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Abstract

In [4] the authors introduced a multiplier transformation
operator Dj

b,λf . In the present investigation, we obtain some
Differential Subordination and Superordination results involv-
ing this operator for certain normalized analytic functions in
the open unit disk. These results are obtained by investigating
classes of admissible functions. Sandwich-type results are also
obtained.
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1 Introduction

Denote by U the unit disk of the complex plane:

U = {z ∈ C : |z| < 1}.

Let H(U) be the space of analytic function in U.

Let

An = {f ∈ H(U), f(z) = z + an+1z
n+1 + · · ·, (z ∈ U)}

with A1 = A.

For a ∈ C and n ∈ N we let

H[a, n] = {f ∈ H(U), f(z) = a + anzn + an+1z
n+1 + · · ·, (z ∈ U)}.
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If functions f and F are analytic in U, then we say that f is subordinate to
F , and write f ≺ F , if there exists a Schwarz function w analytic in U with
|w(z)| < 1 and w(0) = 0 such that f(z) = F (w(z)) in U. Furthermore, if the
function F is univalent in U, then f(z) ≺ F (z) (z ∈ U) ⇔ f(0) = F (0) and
f(U) ⊂ F (U).

A function f , analytic in U, is said to be convex if it is univalent and f(U)
is convex.
Let p, h ∈ H(U) and let ψ(r, s, t; z) : C3×U→ C. If p and ψ(p(z), zp′(z), z2p′′(z); z)
are univalent and if p satisfies the (second-order) differential superordination

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z), (z ∈ U) (1.1)

then p is called a solution of the differential superordination (1.1). (If f sub-
ordinate to F , then F is superordinate to f).

An analytic function q is called a subordinant of the differential superodination,
if q ≺ p for all p satisfying (1.1). A univalent subordinant q̃ that satisfies
q ≺ q̃ for all subordinants q of (1.1) is said to be the best subordinant. (Note
that the best subordinant is unique up to a rotation of U). Recently Miller
and Mocanu [12] obtained conditions on h, q and ψ for which the following
implication holds:

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z), ⇒ q(z) ≺ p(z) (z ∈ U).

We now state the following definition.

Definition 1.1 [4] Let the function f in A, then for j ∈ C, b ∈ C\Z− and
λ > −1 , we define the following operator:

Dj
b,λf(z) = z +

∞∑

k=2

(
k + b

1 + b

)j

C(λ, k)akz
k, (z ∈ U),

where C(λ, k) =
(

k+λ−1
λ

)
.

Obviously, we observe that

Dj
b,λ(Dm

b,λ(z)) = Dj+m
b,λ f(z) (j, m ∈ C, b ∈ C \ Z−, λ > −1; z ∈ U).

It is clear that Dj
b,λ is multiplier transformation. For j ∈ Z, b = 1 and λ = 0

the operators Dj
1,0 ≡ Ij were studied by Uralegaddi and Somanatha [1], and

for j ∈ Z, λ = 0 the operators Dj
b,0 ≡ Ij

b are closely related to the multiplier
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transformations studied by Flett [14], also, for j = −1, λ = 0, the operators
D−1

b,0 ≡ Ib is the integral operator studied by Owa and Srivastava [10]. And for

any negative real number j and b = 1, λ = 0 the operators Dj
1,0 ≡ Ij is the

multiplier transformation studied by Jung et al. [2], and for any nonnegative
integer j and b = λ = 0, the operators Dj

0,0 ≡ Sj is the differential operator
defined by Sălăgean [3]. Furthermore , for j = 0 and λ ∈ N0 = N ∪ {0}, the
operators D0

b,λ ≡ Rλ is the differential operator defined by Ruscheweyh [13].

For j, λ ∈ N0 and b = 0 the operator Dj
0,λ ≡ Dj

λ is the differential operator
defined by the authors [5]. Finally, for different choices of j, b and λ we obtain
several operators investigated earlier by other authors see, for example [8],[7]
and [6].

In order to prove the original results we shall need the following definition and
theorems.

Definition 1.2 [11, Definition 2.2b p.21] Denote by Q, the set of all func-
tions q that are analytic and injective on U \ E(q), where

E(q) =
{

ζ ∈ ∂U : lim
z→ζ

q(z) = ∞
}

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(f). Further, let the subclass of Q
for which q(0) = a be denoted by Q(a) and Q(1) = Q1.

Definition 1.3 [11, Definition 2.3a p.27] Let Ω be a set in C, q ∈ Q and
n be a positive integer. The class of admissible functions Ψn[Ω, q] consists
of those functions ψ : C3 × U → C that satisfy the admissibility condition
ψ(r, s, t; z) /∈ Ω whenever r = q(ζ), s = kζq′(ζ), and

<
{

t

s
+ 1

}
≥ k<

{
ζq′′(ζ)

q′(ζ)
+ 1

}
, (z ∈ U, ζ ∈ ∂U \ E(q), k ≥ n).

We write Ψ1[Ω, q] as Ψ[Ω, q].

In particular when q(z) = M Mz+a
M+az

, with M > 0 and |a| < M , then q(U) =
UM = {w : |w| < M}, q(0) = a, E(q) = ∅ and q ∈ Q(a). In this case, we
set Ψn[Ω,M, a] = Ψn[Ω, q], and in the special case when Ω = UM , the class is
simply denoted by Ψn[M, a].

Definition 1.4 [12, Definition 3 p.817] Let Ω be a set in C, q(z) ∈ H[a, n]
with q′(z) 6= 0. The class of admissible functions Ψ′

n[Ω, q] consists of those
functions ψ : C3×U→ C that satisfy the admissibility condition ψ(r, s, t; ζ) ∈
Ω whenever r = q(z), s = zq′(z)

m
, and

<
{

t

s
+ 1

}
≤ 1

m
<

{
zq′′(z)

q′(z)
+ 1

}
, (z ∈ U, ζ ∈ ∂U, 1 ≤ n ≤ m).
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In particular, we write Ψ′
1[Ω, q] as Ψ′[Ω, q].

Theorem 1.5 [11, Theorem 2.3b 3 p.28] Let ψ ∈ Ψn[Ω, q] with q(0) = a.
If the analytic function p(z) = a + anz

n + an+1z
n+1 + ... satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω,

then p(z) ≺ q(z).

Theorem 1.6 [12, Theorem 1 p.818] Let ψ ∈ Ψ′
n[Ω, q] with q(0) = a. If

p(z) ∈ Q(a) and ψ(p(z), zp′(z), z2p′′(z); z) is univalent in U, then

Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U}

implies q(z) ≺ p(z).

In the present paper, we shall use the method of differential subordination
introduced by Miller and Mocanu [11, Theorem 2.3b 3 p.28] and [12, Theorem
1 p.818] to derive certain properties of multiplier transformation Dj

b,λf . Addi-
tionally, the corresponding differential superordination problem is investigated
and several sandwich-type results are obtained.

2 Subordination Results

First, the following class of admissible functions is required in our first result.

Definition 2.1 Let Ω be a set in C and q(z) ∈ Q1 ∩ H[q(0), 1]. The class
of admissible functions Φn[Ω, q] consists of those functions φ : C3 × U → C
that satisfy the admissibility condition

φ(u, v, w; z) /∈ Ω

whenever

u = q(ζ), v =
kζq′(ζ) + (λ + 1)q(ζ)

λ + 1

<
{

(λ + 2)(w − u)

v − u
− (2λ + 3)

}
≥ k<

{
ζq′′(ζ)

q′(ζ)
+ 1

}
,

(z ∈ U, ζ ∈ ∂U \ E(q), k ≥ 1).

Now , we will derive our first result.
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Theorem 2.2 Let φ ∈ Φn[Ω, q]. If f(z) ∈ A satisfies
{

φ((Dj
b,λf(z))′, (Dj

b,λ+1f(z))′, (Dj
b,λ+2f(z))′; z) : z ∈ U

}
⊂ Ω, (2.1)

then

(Dj
b,λf(z))′ ≺ q(z).

Proof. Define the analytic function p in U by

p(z) = (Dj
b,λf(z))′. (2.2)

In view of the relation

z(Dj
b,λf(z))′ = (λ + 1)Dj

b,λ+1f(z)− λDj
b,λf(z), (2.3)

from (2.2), we get

(Dj
b,λ+1f(z))′ =

zp′(z) + (λ + 1)p(z)

λ + 1
. (2.4)

Further, a simple computation shows that

(Dj
b,λ+2f(z))′ =

z2p′′(z) + 2(λ + 2)zp′(z) + (λ + 1)(λ + 2)p(z)

(λ + 2)(λ + 1)
. (2.5)

Define the transformations from C3 to C by

u(r, s, t) = r, v(r, s, t) =
s + (λ + 1)r

λ + 1
,

w(r, s, t) =
t + 2(λ + 2)s + (λ + 1)(λ + 2)r

(λ + 2)(λ + 1)
. (2.6)

Let

ψ(r, s, t; z) = φ(u, v, w; z)

= φ

(
r,

s + (λ + 1)r

λ + 1
,
t + 2(λ + 2)s + (λ + 1)(λ + 2)r

(λ + 2)(λ + 1)
; z

)
.(2.7)

The proof shall make use of Theorem 1.5. Using equations (2.2), (2.4) and
(2.5), from (2.7), we obtain

ψ
(
p(z), zp′(z), z2p′′(z); z

)
= φ

(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)
.(2.8)

Hence (2.1) becomes

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

= ψ
(
p(z), zp′(z), z2p′′(z); z

) ∈ Ω. (2.9)
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The proof is complete if it can be shown that the admissibility condition for
φ ∈ Φn[Ω, q] is equivalent to the admissibility condition for ψ as given in
Definition 1.3.
Note that

t

s
+ 1 =

(λ + 2)(w − u)

v − u
− (2λ + 3),

and hence ψ ∈ Ψ[Ω, q]. By Theorem 1.5, p(z) ≺ q(z), or (Dj
b,λf(z))′ ≺ q(z).

We next consider the special situation when Ω 6= C is a simply connected
domain. In this case Ω = h(U) for some conformal mapping h of U onto Ω. In
this case the class Φn[h(U), q] is written as Φn[h, q].

The following result is an immediate consequence of Theorem 2.2.

Theorem 2.3 Let φ ∈ Φn[h, q] with q(0) = 1. If f(z) ∈ A satisfies

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)
≺ h(z), (2.10)

then

(Dj
b,λf(z))′ ≺ q(z).

Our next result is an extension of Theorem 2.2 to the case where the behavior
of q on ∂U is not known.

Corollary 2.4 Let Ω ⊂ C and let q be univalent in U, q(0) = 1. Let
φ ∈ Φn[Ω, qρ] for some ρ ∈ (0, 1) where qρ(z) = q(ρz). If f ∈ A and

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)
∈ Ω,

then

(Dj
b,λf(z))′ ≺ q(z).

Proof. Theorem 2.2 yields (Dj
b,λf(z))′ ≺ qρ(z). The result is now deduced

from qρ(z) ≺ q(z).

Theorem 2.5 Let h and q be univalent function in U, with q(0) = 1 and
set qρ(z) = q(ρz) and hρ(z) = h(ρz). Let φ : C3 × U → C, satisfy one of the
following conditions:
(i) φ ∈ Φn[h, qρ], for some ρ ∈ (0, 1), or
(ii) there exists ρ0 ∈ (0, 1) such that φ ∈ Φn[hρ, qρ], for all ρ ∈ (ρ0, 1).
If f ∈ A satisfies (2.10), then (Dj

b,λf(z))′ ≺ q(z).
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Proof. By using the same methods given by [11], we have
(i) By applying Theorem 2.2 we obtain (Dj

b,λf(z))′ ≺ qρ(z). Since qρ(z) ≺ q(z)

we deduce (Dj
b,λf(z))′ ≺ q(z).

(ii) If we let (Dj
b,λfρ(z))′ = (Dj

b,λf(ρz))′, then

φ
(
(Dj

b,λfρ(z))′, (Dj
b,λ+1fρ(z))′, (Dj

b,λ+2fρ(z))′;ρ z
)

= φ
(
(Dj

b,λf(ρz))′, (Dj
b,λ+1f(ρz))′, (Dj

b,λ+2f(ρz))′; ρz
)
∈ hρ(U).

By using Theorem 2.2 and the comment associated with (2.9) with w(z) = ρz,
we obtain (Dj

b,λfρ(z))′ ≺ qρ(z), for ρ ∈ (ρ0, 1). By letting ρ → 1−, we obtain

(Dj
b,λf(z))′ ≺ q(z).

The next two theorems yield best dominants of the differential subordination
(2.10).

Theorem 2.6 Let h be univalent in U, and φ : C3 × U → C. Suppose the
differential equation

φ

(
q(z),

zq′(z) + (λ + 1)q(z)

λ + 1
,
z2q′′(z) + 2(λ + 2)zq′(z) + (λ + 2)(λ + 1)q(z)

(λ + 2)(λ + 1)
; z

)
= h(z)

(2.11)

has a solution q with q(0) = 1 and satisfy one of the following conditions:
(i) q(z) ∈ Q and φ ∈ Φn[h, q],
(ii) q(z) is univalent in U and φ ∈ Φn[h, qρ], for some ρ ∈ (0, 1), or
(iii) q(z) is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ Φn[hρ, qρ],
for all ρ ∈ (ρ0, 1).
If f(z) ∈ A satisfies (2.10), then (Dj

b,λf(z))′ ≺ q(z) and q(z) is the best
dominant.

Proof. By applying Theorems 2.3 and 2.4, we deduce that q is a dominant of
(2.10). Since q satisfies (2.11), it is a solution of (2.10) and therefore q will be
dominated by all dominants of (2.10). Hence q will be the best dominant of
(2.10).

Theorem 2.7 Let the function h be univalent in U and let φ : C3 → C.
Suppose that the differential equation

φ

(
q(z),

nzq′(z) + (λ + 1)q(z)

λ + 1
,

n(n− 1)zq′(z) + n2z2q′′(z) + 2(λ + 2)nzq′(z) + (λ + 2)(λ + 1)q(z)

(λ + 2)(λ + 1)

)
= h(z)

(2.12)
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has a solution q with q(0) = 1, and one of the following conditions is satisfied:
(i) q(z) ∈ Q and φ ∈ Φn[h, q],
(ii) q(z) is univalent in U and φ ∈ Φn[h, qρ], for some ρ ∈ (0, 1), or
(iii) q(z) is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ Φn[hρ, qρ],
for all ρ ∈ (ρ0, 1).
If f(z) ∈ A, φ

(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′
)

is analytic in U and

(Dj
b,λf(z))′ satisfies

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′
) ≺ h(z), (2.13)

then (Dj
b,λf(z))′ ≺ q(z) and q(z) is the best (1, n)−dominant.

Proof. By applying Theorems 2.3 and 2.4 we deduce that q is dominant of
(2.13). If we let (Dj

b,λf(z))′ = q(zn), then (Dj
b,λ+1f(z))′ = nzq′(z)+(λ+1)q(z)

λ+1
and

(Dj
b,λ+2f(z))′ = n(n−1)zq′(z)+n2z2q′′(z)+2(λ+2)nzq′(z)+(λ+2)(λ+1)q(z)

(λ+2)(λ+1)
. Therefore from

(2.12), we obtain

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′
)

= h(zn) ≺ h(z).

Since (Dj
b,λf(U))′ = q(U), we conclude that q is the (1, n)−best dominant.

In the particular case q(z) = 1+Mz, M > 0, and in view of Definition 2.1, the
class of admissible functions Φn[Ω, q], denoted by Φn[Ω,M ], can be expressed
in the following form:

Definition 2.8 Let Ω be a set in C and M > 0. The class of admissible
functions Φn[Ω,M ] consists of those functions φ : C3 × U→ C, such that:

φ

(
1 + Meiθ, 1 +

(K + λ + 1)Meiθ

λ + 1
,

1 +
L + [2(λ + 2)K + (λ + 2)(λ + 1)]Meiθ

(λ + 2)(λ + 1)
; z

)
/∈ Ω,

(2.14)

whenever K ≥ nM, <[Le−iθ] ≥ (n− 1)K, z ∈ U and θ ∈ R.

From above definition and Theorem 2.2 we have

Corollary 2.9 Let φ ∈ Φn[Ω, M ]. If f(z) ∈ A satisfies

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′
) ∈ Ω,

then |(Dj
b,λf(z))′ − 1| < M .
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In the special case Ω = q(U) = {w : |w−1| < M}, the class Φn[Ω, M ] is simply
denoted by Φn[M ].

Corollary 2.10 Let φ ∈ Φn[M ]. If f(z) ∈ A satisfies
∣∣φ(

(Dj
b,λf(z))′, (Dj

b,λ+1f(z))′, (Dj
b,λ+2f(z))′; z

)− 1
∣∣ < M,

then |(Dj
b,λf(z))′ − 1| < M .

Corollary 2.11 If M > 0 and f(z) ∈ A satisfies

∣∣∣(Dj
b,λ+1f(z))′ − (Dj

b,λf(z))′
∣∣∣ <

M

λ + 1

|(Dj
b,λf(z))′ − 1| < M .

Proof. This follows from Corollary 2.9 by taking φ(u, v,m; z) = v − u and
Ω = h(U), where h(z) = M

λ+1
z, (M > 0). To use the Corollary 2.9 we need to

show that φ ∈ Φn[Ω,M ], that is the admissibility condition (2.14) is satisfied.
This follows since

∣∣∣∣∣φ
(

1 + Meiθ, 1 +
(K + λ + 1)Meiθ

λ + 1
, 1 +

L + [2(λ + 2)K + (λ + 2)(λ + 1)]Meiθ

(λ + 2)(λ + 1)
; z

)∣∣∣∣∣

=
K

λ + 1
≥ M

λ + 1

whenever z ∈ U, K ≥ nM, <[Le−iθ] ≥ (n − 1)K and θ ∈ R. The required
result now follows from Corollary 2.9.

Theorem 2.7 shows that the result is sharp. The differential equation

zq′(z)

λ + 1
=

M

λ + 1
z (λ + 1 < M)

has a univalent solution q(z) = 1 + Mz. It follows from Theorem 2.7 that
q(z) = 1 + Mz is the best dominant.

By taking b = 0, j = 1 and λ = 0, Corollary 2.10 shows that for f ∈ A, if
zf ′′(z) ≺ 1 + Mz, then f ′(z) ≺ 1 + Mz.

Now we have the following:

Definition 2.12 Let Ω be a set in C and q(z) ∈ Q ∩ H[q(0), 1]. The class
of adissible functions Φn,1[Ω, q] consists of those functions φ : C3×U→ C that
satisfy the admissibility condition

φ(u, v, w; z) /∈ Ω,
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whenever

u = q(ζ), v =
1

λ + 2

(
(λ + 1)q(ζ) + 1 +

kζq′(ζ)

q(ζ)

)
, (q(ζ) 6= 0),

<
{

[(λ + 3)w − (λ + 2)v − 1](λ + 2)v

(λ + 2)v − [(λ + 1)r + 1]
− [2(λ + 1)r + 1− (λ + 2)v]

}

≥ k<
{

ζq′′(ζ)

q′(ζ)
+ 1

}
, (z ∈ U, ζ ∈ ∂U \ E(q), k ≥ 1).

Theorem 2.13 Let φ ∈ Φn,1[Ω, q]. If f ∈ A satisfies
{

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
: z ∈ U

}
⊂ Ω, (2.15)

then
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

≺ q(z).

Proof. Define the analytic function p in U by:

p(z) =
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

. (2.16)

Then, by using (2.3), we get

(Dj
b,λ+2f(z))′

(Dj
b,λ+1f(z))′

=
1

λ + 2

{
(λ + 1)p(z) + 1 +

zp′(z)

p(z)

}
. (2.17)

Differentiating logarithmically (2.17), and further computations show that

(Dj
b,λ+3f(z))′

(Dj
b,λ+2f(z))′

=
1

λ + 3

{
(λ + 1)p(z) + 2 +

zp′(z)

p(z)

+
[(λ + 1)p(z) + 1] zp′(z)

p(z)
+ z2p′′(z)

p(z)
−

(
zp′(z)
p(z)

)2

(λ + 1)p(z) + 1 + zp′(z)
p(z)

}
.

(2.18)

Define the transformations from C3 to C by

u = r, v =
1

λ + 2

(
(λ + 1)r + 1 +

s

r

)
,

w =
1

λ + 3

(
(λ + 1)r + 2 +

s

r
+

[(λ + 1)r + 1] s
r

+ t
r
− (

s
r

)2

(λ + 1)r + 1 + s
r

)
.

(2.19)
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Let

Ψ(r, s, t; z)

= φ(u, v, w; z)

= φ

(
r,

1

λ + 2

(
(λ + 1)r + 1 +

s

r

)
,

1

λ + 3

(
(λ + 1)r + 2 +

s

r
+

[(λ + 1)r + 1] s
r

+ t
r
− (

s
r

)2

(λ + 1)r + 1 + s
r

)
; z

)
.

(2.20)

Using (2.16), (2.17) and (2.18), from (2.20), it follows that

ψ(p(z), zp′(z), z2p′′(z); z)

= φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
. (2.21)

Hence (2.15) implies ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω. The proof is complete if it
can be shown that the admissibility condition for φ ∈ Φn,1[Ω, q] is equivalent
to the admissibility condition for ψ as given in Definition 1.3.

For this purpose, note that

s

r
= (λ + 2)v − [(λ + 1)u + 1],

t

r
= [(λ + 3)w − (λ + 2)v − 1](λ + 2)v − [(λ + 2)v − 2

s

r
]
s

r
,

and thus

t

s
+ 1 =

[(λ + 3)w − (λ + 2)v − 1](λ + 2)v

(λ + 2)v − [(λ + 1)u + 1]
− [2(λ + 1)u + 1− (λ + 2)v].

Hence ψ ∈ Ψ[Ω, q] and by Theorem 1.5, p(z) ≺ q(z) or
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

≺ q(z).

In the case Ω 6= C is a simply connected domain with Ω = h(U) for some
conformal mapping h(z) of U onto Ω, the class Φn,1[h(U), q] is written as
Φn,1[h, q]. The following result is an immediate consequence of Theorem 2.13.

Theorem 2.14 Let φ ∈ Φn,1[h(U), q] with q(0) = 1. If f ∈ A satisfies

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
≺ h(z), (2.22)

then
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

≺ q(z).

In the particular case q(z) = 1+Mz, M > 0, the class of admissible functions
Φn,1[Ω, q], is simply denoted by Φn,1[Ω,M ].
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Definition 2.15 Let Ω be a set in C and M > 0. The class of admissible
functions Φn,1[Ω,M ] consists of those functions φ : C3 × U→ C such that

φ

(
1 + Meiθ, 1 +

(λ + 1)(1 + Meiθ) + K

(λ + 2)(1 + Meiθ)
Meiθ, 1 +

K + (λ + 1)(1 + Meiθ)

(λ + 3)(1 + Meiθ)

+
(M + e−iθ)

[
[(λ + 1)(1 + Meiθ) + 1]KM + Le−iθ

]−K2M2

(λ + 3)(M + e−iθ)
[
(M + e−iθ)[(1 + Meiθ) + 1] + KM

] ; z

)
/∈ Ω,

(2.23)

whenever K ≥ nM, <[Le−iθ] ≥ (n− 1)K, z ∈ U and θ ∈ R.

Corollary 2.16 Let φ ∈ Φn,1[Ω,M ]. If f ∈ A satisfies

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
∈ Ω,

then
∣∣∣ (Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

− 1
∣∣∣ < M .

In the special case Ω = q(U) = {w : |w − 1| < M}, the class Φn,1[Ω,M ] is
defined by Φn,1[M ], and Corollary 2.16 takes the following form:

Corollary 2.17 Let φ ∈ Φn,1[M ]. If f ∈ A satisfies

∣∣∣∣∣φ
(

(
Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
− 1

∣∣∣∣∣ < M,

then
∣∣∣ (Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

− 1
∣∣∣ < M .

Corollary 2.18 Let M > 0, and f ∈ A satisfies

∣∣∣∣∣
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

− (Dj
b,λ+1f(z))′

(Dj
b,λf(z))′

∣∣∣∣∣ <
M2

(λ + 1)(1 + M)
,

then
∣∣∣ (Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

− 1
∣∣∣ < M .

Proof. This follows from Corollary 2.16 by taking φ(u, v, w; z) = v − u and
Ω = h(U) where h(z) = M2

(1+λ)(1+M)
z, M > 0. To use Corollary 2.16, we need to
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show that φ ∈ Φn,1[M ], that is the admissability condition (2.23) is satisfied.
This follows since

|φ(u, v, w; z)| =

∣∣∣∣∣1 +
K + (λ + 1)(1 + Meiθ)

(λ + 2)(1 + Meiθ)
Meiθ − 1−Meiθ

∣∣∣∣∣

=
M

λ + 2

∣∣∣K − (1 + Meiθ)

1 + Meiθ

∣∣∣ ≥ M

λ + 2

∣∣∣K − (1 + M)

1 + M

∣∣∣

≥ M

λ + 2

∣∣∣ 1

1 + Meiθ
− 1

∣∣∣ =
M2

(λ + 2)(1 + M)
.

K ≥ nM, K 6= 1 + M, z ∈ U and θ ∈ R. Hence the result is easily deduced
from Corollary 2.16.

3 Superordination and Sandwich Results

The dual problem of differential subordination, that is differential superordi-
nation of the multiplier transformation is investigated in this section. For this
purpose the class of admissible functions is given in the following definition.

Definition 3.1 Let Ω be a set in C, q(z) ∈ H[q(0), 1] with zq′(z) 6= 0. The
class of admissible functions Φ′

n[Ω, q] consists of those functions φ : C3×U→ C
that satisfy the admissibility condition

φ(u, v, w, ζ) ∈ Ω

whenever

u = q(z), v =
zq′(z) + mλq(z)

m(λ + 1)

<
{

(λ + 2)(w − u)

v − u
− (2λ + 3)

}
≤ 1

m
<

{
zq′′(z)

q′(z)
+ 1

}
,

(z ∈ U, ζ ∈ ∂U, m ≥ 1).

Theorem 3.2 Let φ ∈ Φ′
n[Ω, q]. If f ∈ A, (Dj

b,λf(z))′ ∈ Q1 and

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

is univalent in U, then

Ω ⊂
{

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

: z ∈ U
}

(3.1)

implies q(z) ≺ (Dj
b,λf(z))′.
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Proof. Let p be defined by (2.2) and ψ by (2.7). Since φ ∈ Φ′
n[Ω, q], (2.8) and

(3.1) yield

Ω ⊂ {
ψ(p(z), p′(z), p′′(z); z) : z ∈ U}

.

From (2.6), the admissibility condition for φ ∈ Φ′
n[Ω, q] is univalent to the

admissibility condition for ψ as given in Definition 1.4. Hence ψ ∈ Ψ′
n[Ω, q],

and by Theorem 1.6, q(z) ≺ p(z) or q(z) ≺ (Dj
b,λf(z))′.

If Ω 6= C is a simply connected domain, and Ω = h(U) for some conformal
mapping h(z) of U onto Ω, the the class Φ′

n[h(U), q] is written as Φ′
n[h, q]. Pro-

ceeding similarly as in the previous section, the following result is an immediate
consequence of Theorem 3.2.

Theorem 3.3 Let q(z) ∈ H[q(0), 1], h(z) be analytic in U and φ ∈ Φ′
n[h, q].

If f ∈ A, (Dj
b,λf(z))′ ∈ Q1 and

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

is univalent in U, then

h(z) ≺ φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

(3.2)

implies q(z) ≺ (Dj
b,λf(z))′.

Theorems 3.2 and 3.3 can only be used to obtain subordinants of differential
superordination of the form (3.1) or (3.2). The following theorem proves the
existence of the best subordinant of (3.2) for an appropriate φ.

Theorem 3.4 Let the function h be analytic in U and φ : C3 × U → C.
Suppose that the differential equation

φ

(
q(z),

zq′(z) + (λ + 1)q(z)

λ + 1
,
z2q′′(z) + 2(λ + 2)zq′(z) + (λ + 1)(λ + 2)q(z)

(λ + 2)(λ + 1)
; z

)
= h(z)

has a solution q ∈ Q1. If φ ∈ Φ′
n[h, q], f ∈ A, (Dj

b,λf(z))′ ∈ Q1 and

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

is univalent in U, then

h(z) ≺ φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

implies q(z) ≺ (Dj
b,λf(z))′, and q(z) is the best subordinant.
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Proof. The proof is similar to the proof of Theorem 2.6 and is omitted.

Combining Theorem 2.3 and 3.3, we obtain the following sandwich-type theo-
rem.

Corollary 3.5 Let h1(z) and q1(z) be analytic functions in U, h2(z) be uni-
valent in U, q2 ∈ Q1 with q1(0) = q2(0) = 1, and φ ∈ Φn[h2, q2] ∩ Φ′

n[h1, q1]. If
f ∈ A, (Dj

b,λf(z))′ ∈ H[q(0), 1] ∩Q1 and

φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
)

is univalent in U, then

h1(z) ≺ φ
(
(Dj

b,λf(z))′, (Dj
b,λ+1f(z))′, (Dj

b,λ+2f(z))′; z
) ≺ h2(z)

implies q1(z) ≺ (Dj
b,λf(z))′ ≺ q2(z).

Definition 3.6 Let Ω be a set in C, and q(z) ∈ H[q(0), 1] with zq′(z) 6= 0.
The class of admissible functions Φ′

n,1[Ω, q] consists of those functions φ : C3×
U→ C that satisfy the admissibility condition

φ(u, v, w; ζ) ∈ Ω

whenever

u = q(z), v =
1

λ + 2

(
(λ + 1)q(z) + 1 +

zq′(z)

mq(z)

)
, (q(z) 6= 0),

<
{

[(λ + 3)w − (λ + 2)v − 1](λ + 2)v

(λ + 2)v − [(λ + 1)r + 1]
− [2(λ + 1)r + 1− (λ + 2)v]

}

≤ 1

m
<

{
zq′′(z)

q′(z)
+ 1

}
, (z ∈ U, ζ ∈ ∂U, m ≥ 1).

Now we will give the dual result of Theorem 2.13 for differential superordina-
tion.

Theorem 3.7 Let φ ∈ Φ′
n,1[Ω, q]. If f ∈ A,

(Dj
b,λ+1f(z))′

(Dj
b,λf(z))′

∈ Q1 and

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
,

is univalent in U, then

Ω ⊂
{

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
: z ∈ U

}
, (3.3)

implies q(z) ≺ (Dj
b,λ+1f(z))′

(Dj
b,λf(z))′

.
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Proof. Let p be defined by (2.16) and ψ by (2.20). Since φ ∈ Φ′
n[Ω, q], (2.21)

and (3.3) yield

Ω ⊂ {
ψ(p(z), p′(z), p′′(z); z) : z ∈ U}

.

From (2.19), the admissibility condition for φ ∈ Φ′
n,1[Ω, q] is equivalent to the

admissibility condition for ψ as given in Definition 1.4. Hence ψ ∈ Ψ′
n[Ω, q],

and by Theorem 1.6, q(z) ≺ p(z) or q(z) ≺ (Dj
b,λ+1f(z))′

(Dj
b,λf(z))′

.

If Ω 6= C is a simply connected domain, and Ω = h(U) for some conformal
mapping h(z) of U onto Ω, the the class Φ′

n,1[h(U), q] is written as Φ′
n,1[h, q].

Proceeding similarly as in the previous section, the following result is an im-
mediate consequence of Theorem 3.7.

Theorem 3.8 Let q(z) ∈ H[q(0), 1], h(z) be analytic in U and φ ∈ Φ′
n,1[h, q].

If f ∈ A,
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

∈ Q1 and

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)

is univalent in U, then

h(z) ≺ φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
(3.4)

implies q(z) ≺ (Dj
b,λ+1f(z))′

(Dj
b,λf(z))′

.

Combining Theorem 2.14 and 3.8, we obtain the following sandwich-type the-
orem.

Corollary 3.9 Let h1(z) and q1(z) be analytic functions in U, h2(z) be uni-
valent in U, q2 ∈ Q1 with q1(0) = q2(0) = 1, and φ ∈ Φn,1[h2, q2] ∩ Φ′

n,1[h1, q1].

If f ∈ A,
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

∈ H[q(0), 1] ∩Q1 and

φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)

is univalent in U, then

h1(z) ≺ φ

(
(Dj

b,λ+1f(z))′

(Dj
b,λf(z))′

,
(Dj

b,λ+2f(z))′

(Dj
b,λ+1f(z))′

,
(Dj

b,λ+3f(z))′

(Dj
b,λ+2f(z))′

; z

)
≺ h2(z)

implies q1(z) ≺ (Dj
b,λ+1f(z))′

(Dj
b,λf(z))′

≺ q2(z).
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4 Open Problem

From the Definition 1.1 we have the following relation:

z(Dj
b,λf(z))′ = (1 + b)Dj

b+1,λf(z)− bDj
b,λf(z).

One can use this relation and the same techniques to prove the earlier results to
obtain a new set of results. Compare these results with the results given by [9].
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[3] G. Ş. Sălăgean, Subclasses of univalent functions, Lecture Note in
Math.(Springer-Verlag), 1013, (1983), 362-372.

[4] K. Al-Shaqsi and M. Darus, A multiplier transformation defined by con-
volution involving nth order polylogarithms functions. (Submitted)

[5] K. Al-Shaqsi and M. Darus, An operator defined by convolution involving
the polylogarithms functions. Journal of Mathematics and Statistics 4(1),
(2008), 46–50.

[6] L. J. Lin and S. Owa, Properties of the Salagean operator, Geo. Math. J.
5(4), (1998), 361-366.

[7] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-
to-convex functions, Bull. Korean Math. Soc. 40(3), (2003), 399-410.

[8] O. P. Ahuja, Integral operators of certain univalent functions, Inter. J.
Math. Math. Sci. 8(4), (1985), 653-662.

[9] R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordina-
tions and superordinations of analytic functions defined by the multiplier
transformation, to appear.



18 Al-Shaqsi and Darus

[10] S. Owa and H. M. Srivastava, Some applications of the generalized Libera
integral operator, Proc. Japan Acad. Set. A Math. Sei. 62, (1986), 125-
128.

[11] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and
Applications, Marcel Dekker Inc., New York, 2000.

[12] S. S. Miller and P. T. Mocanu, Subordinants of differential superordina-
tions, Complex Variables Theory Appl. 48(10), (2003), 815-826.

[13] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc. 49, (1975), 109-115.

[14] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some
related inequalities, J. Math. Anal. Appl. 38, (1972), 746-765.

[15] Y. C. Kim and H. M. Srivastava, Inequalities involving certain families
of integral and convolution operators, Math. Inequal. Appl. 7(2), (2004),
227–234.


