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Abstract 

      
The present paper is devoted to an analytical investigation of a prey-

predator model with a  cover linearly varying with the size of prey is 
provided to protect it from the predator and the predator is  provided with 
an alternative food in addition to the prey. The model is characterized by a 
couple of first order non-linear ordinary differential equations. All the five 
equilibrium points of the model are identified and stability criteria are 
discussed. Further exact solutions of perturbed equations have been derived.  
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1      Introduction 

In the classical Lotka - Volterra Prey - Predator model, there is no protection for 
Prey from the Predator and Predator sustains on the Prey alone. When the Prey 
population falls below a certain level, the predator would migrate to another 
region in search of food and return only when the Prey-Population rises to the 
required level. Some of the prey-predator models were discussed by Kapur [1], 
Michale Olinnck [2], May [3], Varma [4] Colinvaux [5], Freedman [6], Narayan 
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[7]. Inspired by that, we discussed a more general model by taking an alternative 
food for the predator, and a cover linearly varying with the population of the prey. 
The model is characterized by a couple of first order ordinary differential 
equations. All the five equilibrium points of the model are identified and stability 
criteria are discussed..  

   
2      Basic Equations 
 

The model equations for a two species Prey - Predator system is given by the 
following system of first order ordinary differential equations employing the 
following notation: 

1N  and 2N are the populations of the prey and predator with the natural growth 
rates 1a and 2a respectively, 

11α is rate of decrease of the prey due to insufficient food, 

12α is rate of decrease of the prey due to inhibition by the predator, 

21α  is rate of increase of the predator due to successful attacks on the prey, 

22α  is rate of decrease of the predator due to insufficient food other than the prey,  
In addition to them  

1a bN+  is the prey population provided with a cover of safety with constant 
values for a and b, from the attacks of  the predator, 

 
21

1 1 11 1 12 1 1 2[ ( )]dN a N N N a bN N
dt

α α= − − − +     (2.1) 

22
2 2 22 2 21 1 1 2[ ( )]

dN
a N N N a bN N

dt
α α= − + − +                     (2.2) 

 
3      Equilibrium states 
 

The system under investigation has five equilibrium states. They are  
I. The fully washed out state 1 20; 0N N= =                          (3.1) 
II. The state in which only the prey survives and the predators are washed out  

1
1

11

a
N

α
= ; 2 0N =                                                                          (3.2)     

III. The state in witch both the prey and the predators coexist 

1 2
pN
q

= ; 21
2

22

2 (1 )
2

qr b p
N

q
α
α

+ −
=                                                        (3.3)                    

and this can exist only when 2
12 21 24 ( )p qa a aα α −=    (3.4) 

IV. The state in witch both the prey and the predators co-exists 
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p q
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21 12
2
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(1 )[ ]pqr b p a qr
N

pq
α α

α
+ − +

=      (3.5)      

V. The state in witch both the prey and the predators co-exists  
12 21 2

1
( )a a a

N
p

α α −
=  ; 12 21

2
22

(1 )p r a r b
N

p
α α
α

− −
=             (3.6)  

The equilibrium points IV & V i.e. the equations (3.5) & (3.6) exists only  when 
2p > 12 21 24 ( )qa a aα α −       (3.7) 

where 
1 22 12 2 21(1 )( 2 )p a b a aα α α−= − − ; 2

11 22 12 21(1 )q bα α α α= + − ; 2 21r a aα= −     (3.8) 
The states III, IV and V are called the “the normal study states”. 
  

4      The stability of the equilibrium states 
 

     Let 1 2( , )TN N N=    =  N U+                                                    (4.1) 
where U = 1 2( , )Tu u is the perturbation over the equilibrium state 

1 2( , )TN N N= .The basic equations (2.1) and (2.2) are quasi-linearized to obtain 
the equations for the perturbed state. 

    dU AU
dt

=          (4.2) 

where 

 1 2 11 11 12 12 12

2 221 22

2 (1 ) (1 )

(1 )

a N b N a b N
A

b N N

α α α α

α α

⎡ ⎤− − − − −
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
    (4.3)  

The characteristic equation for the system is  [ ] 0det A Iλ− =      (4.4) 
The equilibrium state is stable, if both the roots of the equation (4.4) are negative 
in case they are real or the roots have negative real parts in case they are complex. 
 

4. 1    Stability of the equilibrium state I 
 

 The trajectories for both the washed out state are 

  
21

12 20 1
10

2 21 1 2 21 1

)
{ }

2 20
1 12

(a - a tu e a u a tu = a u e
a a a a a a

α α
α

α α
+ −

− − − −
                  (4.5) 

  ( 2 21
2 20

)a a tu u e α−=                                                                                                            (4.6) 
where 10u , 20u are the initial values of 1 2,u u . 
The solution curves are illustrated in figures 1 to 4 

Case 1: In this case the predator dominates the prey in natural growth as well as 
in its initial population strength.  i.e. 2 21>a aα  and 10u < 20u  as shown in Fig.1 
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Case 2: In this case the prey dominates the predator in natural growth as well as 
in its initial population strength.  i.e. 2 21<a aα  and 10u > 20u  as shown in Fig. 2 
Case 3: The prey dominates the predator in natural growth rate but its initial 
strength is less than that of the predator. i.e. 10u < 20u  and 2 21>a aα ;a1>a2  In this 
case, the predator outnumber the prey till the time-instant = *t t  after that the prey 
outnumber the predator. 

10 2 21 11 21 20

2 21 1 20 2 21 11 21 20

( - - )1 = * = 
( - - ) ( - - )

u a a a a ut t
a a a u a a a a u

α α
α α α

⎛ ⎞−
⎜ ⎟−⎝ ⎠

             (4.7) 

Case 4: The prey dominates the predator in natural growth rate but its initial 
strength is less than that of the predator. i.e. 10u < 20u  and 2 21<a aα  In this case, the 
predator out number the prey till the time-instant = *t t given by the equation 
(4.7) after that the prey outnumber the predator.  
 
4. 2   Trajectories of perturbed species for equilibrium state I 
 
The trajectories in the 1 2u u−  plane are given by  

3
2 3 2

1
3 1

pcu q u
u

p
−

=
−

                  (4.8) 

where 1
3

2 21

a
p

a aα
=

−
 ;       21

3
2 21

a
q

a a
α
α

=
−

               (4.9) 

and c is an arbitrary constant. These are illustrated in Fig.5. 
 
 
 
4.3    Stability of the equilibrium state II 
 

The trajectories for the predator washed out state are    
Case A: When 2 0 1d b= ⇒ =        

 20 2011 12 11 12 1
1 10

11 1 11 1

- t= -
u ua a au u e
a a

α α α α
α α

⎡ ⎤⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪+ ⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭⎣ ⎦

                       (4.10) 

and 
2 20u u=                            (4.11) 

The results are illustrated in figures 6 & 7 
CaseA1: When the initial strength of prey is more than the predator. i.e.  u10>u20, 
the prey outnumber the predator till the time-instant = *t t  after that the predator 

outnumber the prey. In the course of time 1u is asymptotic to 11 12 20
1

1 11

*
a u

u
a

α α
α

=  

which is illustrated in Fig.6 
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1 11 12
20 20
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1*

a
a u u

t t ln
a a

u u

α α
α

α α
α

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟

⎪ ⎪⎝ ⎠= = ⎨ ⎬
⎛ ⎞⎪ ⎪− ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

              (4.12) 

CaseA2: The initial strength of the predator is more than the prey, i.e.u10<u20, the 
predator outnumber the prey and in the course of time 1u is asymptotic to 

 11 12 20
1

1 11

*
a u

u
a

α α
α

=  as is illustrated in Fig.7. 

Case B: When 2 0 1d b> ⇒ <  

2
 20 2011 12 1 12 11 12 1 12 1

1 10
11 2 1 11 2 1

(1 ) (1 ) - t= -
( ) ( )

d tu e ua a b a a b au u e
d a d a

α α α α α α
α α

⎡ ⎤⎧ ⎫⎡ ⎤ ⎛ ⎞− − − −⎪ ⎪+ ⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥ + +⎪ ⎪⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭⎣ ⎦
 

                      

(4.13) 2 2 20 = d tu u e                                   (4.14) 

where  1 21
2

11

(1 )a b
d

α
α

−
=         (4.15) 

The solution curves are illustrated in the figures 8 to 11 
Case B1: The predator dominates the prey in natural growth rate but its initial 
strength is less than that of the prey. i.e.  u10>u20 .  In this case, the prey outnumber 
the predator till the time-instant = *t t given by equation (4.16) after that the 
predator outnumber the prey as shown in Fig. 8 

11 12 1 12
1 2 10 20

11

1 11 12 1 12
1 2

11

(1 )
( )

1*
(1 )

a a b
a d u u

t t ln
a a a b

a d

α α α
α

α α α
α

⎧ ⎫⎛ ⎞− −
+ −⎪ ⎪⎜ ⎟

⎪ ⎪⎝ ⎠= = ⎨ ⎬
⎛ ⎞− −⎪ ⎪+ − ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

                  (4.16) 

Case B2: The predator dominates the prey in natural growth as well as in its initial 
population strength. i.e. u20>u10; d2>a1 as shown in Fig. 9 
Case B3: The predator dominates the prey in natural growth as well as in its initial 
population strength and d2<a1. i.e.u20>u10 and d2<a1 which is illustrated in Fig. 10 
Case B4: Initially the prey dominates and d2<a1 i.e. u20<u10. In this case, the prey 
outnumber the predator till the time-instant t* given by the equation (4.16), after 
which the predator outnumber the prey and grows unboundedly while the prey 
asymptotically approaches to the equilibrium value 1N  given in (3.2), as shown in 
Fig. 11. 
Case C: 2 0 1d b< ⇒ > the trajectories are as same in Case B, but the state is 
stable 
The solution curves are illustrated in the figures 12 & 13. 
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Case C1 The predator dominates the prey in natural growth as well as in its initial 
population strength.  i.e. u10<u20 However both converge asymptotically to the 
equilibrium point 1 2( , )N N given by (3.2). Hence the equilibrium point is stable 
as shown in Fig. 12 
Case C2: The prey dominates the predator in its initial strength. i.e. u10>u20. In 
this case 1 ( )u t = 2 ( )u t is possible at time t* given by (4.16) as shown in Fig. 13. 
Hence the equilibrium point is stable. 

   
4.4     Trajectories of perturbed species for equilibrium state II 
 
The trajectories in the 1 2-u u plane are given by 

1u = 
2

2 2 2

2
1

p
cu q u

p
−

−
                       (4.17) 

where  

2
p = 1 11

1 21 (1 )
a

a b
α

α
−

−
;  

2
q = 11 22 1 12

1 21

(1 )
(1 )

a a b
a b

α α α
α
− −

−
                 (4.18)     

and c = arbitrary constant. The solution curves are illustrated in Fig.14. 
 

4.5    Stability of the equilibrium state III  
 

The trajectories for the co-existence state are    
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⎡ ⎤+ + − −
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(4.20) 

The solution curves are illustrated in figures 15 & 16 
Case 1: The prey dominates the predator in natural growth as well as in its initial 
population strength. i.e. u10>u20,  which is illustrated in Fig.15. 
Case 2: The prey dominates the predator in natural growth rate but its initial 
strength is less than that of the predator. i.e. u10<u20. In this case, the predator 
outnumber the prey till the time-instant t*, after which the prey outnumber the 
predator as shown in Fig.17. 

2 1 1 20 2 1 20 1 10

11 2 1 1 20 1 1 20 1 10

( ) ( )1*
( ) ( )

D B u A u C u
t t ln

D B u A u B u
λ λ

λ λ λ λ
⎧ ⎫− + − − −

= = ⎨ ⎬− − + − − −⎩ ⎭
           (4.21) 

where   
  1 1 11 121 22 (1 )A a N b Nα α= − − − ; 1 12 12 1(1 )B a b Nα α= − − ; 

1 21 2(1 )C b Nα= − ;  1 22 2D Nα= −              (4.22) 

Case3: When 2
1 1 1 1 1 1( ) 4( )A D A D B C+ < − ,                          (4.23) 

the roots are complex with negative real part. Hence the equilibrium state is stable. 
The solution curves are illustrated in Fig.17 
 
4.6   Trajectories of perturbed species for equilibrium state III 
 
The trajectories in the u1-u2 plane are given by 

2 212 1 22 12 2 222 2

2 1 1 22 2
2 1 2

1 1

(1 ) (1 )b N v N b N v N
v v v vu u

cu v v
u u

α α α α⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− −
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (4.24) 

where 1 2&v v  are roots of the equation  

( )2
11 11 12 22 12 122 2 1212

(1 ) 2 (1 ) (1 )b N v a N b N N v a b Nα α α α α α− − − − − + − − − =0   (4.25) 

When 2
1 1 1 1 1 1( ) 4( )A D A D B C+ < − , the roots are complex with negative real part 

the curve is a concentric spiral as shown in Fig 18 Hence the equilibrium state is 
stable. 
One can easily find the similarities in the results for equilibrium states IV & V as 
observed in equilibrium state III. 
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5.      Conclusions  
 
On rearranging, the basic equations under investigation can be written as 

 { }1
1 1 11 1 12 2 12 2 (1 )dN N a N b N aN

dt
α α α= − − − +           (5.1) 

 { }2
2 2 22 2 21 1( ) (1 )dN N a a N b N

dt
α α= − − + −              (5.2) 

Case I: When 0 0a and b= = , the basic equations are reduced to  
 

 { }1
1 1 11 1 12 2

dN N a N N
dt

α α= − −            (5.3) 

 { }2
2 2 22 2 21 1

dN N a N N
dt

α α= − +            (5.4) 

i.e. the model reduced to a Prey- Predator model with a limited alternative food 
for the Predator.  
This system will have four equilibrium states. Out of these four, three states are 
unstable and the co-existence state is stable. Narayan & Ramacharyulu [8] 
discussed this model in detail. 
 
Case II: When 0 0a and b= ≠ , the basic equations under investigation are 
reduced to 

 { }1
1 1 11 1 12 2(1 )dN N a N b N

dt
α α= − − −           (5.5) 

 { }2
2 2 22 2 21 1(1 )dN N a N b N

dt
α α= − + −          (5.6) 

 
i.e. the model reduced to a Prey- Predator model with a limited cover proportional 
to the population of the prey and the predator is provided with an alternative food.  
 
This system will also have four equilibrium states. Out of these four, three states 
are unstable and the normal steady state is stable. Narayan & Ramacharyulu [9] 
discussed this model in detail. 
 
Case III: When 0 0a and b≠ = , the model equations under consideration are 
reduced to 
 

 { }1
1 1 11 1 12 2 12 2 dN N a N N aN

dt
α α α= − − +        (5.67) 

 { }2
2 2 22 2 21 1( )dN N a a N N

dt
α α= − − + ,         (5.8) 

which does not represent a Prey- Predator model.  
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6      Trajectories 
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7       Future Works (Open Problems) 
 

The present paper is devoted to an analytical   investigation of  a Prey-Predator model 
with a cover linearly varying with the population of prey, to protect it from the attacks of 
the predator and the predator is provided with an alternative food in addition to the prey.  

Prey- Predator models can be studied by introducing a constant cover for the prey, 
harvesting of both the species, time delay for interaction etc. One can develop a Prey-
Predator model by introducing age structured population.  

In the present model only one normal steady state is studied and it can be extended by 
comparing the “three co-existence equilibrium states”.  By taking numerical illustration, 
one can examine which normal steady state is more stable than the others. Also 
harvesting may be  introduced in this problem. Lypunov’s function can be constructed to 
study the global stability of the model, and for each equilibrium state, we may develop a 
threshold theorem and the results can be analyzed. The stability may be studied by 
Kolmogrove’s limit cycles.  
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