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Abstract
It is shown that the (empirically determined) mode
of the kernel estimate 1s uniformly convergent to the
conditional mode function under the ergodic condition
over a sequence of compact sets which increases to RY.
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1. Introduction

Let {(X;,Y;)}ien be a stationary process where (X;, Y;) take values in RYx R,
and distributed as (X,Y’). Suppose that a segment of data {(X;,Y;)}"; has
been observed. We are interested in predicting Y from the data for a fixed
value of X.

Such an approach has been investigated by several authors when the ob-
served data are i.i.d. or when the process is mixing (see the surveys by Collomb
[5] and Gyorfi et al. [7]).

However, we know that if the conditional distribution of Y given X has a
dominant center peak and a smaller peak far from the center, then it is more
reasonable to consider the conditional mode function.

The objective of this paper is to investigate the estimation of the conditional
mode function, assuming that it is uniquely defined. Also, to establish the
uniform almost sure convergence for the estimate of the conditional mode
function, obtained from the conditional density under the ergodic hypothesis,
which is more general than the i.i.d. case or even mixing situations over a
sequence of compact sets which increases to R

On the other hand, most of the results suppose that the data belong to
a fixed compact set, this is rather cumbersome for the applications. In our
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paper we deal with sequences belonging to a sequence of compact sets which
increases to R?.

Such a subject has been studied by many authors, among others, Parzen
[9] who studied the estimation of a probability density function and mode,
Collomb& al. [6] considered the case of the conditional mode function, Arfi
[2] used the mode function to investigate the prediction and Hermann & Ziegler
[8] proposed rates of consistency for a nonparametric estimation of the mode
in absence of smoothness assumptions.

The conditional mode is defined by means of the conditional density f(y|x)
of Y, given X, as follows: O(x) = arg max,cr f(y|z),

and the so-called empirical mode predictor is defined as the maximum of
fn(y|lz) over y € R, where f,(y|z) is the kernel estimate of f(y|z) defined by:

flz,y)
gn(x) 7

falylz) =

here g,(z) > 0, is the kernel estimate of the density function of X, g(z), and
fn(z,y) is the kernel estimate of the joint density of the pair (X,Y), f(x,y).
These kernel estimates are defined, respectively, as follows:

1 . y-Y r—X;
fn(xay) = nhg+1 ;KQ( hn )Kl( hn )7

and

gn(m)_WiZKl( I >;

here K; (K3) are two Parzen-Rosenblatt kernels on R? (R) with K, strictly
positive and bounded variation, and K, compactly supported; h,, is a sequence
of positive numbers such that: h, — 0 and nh?*' — oo when n — oc.

We show that the random function ©,(z) = arg max fn(ylz) converges
ye

uniformly over a sequence of compact sets C,, (which increases to R?) to the
mode function ©(x).
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2. Assumptions and Main Arguments

We denote by F;_; and G,_;, the o-fields generated by {(X;_;,Y;_;); 1 <
j<i}and {X;_j; 1 <j<i}, respectively.

We assume the existence of the conditional densities fg;l (.,.) and g)gg"l (\)
of the variables (X,Y) and X with respect to F;_; and G; ;.

It will be further assumed that f(.,.) and g(.) € Co(R?), j = d,d+ 1 where
Co(R’) denotes the space of real-valued continuous functions on R’ tending
to zero at infinity. The same assumption will be made for the conditional

Fi-1 Gi—1
densities fy'y' and gy .

Under the previous conditions, the Theorem in Beck [4] implies the follow-
ing condition named the (7") condition:

Tin= sup |n~ fo’ Ya,y) — flay)] 250, n— oo
(z,y)€ERIXR
Ty = sup|n” 129%1 (z)] £ 0, n — oo,
r€RA

for ergodic processes satisfying some further mild regularity conditions (
Gyorfi et al. [7]).

In the sequel, we suppose that the (7") condition holds and we suppose that
Tin=o0(n"%) and Ty, = o(n™*').

Moreover, the conditional densities f;f;l (.) and gfg* (.) are assumed to be
Lipschitz, in the sense that:

Fi_ Fi_ ro
1y () = iy (9] < Hl(@,9) = (2, 4)[rasr.

Gi_ Gi_ ! ’
9% (@) — g% (@) < ||z — 2 [|a-

We will also make use of the following assumptions:

A1. The process (X;,Y;)ien is strictly stationary and ergodic

A2. The joint distribution Py yy of the pair (X,Y") is absolutely continuous
with regard to the Lebesgue measure on R? x R.

A3. There exists a > 0, such that g(z) > n=% n > 1, for all x € C,,, where
Cn =A{x:||z|]| < ¢y} with ¢, — 00, n — 0.

A4. The kernels K;, j = 1,2 are Lipschitz of order v, > 0, in the sense that:
dLg <oo  |Kj(u) — K;(v)| < Lglu—vr j=1,2.
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A5. K;, j = 1,2 are bounded and integrate to one.
A6. The mode function ©(.) satisfies the following condition on a sequence
of compact sets C,,:
Ve, >0, 38, >0,(V¢ C, —R%
sup |f(O(z)[z)—f(C(2)]x)] = B,

if  sup |O(z)—((x)| > €,, then
zeClp zeCh

AT. There exists £ > 2 and M < oo such that E|Y|¢ < M.

3. Main Result

Our main result is stated in the theorem below

Theorem
We suppose that the assumptions Al to A7 hold. We further assume that

the sequence h,, satisfies:

(1)

2D
lim —— =00, n*'h* —0 fora>0 and k>3
n—oo  Logn
and
d(a+1)/v; d(L )1/71 _1_
n €, \LOgN n 2 _12(d+1)
Ve, > 0, Y CE R ho " exp{—eZnh } < oo

n

for n>1+4+(d+2)/y,+(d+1)/7? , with a >0 and ju a positive constant.

If the kernel K yis even with [ 2*Ki(2)dz < oo for k> 1, then

sup |0, (z) — O(z)| 20, n — oo.
(EGCn

Remarks
1) As sequences h,, and ¢, we can choose h,, = O(n~?) with b < 1/2(d + 1)

and ¢, = O((Logn)Y/").
2) In the ergodic case, there is no general theoretical result to determine
the precise rate of convergence. The convergence can be arbitrarily fast.

4. Preliminary Results

sup sup | fu(ylz) — f(ylz)| <
zeCyp yeR
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1
— X4 SUp sup | fa(z,y) — f(x,y)| + sup sup|fn(y|@)||gn(z) — g(x)] p <
inf g(x) zeC, yeR z€Cy, yeR

n® ¢ sup sup | fu(2,y) — f(z,y)| + sup sup|fn(y|2)||gn(z) — g(z)]
zeCy yeR zeCy yeR

with

K K
sup| fn(ylx)| < — then n~tsup| £, (y|z)| < — < M; < >
yeglf (ylz)| < e yelg!f (y]2)] oh T 1

where M;is a positive constant and K = max { sup K (x), supKs(y), 1}
rER yeER

K is an upperbound of K; and we can write

sup sup | fn(y|z)—f(ylz)| < n® sup sup | fo(z, y)—f (2, y)|+Min*"" sup |gn(z)—g(z)]
zeCy, yeR zeCy yeR zeCy

Definition
A process (X;)ien is called a martingale difference, if it is real valued and
satisfies:

E(XZ|.AZ_1) =0 Vie N,
where A;_1 denotes the o-field generated by the past of the process (X;).

Lemma 1 (Azuma [3])
If (Xi)ien is a martingale difference with | X;| < B a.s., then for all € > 0

n 2
P{|ZX2| >e} §26Xp{—2532}.

=1

If (X))ien is real-valued with | X;| < B a.s., then for all integers m > 0
such that 1 —m > 0 and all € > 0,

P {| SUIXG — B Fn)]| > e} < 2mexp {—m} .

=1
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Lemma 2
Under assumptions Al to A5, we have:

0" sup |ga(x) — g()] 250, n - ox.
CEECTL

Proof:
Consider the following decomposition:

with

1 ZL‘—XZ Gi1 I—Xl
e =g (557) 2o (5 |
1 r— X;
_ Gi— v
and V,(x) = o ZE 'K ( ™ > —g(7),
Where, Eg"*l(.) = E(|gz_1) and gl‘_l = O'(Xi_j; 1 S j < Z)
B

For fixed w, Z; is a martingale difference with |Z;(z)| < —%5
B is a positive constant. Then, by applying Lemma 1, we obtain

P{n“+1|ZZZ-(x)| > e} = P{|ZZZ($)| > En} < QGXP{_2€g2nhid}; (2)

Ve > 0 and €, = en ® ! .The choice of h, in the Theorem allows us to
conclude that:

a.s., where

n
n*t Z Zi(x)| — 0,a.s. when n — oc.
i=1

Next, we show that: n®*! sup,cq | S0, Zi(z)| == 0, n — oc.

We cover C, by p, spheres in the shape of {z : ||z — ;|| < cup, '} for
1<j<ul ¢, — oo and p, chosen such that p, — oo to be defined later
and we make the following decomposition.

< a2 () - ()|

nl4=1

1 - z — X; Tpi — X
- Gi_1 7 N nj 7
g o | () - ()

n

1 Tnj — Xz Gi1 Tnj — Xz
i |2 [ () e (e >H

n|i=1

+
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We have:
not! | & x— X Tni — X; n® Ly
B (5) s ()] = i
no|i=1 " " m
LKnaJrl B 1
e C;Yzllvbn% —
hatT Logn

where p,, is chosen such that

L}(,/’Yl Cnn(l"_a)/’Yl (Logn)l/’Yl
hg/’Yﬁrl

Hp =

Then:

n*sup

Q?ECH

> Zi(x)

i=1

Z |:K1 (33 jh ) _Egz—lKl (317 Jh ):| ‘ + Logn.

i=1
> 2€n> <
> €n> .

<

na—l—l

sup ——
d
1<j<pd T

For all n > ny(¢) and for all e > 0

>2c| =P | su
) <$E£L Z

n

Zi(z) Zi(z)

zeCly

1= i=1

P (n‘”l sup

s, n

- 1 Tnj — Xi Tnj — Xi
> Pl =D K (T —) - B9 K [
j=1 (nh% i=1 |: 1< hn ) 1< h'n )‘|

Applying Azuma’s Lemma p¢ times we obtain:

n 627’Lh2d
P [ sup ZZz(x) > 26, | < 2upexp | —"—- | <
Z‘GCn i=1 8K1
2 h2d
Qh;d(d/'Yl‘f'l)L?(/’h Cind(l—i_a)/’h (Logn)d/% €Xp <_€7;n?;)
1

where K is an upperbound of K.
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The hypotheses of the Theorem and Borel-Cantelli lemma permit to con-
clude.

Now, we show that: n*"sup,cc |Vo(z)] =0, n — oo. Write

Vn(x)znihg/ (u_x)Zg w)du — g(z),

and set 2z = (u—x)/h, to obtain:

sup |V, (x)| < sup

Ki(z)n™* [g)gg"l(zhn +x) — g)gg’l(:n)} dz

zeCy zeCyp |JRA =
+ sup Ki(2) [n_l Zg)gg‘l(x) - g(x)] dz| .
.Z‘Eon Rd i=1

By the assumption that the conditional densities satisfy the Lipschitz condi-
tion, we obtain

n®t sup |V, (z)| < n®TRE [ 2R (2)de+

xec’n Rd
! sup g(x Ki(z2)dz.
o Zg ) i 1(2)

The condition (T'), the choice Ty,, = o(n™*"!) and the assumption about
the kernel K permit us to conclude that:

1 sup |V, ()| 220, n — oo.
$EC7L

Lemma 3
Under the assumptions of the Theorem, we have:

n® sup sup | fu(z,y) — f(z,y)] == 0, n — oco.
zeCy, yeR

Proof:
fn(xvy) - f(ﬂf,y) = ZZZ<x7y) + Tn(ZE,y),

=1
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where

1 - . y—Y; r—X;
To(w,y) = WZEE_I {K2 ( . > K ( ; )} - [(z,y),
noog=1 " "
1 y—Y; r— X
Zi(x,y) = i ( I ) K ( " ) -

1 Fi_ Yy — }2 X __;X¥
a5 9 (5.

2K?
nh%+1’

and

Z; is a martingale difference with |Z;| < where

K = max { sup Ki(zx),sup Ks(y), 1} :

zeR4 yeR

Then, apply Lemma 1 to obtain:

Ve > 0, P{|ZZZ~| >n—%} :P{|ZZi| >en} <
i=1 1=1

2exp { —Cie2nh2 DY (3)

where (] is a positive constant.
Condition (1) in the Theorem permits us to conclude:

ZP{n“|§:Zi| > 6} < 00.
n i=1

Next, we show that: nsup,.q, sup,eg| > i Zi(z,y)| = 0, n — oo.

We cover C,, by ul spheres: {z : ||z — || < copyt}y, 1 <5 < pd,
where ¢, — o0, and p,, is chosen so that u,, — oo, to be defined precisely
later.

Consider the following decomposition:

n

3" Ziw) = 3 [Tila) — Tilrag. )] -

=1

Z Ef¢—1[Ti<x7 y) — Ti<xnja y)] + Z[TZ(ZETU, y) — Efi—l Ti<$nj, y)];
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where T;(.,y) = —nhéﬂfﬁ (y}:/) K, (;f) )
By the fact that the kernel K is Lipschitz, we obtain:
LK[A{'”@ LKK’H,& _
n’ sup sup T, Y S [l — Xy 71 S —C;YL1lun’Y1
veCyy yeR | ; ( J )} hﬁll+1+fyl H J H hg+1+fyl

1
~ Logn’

/71 771/ a/ 1/
L "MK/ ¢,n® 71 (logn)'/ 71
hgld+1+v1)/“/1 — 0. ThllS,

where i, is chosen so that:  p,, =

n® sup sup | Zi(z,y)| <
zeCy, yeR z_;

n® sup sup| S [Tu(tngsy) — 5 Vil )] +

1<]</4 yeR i=1

Logn’
and then, for all n > ny(¢) and all € > 0, if we put €, = n~

P { sup sup | ZZZ(x,y)] > 26n} <

% we have:

zeCy yeR i—1

(4)

For fixed j, set:

n

i=1

n

ly| > vy
=1

_1
where v,, is defined by v,, = h, " with p being a positive constant
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Then we have

n

sup ‘ Z[T’L(‘rnﬁ y) - E}—iilfri<xnj7 y)]l S sup |An(xnj7 y)’ + sup |5n(xnj7 y)’

yeR ly|<vn ly|>vn

Cover [—v,,, v,] by [, spheres B, with centers ¢, and radii less than or equal
to h!', where [,, < v,h;" and 7 is a fixed number. Then by arguments similar
to those in the proof of Lemma 2, we obtain:

SUp | A (@, )] < Aoh 707D g5
|y‘§'un

where /Avn(a:nj, y) = An(Tnj,y) — Ap(xnj, ts) and g is a positive constant.
Furthermore,

ln
Wy = P{ max |A,(z,;,ts5)] > en/Z} < ZP{|An(xnj,ts)] > €e,/2} <
s=1

s=1,....1n

l, sup P{|An(xnj,y)| > €,/2}.

ly|<vn,
Then inequality (3) implies:  w,, < 2v,h,7exp{—C1e*n h%(dﬂ)}_
Applying Lemma 1, p¢ times, we obtain:

P{sup sup |ZZi(x,y)| > en} <

xEC'n |y|§Un i=1

ad/v4 de/'Yl ~d/71 (L )d/’yl o1
n Gl 'K ogn 7 5 2(d+1)
hz(dJrlJF%)/’h o™ " eXp{_Clennhn }

The assumptions of the Theorem permit us to conclude that:

nt sup sup |3 Zw.y)| 25 0
x€Ch |y|<vn i1

It remains to show that: n®supy,,, [0n(Zns, )| 2%0. We have

n

sup |0, (255, y)| < sup ’ZTi<xnjuy)| + sup |ZEFi71Ti(xnj7y)|7

ly|>vn, [ — ]

and by the compactness of the support of K,

_v _
Ko (y . > < Kljyso, /2

n
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Therefore
n 1 . n
sup | Y Ti(ng, )| € =25 K2 Y Tvipsun2 (5)
ly[>vn 24 Ny, i=1
with
PIY] > v,/2) < (20, (E[Y]%) (6)

for a certain & > 0 such that & > py,(n—1).
For all € > 0, we have

sup | Z Ti(xnj7 y)' .
|y‘>vn i=1

=1

P{ sup |ZTi(xnj,y)| > en} <e'E
ly|>vn

Then, using (5) and (6) we obtain:

- 1752 —d—1 (0, —1\€ ¢ 1, 1 o ¢
P osup | Ti(was,p)| > €0 ¢ < 6 K20y 20, F(EIYTS) = 6, K2, P 2BV ).

‘y|>7}n i=1

Inequality (4) implies:

i —d-1+&
P{sup sup ]ZZi(a:,y)] > 26n} < A,uflhnd o (E|Y]%),

zeCh ly|>vn ]

where A is a positive constant.
The choice of £ and the assumptions of the Theorem permit us to conclude
that:

n
n® sup sup | Y Zi(z,y)| <> 0

zeCy yeR i—1

To complete the proof of Lemma 3, we need to show that:

n® sup sup |T,,(z,y)| =20, n — oo.
zeCn yeR

To this end:

Tn(LC, Z/) =

1 — - y—Y; r—X;
nhd+1 § :E}—lfl {K2 ( h ) Ky ( n )} — f(z,y),
nog=1 " "

EE_I{KQ(yhn )Kl( . >}:

with
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//RdeK2 ( _nv> K (xh—nu) v (u,v)dudv.

Properties of the Bochner’s integral permit to write

To(v,y) =

hdﬂ//RdelQ( _nv)Kl( h, ) _1fo (u,v)dudv — f(z,y).

Then if we set z1 = (z — u)/hp, 20 = (y — v)/hn, we obtain

To(z,y) :/ o RK2 z9) Ki(21)n Z (w—21hn, y—22hn)d21d2o— f (3, ).
X

Condition (7T") and the fact that the conditional densities sz ' are Lip-
schitz and similar arguments to those used before yield:

i sup sup [Tz, y)] 250, 0 — o0
zeCyn yeR

5. Proof of the Main Result
By the definitions of ©,,(x) and O(z), we have

|f(On(z)|2)—f(O(z)|2)] < |fu(On(@)]|2)—f(On(z)|2)[+| fu(On(z)|z)—f(O(2)|7)]
< sup |fu(ylz) — flylz)| + |sup fulylz) —sup f(y|z)]
yeR yeR yeR
< 2225 | falylz) — f(ylo)].

Assumption A6 implies that for all €, > 0 there exists (3, > 0 such that:

P (Sup 0, (z) — O(x)] > en) <P (sup sup | fn(ylz) — f(ylz)| = ﬁn) ,

zeChp zeCh yeR

which completes the proof of the Theorem.

The Open Problem

The rate of convergence remains up to now very hard to control because
it could be arbitrarily fast, one can consider this study in the case when the
process is ergodic on each compact set separately and find a function to con-
clude for the whole space.
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