. of Math., **98** (1976), 263–284.
- [4] K. Iwasawa, A note on capitulation problem for number fields II, Proc. Japan Acad., 65 (1989), 183–186.
- [5] K. Komatsu, On the Iwasawa λ -invariants of quaternion extensions, Acta. Arith., 87 (1999), 219–221.
- [6] Y. Mizusawa, On Greenberg's conjecture on a certain real quadratic field, Proc. of Japan Acad., 76 (2000), 163–164.

- [7] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften 323, Springer-Verlag, Berlin Heidelberg, 2000. '
- [8] M. Ozaki and H. Taya, On the Iwasawa λ_2 -invariant of certain families of real quadratic fields, *Manuscripta Math.* **94** (1997), 437–444.
- [9] M. Ozaki, Construction of Z_p-extensions with prescribed Iwasawa modules, J. Math. Soc. Japan 56 (2004), 787–801.
- [10] G. Yamamoto, On the vanishing of Iwasawa invariants of certain (p, p)extensions of Q. Proc. Japan Acad., 73 (1997), 45–47.