On Some Feng Qi Type h-Integral Inequalities

Valmir Krasniqi and Armend Sh. Shabani
Department of Mathematics, University of Prishtina, Prishtinë 10000, Republic of Kosova
e-mail: vali.99@hotmail.com and armend_shabani@hotmail.com

Abstract

In this paper, several Feng Qi type h-integral inequalities are given by using elementary analytic methods in h-Calculus.

Keywords: h-derivative, h-integral, Inequalities.
2000 Mathematics Subject Classification: 33D05, 26D10, 26D15, 81P99.

1 Introduction

In [7] the following problem was posed: Under what conditions does the inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \geq\left[\int_{a}^{b} f(x) d x\right]^{t-1} \tag{1}
\end{equation*}
$$

holds for $t>1$?
In [1] it has been proved the following: Let $[a, b]$ be a closed interval of \mathbb{R} and let $p \geq 1$ be a real number. For any real continuous function f on $[a, b]$, differentiable on $] a, b\left[\right.$, such that $f(a) \geq 0$, and $f^{\prime}(x) \geq p$ for all $\left.x \in\right] a, b[$, we have that

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{p+2} d x \geq \frac{1}{(b-a)^{p-1}}\left[\int_{a}^{b} f(x) d x\right]^{p+1} \tag{2}
\end{equation*}
$$

In [2] it has been obtained the q-analogue of the previous result as follows. Let $p \geq 1$ be a real number and f be a function defined on $[a, b]_{q}$ (see below for the definitions and notation), such that $f(a) \geq 0$, and $D_{q} f(x) \geq p$ for all $x \in(a, b]_{q}$. Then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{p+2} d_{q} x \geq \frac{1}{(b-a)^{p-1}}\left[\int_{a}^{b} f(q x) d_{q} x\right]^{p+1} . \tag{3}
\end{equation*}
$$

The aim of this paper is to extend this result. We also note that in [6], Theorems 1 and 2, are valid only if $\beta \geq 2$ and not $\beta \geq 1$ as it is stated there. This paper will also provide some more sufficient conditions such that inequalities presented in [6] are valid.

2 Notations and preliminaries

For the convenience of the reader, we provide a summary of notations and definitions used in this paper. For details, one may refer to [3] and [5].

Let $h \neq 0$. A quantum derivative of a function f, that is characterized by an additive parameter h, is the h derivative, denoted by $D_{h} f$ and given by

$$
\begin{equation*}
D_{h} f(x)=\frac{f(x+h)-f(x)}{h} \tag{4}
\end{equation*}
$$

One can easily verify the product and quotient rules for h-differentiation.

$$
\begin{align*}
D_{h}(f(x) g(x)) & =f(x) D_{h} g(x)+g(x+h) D_{h} f(x) . \tag{5}\\
D_{h}\left(\frac{f(x)}{g(x)}\right) & =\frac{g(x) D_{h} f(x)-f(x) D_{h} g(x)}{g(x) g(x+h)} . \tag{6}
\end{align*}
$$

If $f^{\prime}(0)$ exists, then $D_{h} f(0)=f^{\prime}(0)$. As h tends to 0 , the h-derivative reduces to the usual derivative.

If $b-a \in h \mathbb{Z}$, the definite h-integral is defined by (see [5])

$$
\int_{a}^{b} f(x) d_{h} x= \begin{cases}h(f(a)+f(a+h)+\ldots+f(b-h)) & \text { if } a<b \tag{7}\\ 0 & \text { if } a=b \\ -h(f(b)+f(b+h)+\ldots+f(a-h)) & \text { if } a>b\end{cases}
$$

From the above definition, one can see that the definite h-integral is a Riemann sum of f on the interval $[a, b]$, which is partitioned into subintervals of equal width.

The following Theorem, whose proof can be found in [5], justifies (7) as an appropriate definition for the h-integral.

Theorem 1 (Fundamental Theorem of h-calculus) If F is an h-antiderivative of f and $b-a \in h \mathbb{Z}$ then

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{h}(x)=F(b)-F(a) . \tag{8}
\end{equation*}
$$

Applying Theorem 1 to $D_{h}(f(x) g(x))$ and using (5), one obtains the h analogue of integration by parts.

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{h} g(x)=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g(x+h) d_{h} f(x) . \tag{9}
\end{equation*}
$$

For any function f one has

$$
\begin{equation*}
D_{h}\left(\int_{a}^{x} f(t) d_{h} t\right)=f(x) . \tag{10}
\end{equation*}
$$

3 Main Results

In order to prove our main results we need the following Lemma, which is h-analogue of Lemma 3.1 from [2].

Lemma 2 Let $p \geq 1$ and g be a non-negative, increasing function on $[a, b]$. Then

$$
\begin{equation*}
p g^{p-1}(x) D_{h} g(x) \leq D_{h}\left[g^{p}(x)\right] \leq p g^{p-1}(x+h) D_{h} g(x) . \tag{11}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
D_{h}\left(g^{p}(x)\right)=\frac{g^{p}(x+h)-g^{p}(x)}{h}=\frac{p}{h} \int_{g(x)}^{g(x+h)} t^{p-1} d t . \tag{12}
\end{equation*}
$$

Since g is non-negative increasing function we have:

$$
\begin{equation*}
g^{p-1}(x)(g(x+h)-g(x)) \leq \int_{g(x)}^{g(x+h)} t^{p-1} d t \leq g^{p-1}(x+h)(g(x+h)-g(x)) \tag{13}
\end{equation*}
$$

Therefore by (12) and (13) one has:

$$
p g^{p-1}(x) D_{h} g(x) \leq D_{h}\left[g^{p}(x)\right] \leq p g^{p-1}(x+h) D_{h} g(x)
$$

Theorem 3 If f is a non-negative increasing function on $[a, b]$ and satisfies

$$
\begin{equation*}
f^{t-2}(x) D_{h} f(x) \geq(t-2)(x+2 h-a)^{t-3} f^{t-2}(x+2 h), \tag{14}
\end{equation*}
$$

for $t \geq 3$ and $b-a \in h \mathbb{Z}$ then

$$
\begin{equation*}
\int_{a}^{b} f^{t}(x) d_{h} x \geq\left(\int_{a}^{b} f(x) d_{h} x\right)^{t-1} \tag{15}
\end{equation*}
$$

Proof. For $x \in[a, b]$, let

$$
F(x)=\int_{a}^{x} f^{t}(u) d_{h} u-\left(\int_{a}^{x} f(u) d_{h} u\right)^{t-1}
$$

and $g(x)=\int_{a}^{x} f(u) d_{h} u$. By virtue of Lemma 2, it follows that

$$
\begin{aligned}
D_{h} F(x) & =f^{t}(x)-D_{h}\left(g^{t-1}(x)\right) \\
& \geq f^{t}(x)-(t-1) g^{t-2}(x+h) f(x) \\
& =f(x) F_{1}(x),
\end{aligned}
$$

where $F_{1}(x)=f^{t-1}(x)-(t-1) g^{t-2}(x+h)$. By Lemma 2 we have

$$
\begin{aligned}
D_{h} F_{1}(x) & =D_{h}\left(f^{t-1}(x)\right)-(t-1) D_{h}\left(g^{t-2}(x+h)\right) \\
& \geq(t-1) f^{t-2}(x) D_{h} f(x)-(t-1)(t-2) g^{t-3}(x+2 h) D_{h} g(x+h) \\
& \geq(t-1) f^{t-2}(x) D_{h} f(x)-(t-1)(t-2) g^{t-3}(x+2 h) f(x+h) .
\end{aligned}
$$

Since f is a non-negative and increasing function, then

$$
g(x+2 h)=\int_{a}^{x+2 h} f(u) d_{h} t \leq(x+2 h-a) f(x+2 h),
$$

hence

$$
\begin{aligned}
D_{h} F_{1}(x) & \geq(t-1) f^{t-2}(x) D_{h} f(x)-(t-1)(t-2)(x+2 h-a)^{t-3} f^{t-3}(x+2 h) f(x+h) \\
& \geq(t-1) f^{t-2}(x) D_{h} f(x)-(t-1)(t-2)(x+2 h-a)^{t-3} f^{t-2}(x+2 h) \\
& =(t-1)\left(f^{t-2}(x) D_{h} f(x)-(t-2)(x+2 h-a)^{t-3} f^{t-2}(x+2 h)\right) \geq 0 .
\end{aligned}
$$

We conclude that F_{1} is increasing function. Hence $F_{1}(x) \geq F_{1}(a) \geq 0$ which means that $D_{h} F(x) \geq 0$. So F is increasing and since $F(x) \geq F(a)=0$ the proof is completed.

Theorem 4 Let $p \geq 1$. If f is a non-negative and increasing function on $[a, b]$ and satisfies

$$
\begin{equation*}
f^{p}(x) D_{h} f(x) \geq \frac{p(x+2 h-a)}{(b-a)^{p-1}} \cdot f^{p}(x+2 h) \tag{16}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{a}^{b} f^{p+2}(x) d_{h} x \geq \frac{1}{(b-a)^{p-1}}\left(\int_{a}^{b} f(x) d_{h} x\right)^{p+1} \tag{17}
\end{equation*}
$$

Proof. For $x \in[a, b]$ let

$$
F(x)=\int_{a}^{x} f^{p+2}(u) d_{h} t-\frac{1}{(b-a)^{p-1}}\left(\int_{a}^{x} f(u) d_{h}(u)\right)^{p-1}
$$

and $g(x)=\int_{a}^{x} f(u) d_{h} u$. Utilizing Lemma 2 gives that

$$
\begin{aligned}
D_{h} F(x) & =f^{p+2}(x)-\frac{1}{(b-a)^{p-1}} D_{h}\left(g^{p+1}(x)\right) \\
& \geq f^{p+2}(x)-\frac{p+1}{(b-a)^{p-1}} g^{p}(x+h) f(x) \\
& =f(x) F_{1}(x),
\end{aligned}
$$

where $F_{1}(x)=f^{p+1}(x)-\frac{p+1}{(b-a)^{p-1}} g^{p}(x+h)$. By Lemma 2 we have

$$
\begin{aligned}
D_{h} F_{1}(x) & =D_{h}\left(f^{p+1}(x)\right)-\frac{p+1}{(b-a)^{p-1}} D_{h}\left(g^{p}(x+h)\right) \\
& \geq(p+1) f^{p}(x) D_{h} f(x)-\frac{p+1}{(b-a)^{p-1}} D_{h} g^{p}(x+h) \\
& \geq(p+1) f^{p}(x) D_{h} f(x)-\frac{(p+1) p}{(b-a)^{p-1}} g^{p-1}(x+2 h) f(x+h) .
\end{aligned}
$$

Since f is a non-negative and increasing function, then

$$
g(x+2 h)=\int_{a}^{x+2 h} f(u) d_{h} t \leq(x+2 h-a) f(x+2 h),
$$

hence

$$
\begin{aligned}
D_{h} F_{1}(x) & \geq(p+1) f^{p}(x) D_{h} f(x)-\frac{(p+1) p(x+2 h-a)^{p-1}}{(b-a)^{p-1}} f^{p-1}(x+2 h) f(x+h) \\
& \geq(p+1) f^{p}(x) D_{h} f(x)-\frac{(p+1) p(x+2 h-a)^{p-1}}{(b-a)^{p-1}} f^{p}(x+2 h) \\
& =(p+1)\left(f^{p}(x) D_{h} f(x)-\frac{p(x+2 h-a)^{p-1}}{(b-a)^{p-1}} f^{p}(x+2 h)\right) \geq 0 .
\end{aligned}
$$

We conclude that F_{1} is increasing function. Hence $F_{1}(x) \geq F_{1}(a) \geq 0$ which means that $D_{h} F(x) \geq 0$. So F is increasing and since $F(x) \geq F(a)=0$ the proof is completed.

At the end of the notes, we pose the following problem.
Problem. Under what conditions does the inequality

$$
\int_{a}^{b} f^{t}(x) d_{h} x \geq\left(\int_{a}^{b} x^{t} f(x) d_{h}(x)\right)^{t-1}
$$

holds for $t \geq 1$?

References

[1] M. Akkouchi, Some Integral Inequalities, Divulgaciones Math., 11(2) (2003), 121-125.
[2] K. Brahim, N. Bettaibi and M. Sellemi, On some Feng-Qi type q-integral inequalities, J. Ineq. Pure Appl. Math., 9 (2)(2008), Art. 43; Available online at: http://jipam.vu.edu.au/article.php?sid=975.
[3] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Applications, 96, Cambridge University Press, Cambridge.
[4] F.H. Jackson, On a q-definite integrals, Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193-203.
[5] V. G. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[6] Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal., 3(1) (2009), 115-121.
[7] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 19; Available online at http://jipam.vu.edu.au/article.php?sid=113.

