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Abstract

Clustering is an essential step in data mining. The classi-
cal methods are based on metric criteria but, the use of mix-
ture model in clustering is now a classical and powerful ap-
proach. Typically, the data that arises in these applications
is arranged as a two-way contingency. In this paper, we em-
bed the block clustering problem in the mixture approach. We
propose a multinomial block mixture model and adopting the
classification maximum likelihood principle we perform a new
algorithm.
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1 Introduction

Cluster analysis is an important tool in a variety of scientifique areas such
as pattern recognition, information retrieval, microarray, data mining and so
forth. Although many clustering procedures such as hierarchical clustering, k-
means or self-organizing maps, aim to construct an optimal partition of objects
or sometimes of variables, there are other methods, called block clustering
methods, which consider simultaneously the two sets and organize the data
into homogeneous blocks.

Many clustering methods commonly used in practice are based on a dis-
tance or a dissimilarity meausure and to cluster the rows and the columns of
a contingency table we may use the CROKI2 algorithm (Govaert [5]), that is
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to say an adapted version of k-means based on the chi-square distance. In-
fortunately, unlike the standard k-means algorithm, this algorithm does not
correspond to the classification approach associated with a mixture model. To
cluster the rows or the columns of a contingency table, we here propose using
the mixture model algorithm associated with multinomial laws.

2 Contingency table

2.1 Notations

X(I, J(= (xj
i ) will denote the initial contingency table defined on the two sets

I and J of sizes n and p. The usual terminology is used :
• s =

∑
i∈I

∑
j∈J

xj
i

• F is the frequency table (fij =
xj

i

s
, i ∈ I and j ∈ J)

fij is an estimation of probability that an object has simultaneously the
category i and the category j

• fi. and f.j are the marginal frequencies :
∀ i ∈ I, fi. =

∑
i∈I

fij and ∀ j ∈ J , f.j =
∑
j∈J

fij

2.2 The summary table

The summary table associated with the two partitions must also be a contin-
gency table. It is obtained by regrouping the rows and columns according to
the partitions P and Q in the following manner : If P = (P1, P2, ..., PK)
is a partition of I into K clusters and Q = (Q1, Q2, ..., QM) a partition
of J into M clusters, it becomes possible to define a new contingency ta-
ble by summing the elements of the initial contingency table corresponding
to each pair of clusters (Pk, Q

l), this table denoted T (P, Q) is defined by :
T (k, l) =

∑
i∈Pk

∑
j∈Ql

xi
j = xl

k ∀ k = 1, ..., K and l = 1, ...,M

2.3 The objective function

The chosen information measure we would like to preserve is the χ2 of contin-
gency (or Pearson chi-square statistic) which measures the dependence between
I and J by contingency χ2 :

χ2(I; J) = s
p∑

j=1

n∑
i=1

(fij−fi.f.j)
2

fi.f.j

This measure usually provides statistical evidence of a significant associa-
tion, or dependence between rows and columns of table.

The χ2 information associated to a table T (k, l) is :
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χ2(P ; Q) = s
K∑

k=1

M∑
l=1

(fkl−fk.f.l)
2

fk.f.l

where fkl =
∑

i∈Pk

∑
j∈Qm

fij , fk. =
∑

i∈Pk

fij, , f.l=
∑

j∈Qm
fij

3 The mixture model approach

Here we take up Bencheikh [1]and[2] representation. The starting data table
X of (n, p) dimension, is considered as a sample T = I × J of n × p size
(where I set constitutes a sample of n size from Ω population, the same for J
set constitutes a sample of p size from Ω′ population) of aleatory variable Z
with values in R whose probability law admits the distribution function :

p(x) =
K∑

k=1

M∑
l=1

pl
k p(x, λl

k)

∀ x ∈ R ∀ k = 1, ..., K ∀ l = 1, ...,M 0 ≤ pl
k ≤ 1 et

K∑
k=1

M∑
l=1

pl
k = 1

where p(., λl
k) is a distribution function on R belonging to a parameterized

family of distribution function depending on the λ parameter, pl
k is the proba-

bility that a point of the sample follows the distribution law p(., λl
k). One will

call these pl
k the proportitions of the mixture.

The problem arising is the estimate of the numbers K and M of components
of the mixture and the unknown parameters ql

k =
(
pl

k, λ
l
k

)
; k = 1, ..., K and

l = 1, ...,M within sight of the sample T = I × J .

In the approach classification ( Bencheikh [1], Celeux [3] , Govaert [4],
Schroeder [6], Scott and Symons [7]), one replaces the initial problem of esti-
mate by the following problem :

To seek a partition P × Q =
{
Pk ×Ql ; k = 1, ..., K and l = 1, ...,M

}
,

K and M being supposed known, such as each class Pk ×Ql is assimilable to
a subsample which follows a law p(., λl

k).

It is then a question of maximizing the classification likelihood criterion

V C(P ×Q,H) =
K∑

k=1

M∑
l=1

log L(Pk ×Ql, λl
k)

where H is the K.M − times ( λl
k, k = 1, ..., K and l = 1, ...,M) and

L(Pk × Ql, λl
k) is the likelihood of subsample Pk × Ql who follows the law

p(., λl
k).
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4 Contingency table and multinomial laws

It is supposed that the data of the table T (k, l) forms a sample of size K.M
and comes from only one law multinomial of parameter H.
H =

{
λl

k, k = 1, ..., K and l = 1, ...,M
}
.

The likelihood associated with this sample is

L(x1
1, ..., x

l
k, ..., x

M
K ; λ1

1, ..., λ
l
k, ..., λ

M
K ) = s!

K∏
k=1

M∏
l=1

(λl
k)

xl
k

(xl
k
)!

Let us pose λl
k = λk.λ

l with
∑

k = 1Kλk = 1 and
M∑
l=1

λl = 1

V C(P ×Q,H) = log L(x1
1, ..., x

l
k, ..., x

M
K ; λ1

1, ..., λ
l
k, ..., λ

M
K )

= log s!
K∏

k=1

M∏
l=1

(λl
k)

xl
k

(xl
k
)!

= log s!+
K∑

k=1

M∑
l=1

[
xl

k log λk + xl
k log λl − log(xl

k)!
]

by optimizing the criterion V C(P × Q, H) and taking into account the

constraints (
K∑

k=1
λk = 1 and

M∑
l=1

λl = 1) we obtain : λk = xk

s
and λl = xl

s

where xk =
M∑
l=1

xl
k and xl =

K∑
k=1

xl
k

If all the xl
k are too large, calculations of approximations allow to write :

p(x, λ) = s!
K∏

k=1

M∏
l=1

(λl
k)

xl
k

(xl
k
)!
≈ cte exp−

K∑
k=1

M∑
l=1

(xl
k−sλl

k)2

sλl
k

.

The maximization of V C(P × Q,H) thus returns to the minimization of

criterion C(P ×Q) =
K∑

k=1

M∑
l=1

(sxl
k−xkxl)2

sxkxl

5 Conclusion

This last, corresponds to the criterion of the χ2 listed in the paragraph 2.3
which has been posed without referring to any concept of model. Through
this approach, we established an approximate bond between the multinomial
laws and the χ2 metric. Thus, the χ2 criterion which was suggested within a
purely geometrical framework without referring to any concept of model, has
been interpreted and cleared up by the model approach proposed in this paper.

6 Open Problem

In this work, devoted to a mixture modeling of block clustering algorithms, we
have only considered the classification likelihood approach of mixture model.
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The next step will be to study this problem under the likelihood approach and
to propose an EM algorithm to estimate the parameters of the model.
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[3] G.Celeux, Classification et modèles. Rev statist. Appl, n◦4, p 43-58, 1988.

[4] G. Govaert, Classification binaire et modèles, Rev.Statistique Appliquées
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