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Abstract

By constructing an available integral operator and combin-
ing fixed point index theory with properties of Green’s func-
tion, this paper shows the existence of multiple positive solu-
tions for a class of impulsive singular boundary value prob-
lems with integral boundary conditions. Our results extend
some recent work in the literature on boundary value problems
of ordinary differential equations. We illustrate our results
by one example, which can not be handled using the existing
results.
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1 Introduction and Preliminaries

The theory of impulsive differential equations describes processes which experi-
ence a sudden change of their state at certain moments. Processes with such a
character arise naturally and often, especially in phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics. For
an introduction of the basic theory of impulsive differential equations, see
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Lakshmikantham et al. [l], Bainov and Simeonov [2], and Samoilenko and
Perestyuk [3] and the references therein. The theory of impulsive differential
equations has become an important area of investigation in recent years and
is much richer than the corresponding theory of differential equations (see, for
instance, [4-16] and references cited therein).

Moreover, the theory of boundary-value problems with integral boundary
conditions for ordinary differential equations arises in different areas of applied
mathematics and physics. For example, heat conduction, chemical engineering,
underground water flow, thermo-elasticity, and plasma physics can be reduced
to the nonlocal problems with integral boundary conditions. For boundary-
value problems with integral boundary conditions and comments on their im-
portance, we refer the reader to the papers by Gallardo [17], Karakostas and
Tsamatos [18], Lomtatidze and Malaguti [19] and the references therein. For
more information about the general theory of integral equations and their rela-
tion with boundary-value problems we refer to the books by Corduneanu [20]
and Agarwal and O’Regan [21].

On the other hand, recently, boundary-value problems with integral bound-
ary conditions constitute a very interesting and important class of problems.
They include two, three, multipoint and nonlocal boundary-value problems
as special cases. The existence and multiplicity of positive solutions for such
problems have received a great deal of attention in the literature. To identify
a few, we refer the reader to [4-8, 10-12, 16, 18, 22-35] and references therein.

Motivated by the works mentioned above, we intend in this paper to study
the existence of multiple positive solutions for a class of singular boundary
value problems with integral boundary conditions of second order impulsive
differential equations:

−λy
′′
(t) = w(t)f(t, y(t)), t ∈ J, t 6= tk,

∆y
′|t=tk = −Ik(y(tk)), k = 1, 2, . . . ,m,

y(0) = y(1) =
∫ 1

0
g(t)y(t)dt.

(1.1)

Here J = [0, 1], λ > 0, w : (0, 1) → [0, +∞) is continuous, and may be singular
at t = 0 and (or) t = 1, f ∈ C(J×R+, R+), Ik ∈ C(R+, R+), R+ = [0, +∞),
tk(k = 1, 2, . . . ,m) (where m is fixed positive integer) are fixed points with
0 < t1 < t2 < · · · < tk < · · · < tm < 1, ∆y

′∣∣
t=tk

= y
′
(t+k )− y

′
(t−k ), where y

′
(t+k )

and y
′
(t−k ) represent the right-hand limit and left-hand limit of y

′
(t) at t = tk,

respectively, and g ∈ L1[0, 1] is nonnegative.
For the case of Ik 6= 0, k = 1, 2, . . . ,m, g = 0, problem (1.1) reduces

to the problem studied by Lin and Jiang in [15]. By using the fixed point
index theory in cones, the authors obtained some sufficient conditions for the
existence of multiple positive solutions.

For the case of Ik = 0, k = 1, 2, . . . ,m, g 6= 0, problem (1.1) reduces to the
problem studied by Feng, Ji and Ge in [22]. By using the fixed point theorem
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of strict-set-contractions, the authors obtained some sufficient conditions for
the existence of at least one or two positive solutions in Banach spaces.

For the case of Ik = 0, k = 1, 2, . . . ,m, g = 0, problem (1.1) is related to
two-points boundary value problem of ODE. Guo and Lakshmikantham [33]
obtained some sufficient conditions for the existence of at least one or two
positive solutions to the two-point boundary-value problem in Banach spaces
by using the fixed point theorem of strict set contractions. Erbe and Hu [34]
have applied a fixed point index theorem in cones to establish the existence
of multiple positive solutions to problem (1.1). Liu and Li [35] have proved
that there exist at least two positive solutions by applying a fixed point index
theorem in cones.

On the other hand, as far as second order nonlocal boundary value prob-
lems are concerned, a great deal of existence and uniqueness results have been
established up to now. For details, see, for example, [4-8, 10-12, 16, 22-25,
28, 33-35] and references cited therein. However, among the existing results of
[4-8, 10-12, 16, 22-25, 28, 33-35] no one can be applied to our problem. This
is another reason why we study problem (1.1).

It is well known that fixed point index theorems have been applied to
various boundary value problems to show the existence of multiple positive so-
lutions. An overview of such results can be found in Guo and Lakshmikantham
V., [36] and in Guo and Lakshmikantham V., Liu X.Z., [37].

Lemma 1.1. [36, 37] Let E be a real Banach space and K be a cone in
E. For r > 0, define Kr = {x ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is
completely continuous such that Tx 6= x for x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then
i(T,Kr, K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then
i(T,Kr, K) = 1.

The paper is organized in the following fashion. In Section 2, we provide
some necessary background. In particular, we state some properties of the
Green’s function associated with problem (1.1). In Section 3, the main results
will be stated and proved. Finally, in Section 4, one example is also included
to illustrate the main results.

2 Preliminaries

In order to define the solution of problem (1.1), we shall consider the following
space.

Let J
′
= J\{t1, t2, . . . , tm}, and

PC1[0, 1] =

{
x ∈ C[0, 1] : x

′|(tk,tk+1) ∈ C(tk, tk+1), x
′
(t−k ) = x

′
(tk), ∃ x

′
(t+k ), k =
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1, 2, . . . ,m

}
. Then PC1[0, 1] is a real Banach space with norm

‖x‖PC1 = max

{
‖x‖∞, ‖x′‖∞

}
,

where ‖x‖∞ = sup
t∈J

|x(t)|, ‖x′‖∞ = sup
t∈J

|x′
(t)|.

A function x ∈ PC1[0, 1]∩C2(J
′
) is called a solution of problem (1.1) if it

satisfies (1.1).
To establish the existence of multiple positive solutions in PC1[0, 1]∩C2(J

′
)

of problem (1.1), let us list the following assumptions:
(H1) w : (0, 1) → [0, +∞) is continuous, and may be singular at t = 0 and

(or) t = 1, and 0 <
∫ 1

0
w(t)dt < +∞;

(H2) f ∈ C(J ×R+, R+), Ik ∈ C(R+, R+);
(H3) g ∈ L1[0, 1] is nonnegative and µ ∈ [0, 1), where

µ =

∫ 1

0

g(t)dt. (2.1)

In our main results, we will make use of the following lemmas.
Lemma 2.1. If (H1)− (H3) hold, then y ∈ PC1[0, 1]∩C2(J

′
) is a solution

of (1.1) if and only if y is a solution of the following impulsive integral equation:

y(t) =
1

λ

∫ 1

0

H(t, s)w(s)f(s, y(s))ds +
m∑

k=1

H(t, tk)Ik(y(tk)), (2.2)

where

H(t, s) = G(t, s) +
1

1− µ

∫ 1

0

G(s, τ)g(τ)dτ, (2.3)

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

(2.4)

Proof. First suppose that y ∈ PC1[0, 1] ∩ C2(J
′
) is a solution of problem

(1.1). It is easy to see by integration of BVP (1.1) that

y
′
(t) = y

′
(0)− 1

λ

∫ t

0
w(s)f(s, y(s))ds−

∑
tk<t Ik(y(tk)).

Integrating again, we can get

y(t) = y(0) + y
′
(0)t− 1

λ

∫ t

0
(t− s)w(s)f(s, y(s))ds−

∑
tk<t Ik(y(tk))(t− tk).

(2.5)
Letting t = 1 in (2.5), we find

y
′
(0) = 1

λ

∫ 1

0
(1− s)w(s)f(s, y(s))ds +

∑
tk<1 Ik(y(tk))(1− tk). (2.6)
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Substituting y(0) =
∫ 1

0
g(t)y(t)dt and (2.6) into (2.5), we obtain

y(t) = y(0) + 1
λ

∫ 1

0
t(1− s)w(s)f(s, y(s))ds + t

∑
tk<1 Ik(y(tk))(1− tk)

− 1
λ

∫ t

0
(t− s)w(s)f(s, y(s))ds−

∑
tk<t Ik(y(tk))(t− tk)

= 1
λ

∫ 1

0
G(t, s)w(s)f(s, y(s))ds +

∫ 1

0
g(t)y(t)dt +

∑m
k=1 G(t, tk)Ik(y(tk))),

(2.7)
where∫ 1

0
g(t)y(t)dt =

∫ 1

0
g(t)

[ ∫ 1

0
g(t)y(t)dt + 1

λ

∫ 1

0
G(t, s)w(s)f(s, y(s))ds

+
∑m

k=1 G(t, tk)Ik(y(tk))

]
dt

=
∫ 1

0
g(t)dt×

∫ 1

0
g(t)y(t)dt + 1

λ

∫ 1

0

∫ 1

0
G(t, s)g(s)w(s)f(s, y(s))dsdt

+
∫ 1

0
g(t)

( ∑m
k=1 G(t, tk)Ik(y(tk))

)
dt.

Therefore, we have

∫ 1

0
g(s)y(s)ds = 1

1−
R 1
0 g(s)ds

[
1
λ

∫ 1

0

( ∫ 1

0
G(s, r)g(r)dr

)
w(s)f(s, y(s))ds

+
∫ 1

0
g(s)

( ∑m
k=1 G(s, tk)Ik(y(tk))

)
ds

]
and

y(t) = 1
λ

∫ 1

0
G(t, s)w(s)f(s, y(s))ds +

∑m
k=1 G(t, tk)Ik(y(tk))

+ 1
1−µ

[
1
λ

∫ 1

0

( ∫ 1

0
G(s, r)g(r)dr

)
w(s)f(s, y(s))ds

+
∫ 1

0
g(s)

( ∑m
k=1 G(s, tk)Ik(y(tk))

)
ds

]
.

Let

H(t, s) = G(t, s) +
1

1− µ

∫ 1

0

G(s, r)g(r)dr.

Then,

y(t) =
1

λ

∫ 1

0

H(t, s)w(s)f(s, y(s))ds +
m∑

k=1

H(t, tk)Ik(y(tk)),

and the proof of sufficient is complete.
Conversely, if y is a solution of (2.2).
Direct differentiation of (2.2) implies, for t 6= tk

y
′
(t) = 1

λ

∫ 1

0
(1− s)w(s)f(s, y(s))ds +

∑m
k=1 Ik(y(tk))(1− tk)

− 1
λ

∫ t

0
w(s)f(s, y(s))ds−

∑
tk<t Ik(y(tk))(1− tk).
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Evidently,
λy

′′
(t) = −w(t)f(t, y(t)).

∆y
′|t=tk = −Ik(y(tk)), (k = 1, 2, . . . ,m), y(0) = y(1) =

∫ 1

0

g(t)y(t)dt.

The Lemma is proved. �
From (2.3) and (2.4), we can prove that H(t, s), G(t, s) have the following

properties.
Proposition 2.1. If (H3) holds, then we have

H(t, s) > 0, G(t, s) > 0, for t, s ∈ (0, 1), (2.8)

H(t, s) ≥ 0, G(t, s) ≥ 0, for t, s ∈ J. (2.9)

Proof. From the definitions of H(t, s) and G(t, s), it is easy to obtain the
results of (2.8) and (2.9). �

Proposition 2.2. For t, s ∈ [0, 1], we have

e(t)e(s) ≤ G(t, s) ≤ G(s, s) = s(1− s) = e(s) ≤ ē = max
t∈[0,1]

e(s) =
1

4
. (2.10)

Proof. In fact, for t ∈ J, s ∈ (0, 1), we have
Case 1. If 0 < t ≤ s < 1, then

G(t, s)

G(s, s)
=

t(1− s)

s(1− s)
=

t

s
≤ 1.

Case 2. If 0 < s ≤ t < 1, then

G(t, s)

G(s, s)
=

s(1− t)

s(1− s)
=

1− t

1− s
≤ 1− s

1− s
≤ 1.

In addition, by the definition of G(t, s), it is easy to obtain that

G(t, s) ≤ G(s, s), ∀ t ∈ J, s ∈ {0, 1}.

Therefore,
G(t, s) ≤ G(s, s) = e(s), ∀ t, s ∈ J.

Similarly, we can prove that

G(t, s) ≥ e(t)e(s).

In fact, for all t, s ∈ J , we have
Case 1. If t ≤ s, then

G(t, s)

G(s, s)
=

t(1− s)

s(1− s)
=

t

s
≥ t ≥ t(1− t).
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Case 2. If s ≤ t, then

G(t, s)

G(s, s)
=

s(1− t)

s(1− s)
=

1− t

1− s
≥ 1− t ≥ t(1− t).

So, we have
G(t, s) ≥ e(t)e(s), ∀ t, s ∈ J. �

Proposition 2.3. If (H3) holds, then for t, s ∈ [0, 1], we have

ρe(s) ≤ H(t, s) ≤ γs(1− s) = γe(s) ≤ 1

4
γ, (2.11)

where

γ =
1

1− µ
, ρ =

∫ 1

0
e(τ)g(τ)dτ

1− µ
. (2.12)

Proof. By (2.3) and (2.10), we have

H(t, s) = G(t, s) + 1
1−µ

∫ 1

0
G(s, τ)g(τ)dτ

≥ 1
1−µ

∫ 1

0
G(s, τ)g(τ)dτ

≥
R 1
0 e(τ)g(τ)dτ

1−µ
s(1− s)

= ρe(s), t ∈ [0, 1].

On the other hand, noticing G(t, s) ≤ s(1− s), we obtain

H(t, s) = G(t, s) + 1
1−µ

∫ 1

0
G(s, τ)g(τ)dτ

≤ s(1− s) + 1
1−µ

∫ 1

0
s(1− s)g(τ)dτ

≤ s(1− s)[1 + 1
1−µ

∫ 1

0
g(τ)dτ ]

≤ s(1− s) 1
1−µ

= γe(s), t ∈ [0, 1].

The proof of Proposition 2.3 is complete. �
To establish the existence of positive solutions to problem (1.1), we con-

struct a cone K by

K =

{
y ∈ PC1[0, 1] : y(t) ≥ 0, t ∈ J

}
. (2.13)

Define an operator T by

(Ty)(t) =
1

λ

∫ 1

0

H(t, s)w(s)f(s, y(s))ds +
m∑

k=1

H(t, tk)Ik(y(tk)). (2.14)

From Lemma 2.1, we can obtain the following results.
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Lemma 2.2. (i) If y ∈ PC1[0, 1] ∩ C2(J
′
) is a solution of problem (1.1),

then y is a fixed point of T ;
(ii) If y is a fixed point of T , then y ∈ PC1[0, 1] ∩ C2(J

′
)] is a solution of

problem (1.1).
Lemma 2.3. Suppose that (H1) − (H3) hold. Then T (K) ⊂ K and

T : Kr,R → K is completely continuous.
Proof. In fact, from (H1)−(H3) and (2.9), we have Ty ≥ 0, ∀y ∈ K, which

implies that T (K) ⊂ K.
Now we prove operator T is completely continuous. For n ≥ 2 define wn

by

wn(t) =


inf

0≤s≤ 1
n

w(s), t ∈ (0, 1
n
];

w(t), t ∈ ( 1
n
, 1− 1

n
);

inf
1− 1

n
≤s≤1

w(s), t ∈ [1− 1
n
, 1),

and Tn : K → K by

(Tnx)(t) =
1

λ

∫ 1

0

H(t, s)wn(s)f(s, x(s))ds +
m∑

k=1

H(t, tk)Ik(y(tk)).

As proven above, Tn : K → K. Since wn : [0, 1] → [0, +∞) is a piecewise
continuous function, we can see that Tn : K → K is completely continuous
(see [38]).

Let R > 0 and MR = max{f(t, x) : (t, x) ∈ J × [0, R]}, then MR < +∞.

Since 0 <
∫ 1

0
w(s)ds < +∞, by the absolute continuity of integral, we have

lim
n→∞

∫
e(n)

w(s)ds → 0, n → +∞,

where e(n) = [0, 1
n
] ∪ [1− 1

n
, 1]. So,

sup

{
|Tn − Tx| : x ∈ K, ‖x‖ ≤ R

}
= sup

{
max
t∈J

1
λ

∫ 1

0
H(t, s)|wn(s)− w(s)|f(s, x(s))ds : x ∈ K, ‖x‖ ≤ R

}
≤ 1

λ
MR

{
max
t∈J

∫ 1

0
H(t, s)|wn(s)− w(s)|ds

}
≤ 1

4
γMR

∫ 1

0
|wn(s)− w(s)|ds

≤ 1
4
γMR

∫
e(n)

w(s)ds → 0, n → +∞.

It implies that the completely continuous operators Tn uniformly approx-
imate T on any bounded subset of K. Therefore, T : K → K is completely
continuous. The proof is complete. �
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3 Main results

In this section, we apply Lemma 1.1 to establish the existence of positive
solutions of problem (1.1), and we begin by introducing some notation:

a = γ

∫ 1

0

w(s)ds, b =
1

γm
.

Theorem 3.1. Assume that (H1) − (H3) hold. In addition, letting f
satisfy the following conditions

(H4) 0 ≤ f 0 = lim sup
x→0

max
t∈J

f(t,y)
y

< a and

0 ≤ lim sup
y→0

Ik(y)

y
< b, k = 1, 2, · · · , m;

(H5) 0 ≤ f∞ = lim sup
x→∞

max
t∈J

f(t,y)
y

< a and

0 ≤ lim sup
y→∞

Ik(y)

y
< b, k = 1, 2, · · · , m;

(H6) There exists ν > 0, for y ≥ ν, t ∈ J such that f(t, y) ≥ η, where
η > 0, then there exists δ > 0 such that, for

max

{
af 0, af∞

}
< λ < δ, (3.1)

problem (1.1) has at least two positive solutions y
(1)
λ (t), y

(2)
λ (t) and max

t∈J
y

(1)
λ (t) >

ν.

Proof. Letting λ satisfies (3.1) and δ = t1(1−tm)ρη
∫ tm

t1
w(s)dsν−1. Choos-

ing ε > 0 such that f 0 + ε > 0, f∞ + ε > 0 and

max

{
a(f 0 + ε), a(f∞ + ε)

}
≤ λ < δ.

Considering (H4), for the ε mentioned above, then there exists 0 < r < ν
such that

f(t, y) ≤ (f 0 + ε)y ≤ (f 0 + ε)r, ∀0 ≤ y ≤ r, t ∈ J,

and

Ik(y) ≤ by, ∀0 ≤ y ≤ r, k = 1, 2, · · · , m.
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Therefore, for y ∈ ∂Kr, by (2.11), we have

(Tx)(t) = 1
λ

∫ 1

0
H(t, s)w(s)f(s, y(s))ds +

∑m
k=1 H(t, tk)Ik(y(tk))

≤ 1
λ

∫ 1

0
1
4
γw(s)f(s, y(s))ds +

∑m
k=1

1
4
γIk(y(tk))

≤ 1
λ

∫ 1

0
1
4
γw(s)ds(f 0 + ε)‖y‖+ 1

4
γm 1

γm
‖y‖

≤ 1
λ

1
4
γ

∫ 1

0
w(s)ds(f 0 + ε)‖y‖+ 1

4
‖y‖

≤ 1
λ

1
4
a(f 0 + ε)‖y‖+ 1

4
‖y‖

≤ 1
4
‖y‖+ 1

4
‖y‖

= 1
2
‖y‖

< ‖y‖ = r.

Consequently, for y ∈ ∂Kr, we have ‖Ty‖ < ‖y‖, i.e., by Lemma 1.1,

i(T, Kr, K) = 1. (3.2)

Now turning to (H5), there exists l > 0, for t ∈ J, y > l, such that

f(t, y) ≤ (f∞ + ε)y,

and
Ik(y) ≤ by, k = 1, 2, · · · , m.

Letting

L = max
t∈J, 0≤y≤l

f(t, y), Lk = max
0≤y≤l

Ik(y), k = 1, 2, · · · , m,

then

0 ≤ f(t, y) ≤ (f∞ + ε)y + L, 0 ≤ Ik(y) ≤ by + Lk, k = 1, 2, · · · , m. (3.3)

Choosing

R > max

{
ν, 2γ(

1

λ

∫ 1

0

w(s)ds + m)L∗
}

, (3.4)

where L∗ = max{L, Lk}, k = 1, 2, · · · , m.
So, for y ∈ ∂KR, by (2.11), (3.3) and (3.4), we have

(Tx)(t) = 1
λ

∫ 1

0
H(t, s)w(s)f(s, y(s))ds +

∑m
k=1 H(t, tk)Ik(y(tk))

≤ 1
λ

∫ 1

0
1
4
γw(s)f(s, y(s))ds +

∑m
k=1

1
4
γIk(y(tk))

≤ 1
λ

∫ 1

0
1
4
γw(s)ds((f∞ + ε)‖y‖+ L) + 1

4
γm(b‖y‖+ Lk)

≤ 1
2
‖y‖+ 1

4λ
γ

∫ 1

0
w(s)dsL + 1

4
γmLk

≤ 1
2
‖y‖+ 1

4
γ( 1

λ

∫ 1

0
w(s)ds + m)L∗

< 1
2
‖y‖+ 1

2
R

= R
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i.e., by Lemma 1.1,
i(T,KR, K) = 1. (3.5)

On the other hand, for y ∈ K̄R
ν =

{
y ∈ K : ‖y‖ ≤ R, min

t∈[t1,tm]
y(t) ≥

ν

}
, t ∈ J , (2.14) yields that

‖Ty‖ ≤ 1

2
‖y‖+

1

4
γ(

1

λ

∫ 1

0

w(s)ds + m)L∗ < R. (3.6)

Furthermore, for y ∈ K̄R
ν , from (2.11), (2.16) and (H6), we obtain

min
t∈[t1,tm]

(Tx)(t) = min
t∈[t1,tm]

1
λ

∫ 1

0
H(t, s)w(s)f(s, y(s))ds +

∑m
k=1 H(t, tk)Ik(y(tk))

≥ min
t∈[t1,tm]

1
λ

∫ 1

0
H(t, s)w(s)f(s, y(s))ds

≥ min
t∈[t1,tm]

1
λ

∫ tm
t1

H(t, s)w(s)f(s, y(s))ds

≥ 1
λ
ρη

∫ tm
t1

e(s)w(s)ds

≥ 1
λ
ρηt1(1− tm)

∫ tm
t1

w(s)ds

> 1
δ
ρηt1(1− tm)

∫ tm
t1

w(s)ds

= ν.
(3.7)

Letting y0 ≡ µ+R
2

and φ(t, y) = (1− t)Ty + ty0, then φ : [0, 1]× K̄R
ν → K

is completely continuous, and from the analysis above, we obtain for (t, y) ∈
[0, 1]× K̄R

ν

φ(t, y) ∈ KR
ν . (3.8)

Therefore, for t ∈ J, y ∈ ∂KR
ν , we have φ(t, y) 6= y. Hence, by the normality

property and the homotopy invariance property of the fixed point index, we
obtain

i(T,KR
ν , K) = i(y0, K

R
ν , K) = 1. (3.9)

Consequently, by the solution property of the fixed point index, T has a
fixed point y

(1)
λ and y

(1)
λ ∈ KR

ν . By Lemma 2.1, it follows that y
(1)
λ is a solution

to problem (1.1), and

max
t∈J

y
(1)
λ ≥ min

t∈[t1,tm]
y

(1)
λ > ν.

On the other hand, from (3.2), (3.3) and (3.7) together with the additivity
of the fixed point index, we get

i(T,KR\(K̄r ∪ K̄R
ν ), K)

= i(T,KR, K)− i(T, KR
ν , K)− i(T,Kr, K)

= 1− 1− 1 = −1.
(3.10)
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Hence, by the solution property of the fixed point index, T has a fixed
point y

(2)
λ and y

(2)
λ ∈ KR\(K̄r ∪ K̄R

ν ). By Lemma 2.1, it follows that y
(2)
λ is also

a solution to problem (1.1), and y
(1)
λ 6= y

(2)
λ . The proof is complete. �

4 Example

To illustrate how our main results can be used in practice we present an ex-
ample.

Now we consider the following boundary value problem
−λy

′′
(t) = 1

2
√

t
[kty + y

1
3 tanh y], 0 < t < 1,

∆y′|t= 1
3

= 1
5
y(1

3
),

∆y′|t= 1
2

= 1
5
y(1

2
),

y(0) = y(1) =
∫ 1

0
ty(s)ds,

where λ > 0, w(t) = 1
2
√

t
, f(t, y) = kty + y

1
3 tanh y, 0 ≤ k < 19

14342
, I1(y) =

1
5
y, I2(y) = 1

5
y, g(t) = t. By calculations we obtain that µ = 1

2
, γ = 2, ρ =

1
6
, a = 2, b = 1

4
. Hence, the conditions (H1) − (H3) hold. In addition, it is

not difficult to see that

lim
y→0

max
t∈J

f(t, y)

y
= k < 2 ;

lim
y→+∞

max
t∈J

f(t, y)

y
= k < 2.

Choosing ν = 1, η = e2−1
e2+1

, we obtain f(t, y) ≥ e2−1
e2+1

= η for t ∈ [0, 1], y ≥ ν.
So the conditions of the Theorem 3.1 are satisfied, then for 2k < λ < δ =
t1(1 − tm)ρη

∫ tm
t1

w(s)dsν−1 = 19
7171

, problem (1.1) has at least two positive

solutions y
(1)
λ (t), y

(2)
λ (t) and max

t∈J
y

(1)
λ (t) > 1. �

Remark The example implies that there is a large number of functions
that satisfy the conditions of Theorem 3.1. In addition, the conditions of
Theorem 3.1 are also easy to check.

5 Open Problem

In this paper, by using the fixed point index theory, we have investigated the
existence of multiple positive solutions for a class of impulsive singular bound-
ary value problems with integral boundary conditions and have obtained some
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easily verifiable sufficient criteria which extend previous results. The method-
ology which we employed in studying the second order differential equations
without impulses in [22] can be modified to establish similar sufficient criteria
for second order impulsive differential equations. It is worth mentioning that
there are still many problems that remain open in this vital field except for
the results obtained in this paper: for example, whether or not our concise
criteria can guarantee the stability of positive solutions. More efforts are still
needed in the future.
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