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Abstract
It is shown that the (empirically determined) mode

of the kernel estimate is uniformly convergent to the
conditional mode function under the ergodic condition
over a sequence of compact sets which increases to Rd.
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1. Introduction
Let f(Xi; Yi)gi2N be a stationary process where (Xi; Yi) take values inRd�R

and distributed as (X;Y ). Suppose that a segment of data f(Xi; Yi)gni=1 has
been observed. We are interested in predicting Y from the data for a �xed
value of X.
Such an approach has been investigated by several authors when the ob-

served data are i.i.d. or when the process is mixing (see the surveys by Collomb
[5] and Györ� et al. [7]).
However, we know that if the conditional distribution of Y given X has a

dominant center peak and a smaller peak far from the center, then it is more
reasonable to consider the conditional mode function.
The objective of this paper is to investigate the estimation of the conditional

mode function, assuming that it is uniquely de�ned. Also, to establish the
uniform almost sure convergence for the estimate of the conditional mode
function, obtained from the conditional density under the ergodic hypothesis,
which is more general than the i.i.d. case or even mixing situations over a
sequence of compact sets which increases to Rd.
On the other hand, most of the results suppose that the data belong to

a �xed compact set, this is rather cumbersome for the applications. In our
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paper we deal with sequences belonging to a sequence of compact sets which
increases to Rd:
Such a subject has been studied by many authors, among others, Parzen

[9] who studied the estimation of a probability density function and mode,
Collomb& al. [6] considered the case of the conditional mode function, Ar�
[2] used the mode function to investigate the prediction and Hermann & Ziegler
[8] proposed rates of consistency for a nonparametric estimation of the mode
in absence of smoothness assumptions.

The conditional mode is de�ned by means of the conditional density f(yjx)
of Y , given X, as follows: �(x) = argmaxy2R f(yjx);
and the so-called empirical mode predictor is de�ned as the maximum of

fn(yjx) over y 2 R, where fn(yjx) is the kernel estimate of f(yjx) de�ned by:

fn(yjx) =
fn(x; y)

gn(x)
;

here gn(x) > 0, is the kernel estimate of the density function of X, g(x), and
fn(x; y) is the kernel estimate of the joint density of the pair (X; Y ), f(x; y).
These kernel estimates are de�ned, respectively, as follows:

fn(x; y) =
1

nhd+1n

nX
i=1

K2

�
y � Yi
hn

�
K1

�
x�Xi

hn

�
;

and

gn(x) =
1

nhdn

nX
i=1

K1

�
x�Xi

hn

�
;

here K1 (K2) are two Parzen-Rosenblatt kernels on Rd (R) with K1 strictly
positive and bounded variation, and K2 compactly supported; hn is a sequence
of positive numbers such that: hn ! 0 and nhd+1n !1 when n!1.

We show that the random function �n(x) = argmax
y2R

fn(yjx) converges

uniformly over a sequence of compact sets Cn (which increases to Rd) to the
mode function �(x).
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2. Assumptions and Main Arguments

We denote by Fi�1 and Gi�1, the �-�elds generated by f(Xi�j; Yi�j) ; 1 �
j < ig and fXi�j ; 1 � j < ig, respectively.

We assume the existence of the conditional densities fFi�1X;Y (:; :) and g
Gi�1
X (:)

of the variables (X; Y ) and X with respect to Fi�1 and Gi�1.
It will be further assumed that f(:; :) and g(:) 2 C0(Rj), j = d; d+1 where

C0(Rj) denotes the space of real-valued continuous functions on Rj tending
to zero at in�nity. The same assumption will be made for the conditional
densities fFi�1X;Y and gGi�1X :

Under the previous conditions, the Theorem in Beck [4] implies the follow-
ing condition named the (T ) condition:

T1;n = sup
(x;y)2Rd�R

jn�1
nX
i=1

f
Fi�1
X;Y (x; y)� f(x; y)j

a:s:�! 0; n!1

T2;n = sup
x2Rd

jn�1
nX
i=1

g
Gi�1
X (x)� g(x)j a:s:�! 0; n!1;

for ergodic processes satisfying some further mild regularity conditions (
Györ� et al. [7]).
In the sequel, we suppose that the (T ) condition holds and we suppose that

T1;n = o(n
�a) and T2;n = o(n�a�1).

Moreover, the conditional densities fFi�1X;Y (:) and g
Gi�1
X (:) are assumed to be

Lipschitz, in the sense that:

jfFi�1X;Y (x; y)� f
Fi�1
X;Y (x

0
; y

0
)j � jj(x; y)� (x0 ; y0)jjRd�R;

jgGi�1X (x)� gGi�1X (x
0
)j � jjx� x0jjRd :

We will also make use of the following assumptions:

A1. The process (Xi; Yi)i2N is strictly stationary and ergodic

A2. The joint distribution P(X;Y ) of the pair (X; Y ) is absolutely continuous
with regard to the Lebesgue measure on Rd � R.

A3. There exists a > 0, such that g(x) � n�a, n � 1; for all x 2 Cn, where
Cn = fx : jjxjj � cng with cn �!1; n!1.

A4. The kernels Kj, j = 1; 2 are Lipschitz of order 
1 > 0, in the sense that:
9LK <1 jKj(u)�Kj(v)j � LK ju� vj
1 j = 1; 2:
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A5. Kj, j = 1; 2 are bounded and integrate to one.

A6. The mode function �(:) satis�es the following condition on a sequence
of compact sets Cn:

8�n > 0; 9�n > 0; (8� Cn ! Rd)

if sup
x2Cn

j�(x)��(x)j � �n; then sup
x2Cn

jf(�(x)jx)�f(�(x)jx)j � �n:

A7. There exists � > 2 and M < 1 such that EjY j� < M:

3. Main Result
Our main result is stated in the theorem below
Theorem
We suppose that the assumptions A1 to A7 hold. We further assume that

the sequence hn satis�es:

lim
n!1

nh
2(d+1)
n

Logn
=1; na+1hkn �! 0 for a > 0 and k � 3 (1)

and

8�n> 0 ;
X
n

nd(a+1 )=
1 cdn (Logn)
1=
1

h
d(d+1+
1 )=
1
n

h
� 1
�
��

n expf��2nnh2 (d+1 )n g <1

for � > 1+ (d+2)=
1+(d+1)=

2
1 , with a >0 and � a positive constant.

If the kernel K 1is even with

Z
zkK1(z)dz <1 for k � 1, then

sup
x2Cn

j�n(x)��(x)j
a:s:�! 0; n!1:

Remarks
1) As sequences hn and cn we can choose hn = O(n�b) with b < 1=2(d+1)

and cn = O((Logn)1=
1).
2) In the ergodic case, there is no general theoretical result to determine

the precise rate of convergence. The convergence can be arbitrarily fast.

4. Preliminary Results

sup
x2Cn

sup
y2R

jfn(yjx)� f(yjx)j �
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1

inf
x2Cn

g(x)
�

8<: supx2Cn
sup
y2R

jfn(x; y)� f(x; y)j+ sup
x2Cn

sup
y2R
jfn(yjx)jjgn(x)� g(x)j

9=; �

na

8<: supx2Cn
sup
y2R

jfn(x; y)� f(x; y)j+ sup
x2Cn

sup
y2R
jfn(yjx)jjgn(x)� g(x)j

9=;
with

sup
y2R
jfn(yjx)j �

eK
hnK1

then n�1sup
y2R
jfn(yjx)j �

eK
nhnK1

< M1 <1

where M1is a positive constant and eK = max

�
sup
x2Rd

K1(x); sup
y2R
K2(y); 1

�
K1 is an upperbound of K1 and we can write

sup
x2Cn

sup
y2R

jfn(yjx)�f(yjx)j � na sup
x2Cn

sup
y2R

jfn(x; y)�f(x; y)j+M1n
a+1 sup

x2Cn
jgn(x)�g(x)j

De�nition
A process (Xi)i2N is called a martingale di¤erence, if it is real valued and

satis�es:
E(XijAi�1) = 0 8i 2 N�;

where Ai�1 denotes the �-�eld generated by the past of the process (Xi).

Lemma 1 (Azuma [3])
If (Xi)i2N is a martingale di¤erence with jXij � B a.s., then for all � > 0

P

(
j
nX
i=1

Xij > �
)
� 2 exp

�
� �2

2nB2

�
:

If (Xi)i2N is real-valued with jXij � B a:s:, then for all integers m > 0
such that i�m > 0 and all � > 0,

P

(
j
nX
i=1

[Xi � E(XijFi�m)]j > �
)
< 2m exp

�
� �2

2nm2B2

�
:
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Lemma 2
Under assumptions A1 to A5, we have:

na+1 sup
x2Cn

jgn(x)� g(x)j
a:s:�! 0; n!1:

Proof:
Consider the following decomposition:

gn(x)� g(x) =
nX
i=1

Zi(x) + Vn(x)

with

Zi(x) =
1

nhdn

�
K1

�
x�Xi

hn

�
� EGi�1K1

�
x�Xi

hn

��
;

and Vn(x) =
1

nhdn

nX
i=1

EGi�1K1

�
x�Xi

hn

�
� g(x);

where, EGi�1(:) = E(:jGi�1) and Gi�1 = �(Xi�j; 1 � j < i).
For �xed x, Zi is a martingale di¤erence with jZi(x)j � B

nhdn
a:s:, where

B is a positive constant. Then, by applying Lemma 1, we obtain

P

(
na+1j

nX
i=1

Zi(x)j > �
)
= P

(
j
nX
i=1

Zi(x)j > �n

)
� 2 exp

�
� �2n
2B2

nh2dn

�
; (2)

8� > 0 and �n = �n�a�1 .The choice of hn in the Theorem allows us to
conclude that:

na+1j
nX
i=1

Zi(x)j �! 0; a:s: when n!1:

Next, we show that: na+1 supx2Cnj
Pn

i=1 Zi(x)j
a:s:�! 0; n!1:

We cover Cn by �n spheres in the shape of fx : jjx� xnjjj � cn��1n g for
1 � j � �dn; cn �! 1 and �n chosen such that �n �! 1 to be de�ned later
and we make the following decomposition.

�����
nX
i=1

Zi(x)

����� � 1

nhdn

�����
nX
i=1

�
K1

�
x�Xi

hn

�
�K1

�
xnj �Xi

hn

�������+
1

nhdn

�����
nX
i=1

EGi�1
�
K1

�
x�Xi

hn

�
�K1

�
xnj �Xi

hn

�������+
1

nhdn

�����
nX
i=1

�
K1

�
xnj �Xi

hn

�
� EGi�1K1

�
xnj �Xi

hn

������� :
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We have:

na+1

nhdn

�����
nX
i=1

�
K1

�
x�Xi

hn

�
�K1

�
xnj �Xi

hn

������� � na+1LK

h
d+
1
n

jjx� xnjjj
1 �

LKn
a+1

h
d+
1
n

c
1n �
�
1
n =

1

Logn

where �n is chosen such that

�n =
L
1=
1
K cnn

(1+a)=
1(Logn)1=
1

h
d=
1+1
n

�!1:

Then:

na+1 sup
x2Cn

�����
nX
i=1

Zi(x)

����� �

sup
1�j��dn

na+1

nhdn

�����
nX
i=1

�
K1

�
xnj �Xi

hn

�
� EGi�1K1

�
xnj �Xi

hn

�������+ 2

Logn
:

For all n � n1(�) and for all � > 0

P

 
na+1 sup

x2Cn

�����
nX
i=1

Zi(x)

����� > 2�
!
= P

 
sup
x2Cn

�����
nX
i=1

Zi(x)

����� > 2�n
!
�

�dnX
j=1

P

 
1

nhdn

�����
nX
i=1

�
K1

�
xnj �Xi

hn

�
� EGi�1K1

�
xnj �Xi

hn

������� > �n
!
:

Applying Azuma�s Lemma �dn times we obtain:

P

 
sup
x2Cn

�����
nX
i=1

Zi(x)

����� > 2�n
!
� 2�dn exp

 
��

2
nnh

2d
n

8K
2

1

!
�

2h�d(d=
1+1)n L
d=
1
K cdnn

d(1+a)=
1(Logn)d=
1 exp

 
��

2
nnh

2d
n

8K
2

1

!
where K1 is an upperbound of K1:
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The hypotheses of the Theorem and Borel-Cantelli lemma permit to con-
clude.

Now, we show that: na+1supx2CnjVn(x)j
a:s:�! 0; n!1: Write

Vn(x) =
1

nhdn

Z
Rd
K1

�
u� x
hn

� nX
i=1

g
Gi�1
X (u)du� g(x);

and set z = (u� x)=hn to obtain:

sup
x2Cn

jVn(x)j � sup
x2Cn

�����
Z
Rd
K1(z)n

�1
nX
i=1

h
g
Gi�1
X (zhn + x)� gGi�1X (x)

i
dz

�����
+ sup
x2Cn

�����
Z
Rd
K1(z)

"
n�1

nX
i=1

g
Gi�1
X (x)� g(x)

#
dz

����� :
By the assumption that the conditional densities satisfy the Lipschitz condi-
tion, we obtain

na+1 sup
x2Cn

jVn(x)j � na+1hkn
Z
Rd
zkK1(z)dz+

na+1 sup
x2Cn

�����n�1
nX
i=1

g
Gi�1
X (x)� g(x)

�����
Z
Rd
K1(z)dz:

The condition (T ); the choice T2;n = o(n�a�1) and the assumption about
the kernel K1 permit us to conclude that:

na+1 sup
x2Cn

jVn(x)j
a:s:�! 0; n!1:

Lemma 3
Under the assumptions of the Theorem, we have:

na sup
x2Cn

sup
y2R

jfn(x; y)� f(x; y)j
a:s:�! 0; n!1:

Proof:

fn(x; y)� f(x; y) =
nX
i=1

Zi(x; y) + Tn(x; y);
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where

Tn(x; y) =
1

nhd+1n

nX
i=1

EFi�1
�
K2

�
y � Yi
hn

�
K1

�
x�Xi

hn

��
� f(x; y);

and

Zi(x; y) =
1

nhd+1n

K2

�
y � Yi
hn

�
K1

�
x�Xi

hn

�
�

1

nhd+1n

EFi�1
�
K2

�
y � Yi
hn

�
K1

�
x�Xi

hn

��

Zi is a martingale di¤erence with jZij � 2 eK2

nhd+1n
, where

eK = max

�
sup
x2Rd

K1(x); sup
y2R

K2(y); 1

�
:

Then, apply Lemma 1 to obtain:

8� > 0; P

(
j
nX
i=1

Zij > n�a�
)
= P

(
j
nX
i=1

Zij > �n

)
�

2 exp
�
�C1�2nnh2(d+1)n

	
; (3)

where C1 is a positive constant.
Condition (1) in the Theorem permits us to conclude:

X
n

P

(
naj

nX
i=1

Zij > �
)
<1:

Next, we show that: nasupx2Cn supy2Rj
Pn

i=1 Zi(x; y)j
a:s:�! 0; n!1:

We cover Cn by �dn spheres: fx : jjx � xnjjj � cn�
�1
n g, 1 � j � �dn,

where cn �! 1; and �n is chosen so that �n ! 1, to be de�ned precisely
later.

Consider the following decomposition:

nX
i=1

Zi(x; y) =
nX
i=1

[�i(x; y)��i(xnj; y)] �

nX
i=1

EFi�1 [�i(x; y)��i(xnj; y)] +
nX
i=1

[�i(xnj; y)� EFi�1�i(xnj; y)];
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where �i(:; y) = 1

nhd+1n
K2

�
y�Yi
hn

�
K1

�
:�Xi
hn

�
:

By the fact that the kernel K1 is Lipschitz, we obtain:

na sup
x2Cn

sup
y2R

j
nX
i=1

[�i(x; y)��i(xnj; y)] �
LK eKna
h
d+1+
1
n

jjx�xnjjj
1 �
LK eKna
h
d+1+
1
n

c
1n �
�
1
n

=
1

Logn
;

where �n is chosen so that: �n =
L
1=
1
K

eK1=
1cnna=
1 (logn)1=
1

h
(d+1+
1)=
1
n

!1: Thus,

na sup
x2Cn

sup
y2R

j
nX
i=1

Zi(x; y)j �

na sup
1�j��dn

sup
y2R

j
nX
i=1

[�i(xnj; y)� EFi�1�i(xnj; y)]j+
2

Logn
;

and then, for all n � n1(�) and all � > 0, if we put �n = n�a� we have:

P

(
sup
x2Cn

sup
y2R

j
nX
i=1

Zi(x; y)j > 2�n

)
�

�dnX
j=1

P

(
sup
y2R

j
nX
i=1

[�i(xnj; y)� EFi�1�i(xnj; y)]j > �n

)
: (4)

For �xed j, set:

nX
i=1

[�i(xnj; y)� EFi�1�i(xnj; y)] = �n(xnj; y) if jyj � vn

nX
i=1

[�i(xnj; y)� EFi�1�i(xnj; y)] = �n(xnj; y) if jyj > vn

where vn is de�ned by vn = h
� 1
�

n with � being a positive constant.
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Then we have

sup
y2R

j
nX
i=1

[�i(xnj; y)� EFi�1�i(xnj; y)]j � sup
jyj�vn

j�n(xnj; y)j+ sup
jyj>vn

j�n(xnj; y)j:

Cover [�vn; vn] by ln spheres Bs with centers ts and radii less than or equal
to h�n, where ln � vnh��n and � is a �xed number. Then by arguments similar
to those in the proof of Lemma 2, we obtain:

sup
jyj�vn

jf�n(xnj; y)j � �0h
1(��1)�(d+1)n a:s:;

where f�n(xnj; y) = �n(xnj; y)��n(xnj; ts) and �0 is a positive constant.
Furthermore,

!n = P

�
max

s=1;::::ln
j�n(xnj; ts)j > �n=2

�
�

lnX
s=1

P fj�n(xnj; ts)j > �n=2g �

ln sup
jyj�vn

P fj�n(xnj; y)j > �n=2g :

Then inequality (3) implies: !n � 2vnh��n expf�C1�2nnh
2(d+1)
n g.

Applying Lemma 1, �dn times, we obtain:

P

(
sup
x2Cn

sup
jyj�vn

j
nX
i=1

Zi(x; y)j > �n

)
�

nad=
1cdnL
d=
1
K

eKd=
1(Logn)d=
1

h
d(d+1+
1)=
1
n

h
��� 1

�
n expf�C1�2nnh2(d+1)n g:

The assumptions of the Theorem permit us to conclude that:

na sup
x2Cn

sup
jyj�vn

j
nX
i=1

Zi(x; y)j
a:s:�! 0:

It remains to show that: nasupjyj>vnj�n(xnj; y)j
a:s:�! 0: We have

sup
jyj>vn

j�n(xnj; y)j � sup
jyj>vn

j
nX
i=1

�i(xnj; y)j+ sup
jyj>vn

j
nX
i=1

EFi�1�i(xnj; y)j;

and by the compactness of the support of K2,

K2

�
y � Y
hn

�
� eKI[jY j>vn=2]:
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Therefore

sup
jyj>vn

j
nX
i=1

�i(xnj; y)j �
1

nhd+1n

eK2

nX
i=1

I[jYij>vn=2] (5)

with

P (jY j > vn=2) � (2v�1n )�(EjY j�) (6)

for a certain � > 0 such that � > �
1(� � 1).
For all � > 0, we have

P

(
sup
jyj>vn

j
nX
i=1

�i(xnj; y)j > �n

)
� ��1n E

"
sup
jyj>vn

j
nX
i=1

�i(xnj; y)j
#
:

Then, using (5) and (6) we obtain:

P

(
sup
jyj>vn

j
nX
i=1

�i(xnj; y)j > �n

)
� ��1n eK2h�d�1n (2v�1n )

�(EjY j�) = ��1n eK2h
�d�1+ �

�
n 2�(EjY j�):

Inequality (4) implies:

P

(
sup
x2Cn

sup
jyj>vn

j
nX
i=1

Zi(x; y)j > 2�n

)
� A�dnh

�d�1+ �
�

n (EjY j�);

where A is a positive constant.
The choice of � and the assumptions of the Theorem permit us to conclude

that:

na sup
x2Cn

sup
y2R

j
nX
i=1

Zi(x; y)j
a:s:�! 0

To complete the proof of Lemma 3, we need to show that:

na sup
x2Cn

sup
y2R

jTn(x; y)j
a:s:�! 0; n!1:

To this end:

Tn(x; y) =
1

nhd+1n

nX
i=1

EFi�1
�
K2

�
y � Yi
hn

�
K1

�
x�Xi

hn

��
� f(x; y);

with

EFi�1
�
K2

�
y � Yi
hn

�
K1

�
x�Xi

hn

��
=
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Z Z
Rd�R

K2

�
y � v
hn

�
K1

�
x� u
hn

�
f
Fi�1
X;Y (u; v)dudv:

Properties of the Bochner�s integral permit to write

Tn(x; y) =

1

hd+1n

Z Z
Rd�R

K2

�
y � v
hn

�
K1

�
x� u
hn

�
n�1

nX
i=1

f
Fi�1
X;Y (u; v)dudv � f(x; y):

Then if we set z1 = (x� u)=hn, z2 = (y � v)=hn, we obtain

Tn(x; y) =

Z Z
Rd�R

K2(z2)K1(z1)n
�1

nX
i=1

f
Fi�1
X;Y (x�z1hn; y�z2hn)dz1dz2�f(x; y):

Condition (T ) and the fact that the conditional densities fFi�1X;Y are Lip-
schitz and similar arguments to those used before yield:

na sup
x2Cn

sup
y2R

jTn(x; y)j
a:s:�! 0; n!1

5. Proof of the Main Result
By the de�nitions of �n(x) and �(x), we have

jf(�n(x)jx)�f(�(x)jx)j � jfn(�n(x)jx)�f(�n(x)jx)j+jfn(�n(x)jx)�f(�(x)jx)j
� sup

y2R
jfn(yjx)� f(yjx)j+ j sup

y2R
fn(yjx)� sup

y2R
f(yjx)j

� 2 sup
y2R

jfn(yjx)� f(yjx)j:

Assumption A6 implies that for all �n > 0 there exists �n > 0 such that:

P

�
sup
x2Cn

j�n(x)��(x)j � �n
�
� P

�
sup
x2Cn

sup
y2R

jfn(yjx)� f(yjx)j � �n
�
;

which completes the proof of the Theorem.

The Open Problem
The rate of convergence remains up to now very hard to control because

it could be arbitrarily fast, one can consider this study in the case when the
process is ergodic on each compact set separately and �nd a function to con-
clude for the whole space.
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