An Iterative Algorithm for Two Asymptotically Pseudocontractive Mappings

Arif Rafiq ${ }^{1}$, Ana Maria Acu ${ }^{2}$, Florin Sofonea ${ }^{2}$
${ }^{1}$ COMSATS Institute of Information Technology, Department of Mathematics, Defense Road, Off Raiwind Road, Lohore-Pakistan e-mail: arafiq@comsats.edu.pk
${ }^{2}$ "Lucian Blaga" University, Department of Mathematics, Str. Dr. Ioan Raţiu, nr.5-7, 550012 - Sibiu - Romania, e-mail: acuana77@yahoo.com, sofoneaflorin@yahoo.com

Abstract

Let K be a nonempty closed convex subset of a real Banach space $E, T_{i}: K \rightarrow K, i=1,2$ be two uniformly L-Lipschitzian asymptotically pseudocontractive mappings with sequence $\left\{k_{n}\right\}_{n \geq 0}$ $\subset[1, \infty), \sum_{n \geq 0}\left(k_{n}-1\right)<\infty$ such that $F\left(T_{1}\right) \cap F\left(T_{2}\right) \neq \varphi$, where $F\left(T_{i}\right)$ is the set of fixed points of T_{i} in K and p be a point in $F\left(T_{1}\right) \cap F\left(T_{2}\right)$. Let $\left\{\alpha_{n}\right\}_{n \geq 0},\left\{\beta_{n}\right\}_{n \geq 0} \subset[0,1]$ be two sequences such that $\sum_{n>0} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}$. For arbitrary $x_{0} \in K$, let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence iteratively defined by $$
\begin{aligned} x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{1}^{n} y_{n}, \\ y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T_{2}^{n} x_{n}, n \geq 0 . \end{aligned}
$$

Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow$ $[0, \infty), \phi(0)=0$ such that

$$
\left\langle T_{i}^{n} x-p, j(x-p)\right\rangle \leq k_{n}\|x-p\|^{2}-\phi(\|x-p\|), \forall x \in K, i=1,2 .
$$

Then $\left\{x_{n}\right\}_{n \geq 0}$ converges strongly to $p \in F\left(T_{1}\right) \cap F\left(T_{2}\right)$. The results proved in this paper significantly improve the results of Chang et al. [1].
Keywords: Modified Mann iterative scheme, Uniformly L-Lipschitzian mappings, Asymptotically pseudocontractive mappings, Banach spaces

1 Introduction

Let E be a real normed space and K be a nonempty convex subset of E. Let J denote the normalized duality mapping from E to $2^{E^{*}}$ defined by

$$
J(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{2} \text { and }\left\|f^{*}\right\|=\|x\|\right\}
$$

where E^{*} denotes the dual space of E and $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. We shall denote the single-valued duality mapping by j.

Let $T: D(T) \subset E \rightarrow E$ be a mapping with domain $D(T)$ in E.
Definition 1.1 The mapping T is said to be uniformly L-Lipschitzian if there exists $L>0$ such that for all $x, y \in D(T)$

$$
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\| .
$$

Definition 1.2 T is said to be nonexpansive if for all $x, y \in D(T)$, the following inequality holds:

$$
\|T x-T y\| \leq\|x-y\| \text { for all } x, y \in D(T) \text {. }
$$

Definition 1.3 T is said to be asymptotically nonexpansive [6], if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $\sum_{n \geq 0}\left(k_{n}-1\right)<\infty$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\| \text { for all } x, y \in D(T), n \geq 1
$$

Definition 1.4 T is said to be asymptotically pseudocontractive if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $\sum_{n \geq 0}\left(k_{n}-1\right)<\infty$ and there exists $j(x-y) \in$ $J(x-y)$ such that

$$
\left\langle T^{n} x-T^{n} y, j(x-y)\right\rangle \leq k_{n}\|x-y\|^{2} \text { for all } x, y \in D(T), n \geq 1 .
$$

Remark 1.5 1. It is easy to see that every asymptotically nonexpansive mapping is uniformly L-Lipschitzian.
2. If T is asymptotically nonexpansive mapping then for all $x, y \in D(T)$ there exists $j(x-y) \in J(x-y)$ such that

$$
\begin{aligned}
\left\langle T^{n} x-T^{n} y, j(x-y)\right\rangle & \leq\left\|T^{n} x-T^{n} y\right\|\|x-y\| \\
& \leq k_{n}\|x-y\|^{2}, n \geq 1 .
\end{aligned}
$$

Hence every asymptotically nonexpansive mapping is asymptotically pseudocontractive.
3. Rhoades in [11] showed that the class of asymptotically pseudocontractive mappings properly contains the class of asymptotically nonexpansive mappings.

The asymptotically pseudocontractive mappings were introduced by Schu [12] who proved the following theorem:

Theorem 1.6 Let K be a nonempty bounded closed convex subset of a Hilbert space $H, T: K \rightarrow K$ a completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence $\left\{k_{n}\right\} \subset[1, \infty) ; q_{n}=2 k_{n}-$ $1, \forall n \in N ; \sum\left(q_{n}^{2}-1\right)<\infty ;\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1] ; \epsilon<\alpha_{n}<\beta_{n} \leq b, \forall n \in N$, and some $\epsilon>0$ and some $b \in\left(0, L^{-2}\left[\left(1+L^{2}\right)^{\frac{1}{2}}-1\right]\right) ; x_{1} \in K$ for all $n \in N$, define

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} x_{n} .
$$

Then $\left\{x_{n}\right\}$ converges to some fixed point of T.
The recursion formula of Theorem 1.6 is a modification of the well-known Mann iteration process (see [9]).

Recently, Chang [1] extended Theorem 1.6 to real uniformly smooth Banach space. In fact, he proved the following theorem:

Theorem 1.7 Let K be a nonempty bounded closed convex subset of a real uniformly smooth Banach space $E, T: K \rightarrow K$ an asymptotically pseudocontractive mapping with sequence $\left\{k_{n}\right\} \subset[1, \infty), \lim _{n \rightarrow \infty} k_{n}=1$, and $x^{*} \in F(T)=$ $\{x \in K: T x=x\}$. Let $\left\{\alpha_{n}\right\} \subset[0,1]$ satisfying the following conditions: $\lim _{\substack{n \rightarrow \infty \\ b}} \alpha_{n}=0, \sum \alpha_{n}=\infty$. For arbitrary $x_{0} \in K$ let $\left\{x_{n}\right\}$ be iteratively defined by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} x_{n}, n \geq 0 .
$$

If there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ such that

$$
\left\langle T^{n} x-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq k_{n}\left\|x-x^{*}\right\|^{2}-\phi\left(\left\|x-x^{*}\right\|\right), \forall n \in N
$$

then $x_{n} \rightarrow x^{*} \in F(T)$.
Remark 1.8 Theorem 1.7, as stated is a modification of Theorem 2.4 of Chang [1] who actually included error terms in his algorithm.

In [10], E. U. Ofoedu proved the following results.
Theorem 1.9 Let K be a nonempty closed convex subset of a real Banach space $E, T: K \rightarrow K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty), \lim _{n \rightarrow \infty} k_{n}=1$ such that $x^{*} \in F(T)=\{x \in K: T x=x\}$. Let $\left\{\alpha_{n}\right\}_{n \geq 0} \subset[0,1]$ be a sequence such that
$\sum_{n \geq 0} \alpha_{n}=\infty, \sum_{n \geq 0} \alpha_{n}^{2}<\infty$ and $\sum_{n \geq 0} \alpha_{n}\left(k_{n}-1\right)<\infty$. For arbitrary $x_{0} \in K$ let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence iteratively defined by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} x_{n}, n \geq 0
$$

Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ such that

$$
\left\langle T^{n} x-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq k_{n}\left\|x-x^{*}\right\|^{2}-\phi\left(\left\|x-x^{*}\right\|\right), \forall x \in K
$$

Then $\left\{x_{n}\right\}_{n \geq 0}$ is bounded.

Theorem 1.10 Let K be a nonempty closed convex subset of a real $B a$ nach space $E, T: K \rightarrow K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty), \lim _{n \rightarrow \infty} k_{n}=1$ such that $x^{*} \in F(T)=\{x \in K: T x=x\}$. Let $\left\{\alpha_{n}\right\}_{n \geq 0} \subset[0,1]$ be be a sequence such that $\sum_{n \geq 0} \alpha_{n}=\infty, \sum_{n \geq 0} \alpha_{n}^{2}<\infty$ and $\sum_{n \geq 0} \alpha_{n}\left(k_{n}-1\right)<\infty$. For arbitrary $x_{0} \in K$ let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence iteratively defined by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} x_{n}, n \geq 0
$$

Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ such that

$$
\left\langle T^{n} x-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq k_{n}\left\|x-x^{*}\right\|^{2}-\phi\left(\left\|x-x^{*}\right\|\right), \forall x \in K
$$

Then $\left\{x_{n}\right\}_{n \geq 0}$ converges strongly to $x^{*} \in F(T)$.

Theorem 1.11 Let K be a nonempty closed convex subset of a real Banach space $E, T: K \rightarrow K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty), \lim _{n \rightarrow \infty} k_{n}=1$ such that $x^{*} \in F(T)=\{x \in K: T x=x\}$. Let $\left\{a_{n}\right\}_{n \geq 0},\left\{b_{n}\right\}_{n \geq 0},\left\{c_{n}\right\}_{n \geq 0}$ be real sequences in $[0,1]$ satisfying the following conditions.
i) $a_{n}+b_{n}+c_{n}=1$;
ii) $\sum_{n \geq 0}\left(b_{n}+c_{n}\right)=\infty$;
iii) $\sum_{n \geq 0}\left(b_{n}+c_{n}\right)^{2}<\infty$;
iv) $\sum_{n \geq 0}\left(b_{n}+c_{n}\right)\left(k_{n}-1\right)<\infty$; and
v) $\sum_{n \geq 0} c_{n}<\infty$.

For arbitrary $x_{0} \in K$ let $\left\{x_{n}\right\}_{n \geq 0}$ be iteratively defined by

$$
x_{n+1}=a_{n} x_{n}+b_{n} T^{n} x_{n}+c_{n} u_{n}, n \geq 0,
$$

where $\left\{u_{n}\right\}_{n \geq 0}$ is a bounded sequence of error terms in K. Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ such that

$$
\left\langle T^{n} x-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq k_{n}\left\|x-x^{*}\right\|^{2}-\phi\left(\left\|x-x^{*}\right\|\right), \forall x \in K .
$$

Then $\left\{x_{n}\right\}_{n \geq 0}$ converges strongly to $x^{*} \in F(T)$.
In [1], Chang et al., proved the following results.
Theorem 1.12 Let K be a nonempty closed convex subset of a real Banach space $E, T_{i}: K \rightarrow K, i=1,2$ be two uniformly L-Lipschitzian asymptotically pseudocontractive mappings with sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty), \lim _{n \rightarrow \infty} k_{n}=1$ such that $F\left(T_{1}\right) \cap F\left(T_{2}\right) \neq \varphi$, where $F\left(T_{i}\right)$ is the set of fixed points of T_{i} in K and p be a point in $F\left(T_{1}\right) \cap F\left(T_{2}\right)$. Let $\left\{\alpha_{n}\right\}_{n \geq 0},\left\{\beta_{n}\right\}_{n \geq 0} \subset[0,1]$ be two sequences such that $\sum_{n \geq 0} \alpha_{n}=\infty, \sum_{n \geq 0} \alpha_{n}^{2}<\infty, \sum_{n \geq 0} \beta_{n}<\infty$ and $\sum_{n \geq 0} \alpha_{n}\left(k_{n}-1\right)<\infty$. For arbitrary $x_{0} \in K$, let $\left\{x_{n}\right\}_{n \geq 0}$ be be a sequence iteratively defined by

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{1}^{n} y_{n}, \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T_{2}^{n} x_{n}, n \geq 0 .
\end{aligned}
$$

Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ such that

$$
\left\langle T_{i}^{n} x-p, j(x-p)\right\rangle \leq k_{n}\|x-p\|^{2}-\phi(\|x-p\|), \forall x \in K, i=1,2 .
$$

Then $\left\{x_{n}\right\}_{n \geq 0}$ converges strongly to $p \in F\left(T_{1}\right) \cap F\left(T_{2}\right)$.
In this paper our purpose is to improve the results of Chang et al. [1] in a significantly more general context by removing the conditions $\sum_{n \geq 0} \alpha_{n}^{2}<\infty$ and $\sum_{n \geq 0} \alpha_{n}\left(k_{n}-1\right)<\infty$ from the Theorem 1.12.

2 Main Results

The following lemmas are now well known.
Lemma 2.1 Let $J: E \rightarrow 2^{E}$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y) .
$$

Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$.

Lemma 2.2 Let $\left\{\theta_{n}\right\}$ be a sequence of nonnegative real numbers, $\left\{\lambda_{n}\right\}$ be a real sequence satisfying

$$
0 \leq \lambda_{n} \leq 1, \sum_{n=0}^{\infty} \lambda_{n}=\infty
$$

and let $\phi \in \Phi$. If there exists a positive integer n_{0} such that

$$
\theta_{n+1}^{2} \leq \theta_{n}^{2}-\lambda_{n} \phi\left(\theta_{n+1}\right)+\sigma_{n},
$$

for all $n \geq n_{0}$, with $\sigma_{n} \geq 0, \forall n \in \mathbf{N}$, and $\sigma_{n}=0\left(\lambda_{n}\right)$, then $\lim _{n \rightarrow \infty} \theta_{n}=0$.
Theorem 2.3 Let K be a nonempty closed convex subset of a real Banach space $E, T_{i}: K \rightarrow K, i=1,2$ be two uniformly L-Lipschitzian asymptotically pseudocontractive mappings with sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty), \sum_{n>0}\left(k_{n}-1\right)<\infty$ such that $F\left(T_{1}\right) \cap F\left(T_{2}\right) \neq \varphi$, where $F\left(T_{i}\right)$ is the set of fixed points of T_{i} in K and p be a point in $F\left(T_{1}\right) \cap F\left(T_{2}\right)$. Let $\left\{\alpha_{n}\right\}_{n \geq 0},\left\{\beta_{n}\right\}_{n \geq 0} \subset[0,1]$ be two sequences such that $\sum_{n \geq 0} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}$. For arbitrary $x_{0} \in K$, let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence iteratively defined by

$$
\begin{align*}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{1}^{n} y_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T_{2}^{n} x_{n}, n \geq 0 . \tag{1}
\end{align*}
$$

Suppose there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ such that

$$
\begin{equation*}
\left\langle T_{i}^{n} x-p, j(x-p)\right\rangle \leq k_{n}\|x-p\|^{2}-\phi(\|x-p\|), \forall x \in K, i=1,2 . \tag{2}
\end{equation*}
$$

Then $\left\{x_{n}\right\}_{n \geq 0}$ converges strongly to $p \in F\left(T_{1}\right) \cap F\left(T_{2}\right)$.

Proof. Since T_{1} and T_{2} are uniformly L-Lipschitzian mappings, so there exists $L_{1}, L_{2}>0$ such that for all $x, y \in K$,

$$
\left\|T_{i}^{n} x-T_{i}^{n} y\right\| \leq L_{i}\|x-y\|, i=1,2
$$

Denote $L=\max \left\{L_{1}, L_{2}\right\}$, implies

$$
\left\|T_{i}^{n} x-T_{i}^{n} y\right\| \leq L\|x-y\|, i=1,2
$$

By $\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}$ and $\lim _{n \rightarrow \infty} k_{n}=1$, there exists $n_{0} \in \mathbf{N}$ such that $\forall n \geq n_{0}$,

$$
\begin{gathered}
\alpha_{n} \leq \min \left\{\frac{1}{2+3 L}, \frac{\phi\left(2 \phi^{-1}\left(a_{0}\right)\right)}{18(1+L)(2+3 L)\left[\phi^{-1}\left(a_{0}\right)\right]^{2}}\right\}, \\
\beta_{n} \leq \min \frac{1}{2}\left\{\frac{1}{1+L}, \frac{\phi\left(2 \phi^{-1}\left(a_{0}\right)\right)}{18 L(1+L)\left[\phi^{-1}\left(a_{0}\right)\right]^{2}}\right\},
\end{gathered}
$$

and

$$
k_{n}-1 \leq \frac{\phi\left(2 \phi^{-1}\left(a_{0}\right)\right)}{54\left[\phi^{-1}\left(a_{0}\right)\right]^{2}} .
$$

Define $a_{0, i}:=\left\|x_{n_{0}}-T_{i}^{n_{0}} x_{n_{0}}\right\|\left\|x_{n_{0}}-p\right\|+\left(k_{n_{0}}-1\right)\left\|x_{n_{0}}-p\right\|^{2}, i=1,2$ and $a_{0}=\max \left\{a_{0,1}, a_{0,2}\right\}$. Then from (2), we obtain that $\left\|x_{n_{0}}-p\right\| \leq \phi^{-1}\left(a_{0}\right)$.

CLAIM. $\left\|x_{n}-p\right\| \leq 2 \phi^{-1}\left(a_{0}\right) \forall n \geq n_{0}$.
The proof is by induction. Clearly, the claim holds for $n=n_{0}$. Suppose it holds for some $n \geq n_{0}$, i.e., $\left\|x_{n}-p\right\| \leq 2 \phi^{-1}\left(a_{0}\right)$. We prove that $\left\|x_{n+1}-p\right\| \leq$ $2 \phi^{-1}\left(a_{0}\right)$. Suppose that this is not true. Then $\left\|x_{n+1}-p\right\|>2 \phi^{-1}\left(a_{0}\right)$, so that $\phi\left(\left\|x_{n+1}-p\right\|\right)>\phi\left(2 \phi^{-1}\left(a_{0}\right)\right)$. Using the recursion formula (1), we have the following estimates

$$
\begin{aligned}
&\left\|x_{n}-T_{2}^{n} x_{n}\right\| \leq\left\|x_{n}-p\right\|+\left\|T_{2}^{n} x_{n}-p\right\| \\
& \leq(1+L)\left\|x_{n}-p\right\| \\
& \leq 2(1+L) \phi^{-1}\left(a_{0}\right), \\
&\left\|y_{n}-p\right\|=\left\|\left(1-\beta_{n}\right) x_{n}+\beta_{n} T_{2}^{n} x_{n}-p\right\| \\
&=\left\|x_{n}-p-\beta_{n}\left(x_{n}-T_{2}^{n} x_{n}\right)\right\| \\
& \leq\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-T_{2}^{n} x_{n}\right\| \\
& \leq 2 \phi^{-1}\left(a_{0}\right)+2(1+L) \phi^{-1}\left(a_{0}\right) \beta_{n} \\
& \leq 3 \phi^{-1}\left(a_{0}\right), \\
&\left\|x_{n}-T_{1}^{n} y_{n}\right\| \leq\left\|x_{n}-p\right\|+\left\|T_{1}^{n} y_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|+L\left\|y_{n}-p\right\| \\
& \leq 2 \phi^{-1}\left(a_{0}\right)+3 L \phi^{-1}\left(a_{0}\right) \\
&=(2+3 L) \phi^{-1}\left(a_{0}\right),
\end{aligned}
$$

$$
\begin{align*}
\left\|x_{n+1}-p\right\| & =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{1}^{n} y_{n}-p\right\| \\
& =\left\|x_{n}-p-\alpha_{n}\left(x_{n}-T_{1}^{n} y_{n}\right)\right\| \\
& \leq\left\|x_{n}-p\right\|+\alpha_{n}\left\|x_{n}-T_{1}^{n} y_{n}\right\| \\
& \leq 2 \phi^{-1}\left(a_{0}\right)+(2+3 L) \phi^{-1}\left(a_{0}\right) \alpha_{n} \\
& \leq 3 \phi^{-1}\left(a_{0}\right) . \tag{3}
\end{align*}
$$

With these estimates and again using the recursion formula (1), we obtain by Lemma 2.1 that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{1}^{n} y_{n}-p\right\|^{2} \\
= & \left\|x_{n}-p-\alpha_{n}\left(x_{n}-T_{1}^{n} y_{n}\right)\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-2 \alpha_{n}\left\langle x_{n}-T_{1}^{n} y_{n}, j\left(x_{n+1}-p\right)\right\rangle \\
= & \left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle T_{1}^{n} x_{n+1}-p, j\left(x_{n+1}-p\right)\right\rangle \\
& -2 \alpha_{n}\left\langle x_{n+1}-p, j\left(x_{n+1}-p\right)\right\rangle \\
& +2 \alpha_{n}\left\langle T_{1}^{n} y_{n}-T_{1}^{n} x_{n+1}, j\left(x_{n+1}-p\right)\right\rangle \\
& +2 \alpha_{n}\left\langle x_{n+1}-x_{n}, j\left(x_{n+1}-p\right)\right\rangle \\
\leq & \left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\left(k_{n}\left\|x_{n+1}-p\right\|^{2}-\phi\left(\left\|x_{n+1}-p\right\|\right)\right) \\
& -2 \alpha_{n}\left\|x_{n+1}-p\right\|^{2}+2 \alpha_{n}\left\|T_{1}^{n} y_{n}-T_{1}^{n} x_{n+1}\right\|\left\|x_{n+1}-p\right\| \\
& +2 \alpha_{n}\left\|x_{n+1}-x_{n}\right\|\left\|x_{n+1}-p\right\| \\
\leq & \left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\left(k_{n}-1\right)\left\|x_{n+1}-p\right\|^{2}-2 \alpha_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
& +2 \alpha_{n} L\left\|y_{n}-x_{n+1}\right\|\left\|x_{n+1}-p\right\| \\
& +2 \alpha_{n}\left\|x_{n+1}-x_{n}\right\|\left\|x_{n+1}-p\right\| \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
\left\|y_{n}-x_{n+1}\right\| & \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n+1}-x_{n}\right\| \\
& =\beta_{n}\left\|x_{n}-T_{2}^{n} x_{n}\right\|+\alpha_{n}\left\|x_{n}-T_{1}^{n} y_{n}\right\| \\
& \leq 2(1+L) \phi^{-1}\left(a_{0}\right) \beta_{n}+(2+3 L) \phi^{-1}\left(a_{0}\right) \alpha_{n} . \tag{5}
\end{align*}
$$

Substituting (5) in (4), we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
& +2 \alpha_{n}\left(k_{n}-1\right)\left\|x_{n+1}-p\right\|^{2} \\
& +4 L(1+L) \phi^{-1}\left(a_{0}\right) \alpha_{n} \beta_{n}\left\|x_{n+1}-p\right\| \\
& +2(1+L)(2+3 L) \phi^{-1}\left(a_{0}\right) \alpha_{n}^{2}\left\|x_{n+1}-p\right\| \tag{6}\\
\leq & \left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \phi\left(2 \phi^{-1}\left(a_{0}\right)\right) \\
& +18\left[\phi^{-1}\left(a_{0}\right)\right]^{2} \alpha_{n}\left(k_{n}-1\right)
\end{align*}
$$

$$
\begin{aligned}
& +12 L(1+L)\left[\phi^{-1}\left(a_{0}\right)\right]^{2} \alpha_{n} \beta_{n} \\
& +6(1+L)(2+3 L)\left[\phi^{-1}\left(a_{0}\right)\right]^{2} \alpha_{n}^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \phi\left(2 \phi^{-1}\left(a_{0}\right)\right)+\alpha_{n} \phi\left(2 \phi^{-1}\left(a_{0}\right)\right) \\
= & \left\|x_{n}-p\right\|^{2}-\alpha_{n} \phi\left(2 \phi^{-1}\left(a_{0}\right)\right) .
\end{aligned}
$$

Thus

$$
\alpha_{n} \phi\left(2 \phi^{-1}\left(a_{0}\right)\right) \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2},
$$

implies

$$
\begin{aligned}
\phi\left(2 \phi^{-1}\left(a_{0}\right)\right) \sum_{n=n_{0}}^{j} \alpha_{n} & \leq \sum_{n=n_{0}}^{j}\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \\
& =\left\|x_{n_{0}}-p\right\|^{2},
\end{aligned}
$$

so that as $j \rightarrow \infty$ we have

$$
\phi\left(2 \phi^{-1}\left(a_{0}\right)\right) \sum_{n=n_{0}}^{\infty} \alpha_{n} \leq\left\|x_{n_{0}}-p\right\|^{2}<\infty
$$

which implies that $\sum \alpha_{n}<\infty$, a contradiction. Hence, $\left\|x_{n+1}-p\right\| \leq 2 \phi^{-1}\left(a_{0}\right)$; thus $\left\{x_{n}\right\}$ is bounded.

Now from (6), we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
& +8\left[\phi^{-1}\left(a_{0}\right)\right]^{2} \alpha_{n}\left(k_{n}-1\right) \\
& +8 L(1+L)\left[\phi^{-1}\left(a_{0}\right)\right]^{2} \alpha_{n} \beta_{n} \\
& +4(1+L)(2+3 L)\left[\phi^{-1}\left(a_{0}\right)\right]^{2} \alpha_{n}^{2} \\
= & \left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
& +4\left[\phi^{-1}\left(a_{0}\right)\right]^{2}\left[2\left(k_{n}-1\right)+(1+L)\left[2 L \beta_{n}+(2+3 L) \alpha_{n}\right]\right] \alpha_{n} . \tag{7}
\end{align*}
$$

Denote

$$
\begin{aligned}
\theta_{n} & =\left\|x_{n}-p\right\|, \\
\lambda_{n} & =2 \alpha_{n}, \\
\sigma_{n} & =4\left[\phi^{-1}\left(a_{0}\right)\right]^{2}\left[2\left(k_{n}-1\right)+(1+L)\left[2 L \beta_{n}+(2+3 L) \alpha_{n}\right]\right] \alpha_{n} .
\end{aligned}
$$

Condition $\lim _{n \rightarrow \infty} \alpha_{n}=0$ ensures the existence of a rank $n_{0} \in \mathbf{N}$ such that $\lambda_{n}=2 \alpha_{n} \leq 1$, for all $n \geq n_{0}$. Now with the help of $\sum_{n \geq 0} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=0=$
$\lim _{n \rightarrow \infty} \beta_{n}, \lim _{n \rightarrow \infty} k_{n}=1$ and Lemma 2.2, we obtain from (7) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0
$$

completing the proof.
Remark 2.4 1. Let $\alpha_{n}=\frac{1}{n^{\sigma}} ; 0<\sigma<\frac{1}{2}$, then $\sum \alpha_{n}=\infty$, but also $\sum \alpha_{n}^{2}=\infty$. Hence the results of Theorems 1.9-1.10 are not true in general.
2. The same argument can be applied for the results of Chang et al. [1] and of Chidume and Chidume [5].

3 Open Problem

We propose that the results of Theorem 2.3 to be extended for the case of three mappings.

References

[1] S. S. Chang et al., Some results for uniformly L-Lipschitzian mappings in Banach spaces, Applied Mathematics Letters, doi:10.1016/j.aml.2008.02.016.
[2] C. E. Chidume, Iterative algorithm for nonexpansive mappings and some of their generalizations, Nonlinear Anal. (to V. Lakshmikantham on his 80th birthday) 1,2 (2003) 383-429.
[3] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, in press.
[4] C. E. Chidume, C. O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasiaccretive operators, Proc. Amer. Math. Soc., in press.
[5] C. E. Chidume, C. O. Chidume, Convergence theorem for fixed points of uniformly continuous generalized phihemicontractive mappings, J. Math. Anal. Appl. 303 (2005) 545-554.
[6] K. Goebel,W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171-174.
[7] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
[8] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 1945 (1995) 114-125.
[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
[10] E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl. 321 (2006), 722-728.
[11] B. E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290.
[12] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407-413.
[13] Y. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998) 98-101.

