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Abstract

We consider a nonlocal double obstacle problem. This type of prob-
lems comes in various biological and physical situations, e.g., in phase
transition models. We focus on numerical approximations and fast com-
putation of such a model. We start with considering piece-wise basis
functions for spatial approximation followed by implicit Euler’s method
for time integration and then Newton’s method for solving resulting
non linear system. Then we apply various linear system solver to get
a time efficient technique to solve the model. We also attempt Fourier
transform in space as well.
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1 Introduction

Many problems from phase transitions and various biological processes have

been modeled by reaction-diffusion equations, and the diffusion terms usually
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involve the Laplacian differential operator are well known [18]. An alternative

model based on a convolution integral operator [16, 1, 4, 9, 14] in place of

the diffusion term arises in some cases, phase transition models [16, 1, 4, 9],

dynamics of neurons in the brain model [14], population dynamics models [15].

Some problems contain both local as well as nonlocal operators [6]. Study in

convolution model of phase transitions (initial value problem) is of ongoing

interest and a lot about numerical analysis is yet to be done.

Many models of phase transitions have been constructed using thermody-

namics concepts. Materials with fine mixture of phases are a familiar and well

studied phenomenon, especially in the metallurgy field. For an example the

separation of a binary alloy into two phases is a technologically important phe-

nomenon. Such mixtures raise a lot of questions. But the integro-differential

models focuses on the process is that of phase transition. A phase separation

occurs leading to a fine scaled mixture of phases.

In this article we study Numerical approximation and fast computation of

the integro-differential equation representing model of phase transitions

ut(x, t) = εLu(x, t) + f(u(x, t)) (1)

where

Lu(x, t) =

∫

Ω

J(x− y)u(y, t)dy − u(x, t)

∫

Ω

J(x− y)dy

with initial condition u(x, 0) = u0(x), x ∈ Ω where Ω ⊆ R, f(u) is a bistable

nonlinearity for the associated ordinary differential equation

ut = f(u) (2)

and J(x−y) is a kernel that measures interaction between particles at position

x and at position y within the block or between the blocks with A1)J(.) ≥ 0,

A2)J(x) is symmetric. Here it is assumed that the effect of close neighbours

x and y is greater than that from more distant ones; the spatial variation is

incorporated in J(x − y). u represents the density(concentration) at point x

in Ω of a binary material and ε ≥ 0 is interaction length. This type of model

based on a convolution integral operator arises in firing rate models in neuronal

networks [14] also. We can define u(x, t) in the following way.

Let us consider a binary alloy consisting many atoms of species X and Y

and it is specially divided into different sites. It is assumed that each site
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Figure 1: The figure shows f(u) and F (u).

contains atoms from X and Y. The dynamics of u is as follows. If u(x, t) is

continuous at (x, t), then its rate of change with time at that point is given

by (2). We will assume unless stated otherwise that f(u) is the derivative of a

double-well potential F (u) with two local minima at u = ±1, not necessarily of

equal depth , representing the bulk energy density of a state with u constant

shown in the Figure1 with f(u) = u − u3. The ODE ut = −u(u2 − 1) has

two attractors u = ±1 and u = 0 is an unstable equilibrium. So, the free

energy is reduced locally by continuous change in u. Let us consider for some

−1 < u1 < 0 < u2 < 1

f ′(u) < 0, ∀ (−1, u1) ∪ (u2, 1) and f ′(u) > 0 ∀ (u1, u2).

Then (−1, u1) and (u2, 1) are called metastable intervals and (u1, u2) is called

the spinodal interval. In Figure 1 the region between the vertical dashed lines

is called the spinodal region and outside the region is called the metastable

region.

Note that the convolution equation (1) is the L2-gradient flow of the free

energy functional

E(u) = ε

∫

Ω

∫

Ω

J(x− y) (u(y)− u(x))2 dxdy +

∫

Ω

F (u)dx (3)
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where u, and J are defined above and F ′(u) = −f(u) . In (3) the first integral

penalizes inhomogeneous materials and the second integral penalizes states

with all u for which u /∈ {−1, 1}. If we consider a binary alloy, for u ≈ ±1

both of the materials of the alloy is in either of the two pure phases, values in

between indicate a corresponding mixture of them. It is to be noted that the

minima of F have equal depth if
∫ 1

−1
fdu = 0. It is conceivable that a stable

state u exists taking values near -1 on an interval (−∞, a] and values 1 on an

interval of the form [b,∞) with a simple transition occurring on [a, b].

In [1] authors studied traveling wave solutions and the stationary solutions

of discrete version of (1). They performed existence, uniqueness and stability

of solutions of (1). In [5] author described solutions of (1) with their existence,

smoothness and stability. Results on stability and convergence of solutions of

the time dependent IDE (1) can also be found in [12]. Hutson and Grin-

feld [12] show that for small values of ε every solutions converges in L1 to an

equilibrium. Discussion about coarsening of solutions, stability and numerical

approximation of (1) can be found in detail in [9, 7]. In these articles authors

present stability and sample numerical of solutions using piecewise constant

basis functions.

Here we present some numerical computational techniques that speeds up

computation. In Section 2 we present approximation piecewise constant ba-

sis functions with Galerkin approach in space and show numerical results in

Section 3. Then we motivate ourselves to present some linear system solvers

that can speed up the computation followed by sample results in Section 4 and

Section 5 respectively. We finish with Fourier spectral method for the problem

in Section 6.

2 Numerical approximation of the problem in

space

Here we concentrate on numerical approximation of the problem (1) in space

considering periodic domain Ω = [0, 1]. Redefining the infinite domain problem

to a 1-periodic is well presented in [2, 8]. We start with approximating the

problem with piecewise constant basis function with Galerkin procedure. We

describe a Galerkin method with exact and approximate integrals. We divide
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the interval Ω into N equal subintervals (Ωj) with space mesh h and we define

xj = jh, and xj− 1
2

=
xj−1+xj

2
. The piecewise constant approximation uh of u

has value ûj = uh(xj+ 1
2
, t) on the space interval Ωj = [xj, xj+1].

Here we discuss the Galerkin approximation of (1) with piecewise constant

polynomials in space for the special one dimensional case. We define the basis

function φj+ 1
2
(x) as

φj+ 1
2
(x) =

{
1 when x ∈ (xj, xj+1),

0 otherwise.

We write the approximate solution uh as

uh(x, t) =
N−1∑
j=0

ûj+ 1
2
(t)φj+ 1

2
(x) (4)

where ûj+ 1
2
(t) ∈ R, for all j = 0, 1, 2, · · · , N − 1. Substituting (4) for u in (1),

multiplying by φk+ 1
2

for each k = 0, 1, 2, · · · , N − 1 and integrating over Ω, we

get the standard Galerkin approximation
(

φk+ 1
2
,
duh

dt

)
= (φk+ 1

2
, εLuh) + (φk+ 1

2
, f(uh)). (5)

Here (·, ·) is the usual L2 inner product and f(uh) =
∑N−1

j=0 f(ûj+ 1
2
)φj+ 1

2
(x).

From (5) we have

N−1∑
j=0

(
φk+ 1

2
, φj+ 1

2

) dûj+ 1
2

dt
=

N−1∑
j=0

(φk+ 1
2
, εLφj+ 1

2
)ûj+ 1

2
+

N−1∑
j=0

(φk+ 1
2
, φj+ 1

2
)f(ûj+ 1

2
)

⇐⇒
(
φk+ 1

2
, φk+ 1

2

) dûj+ 1
2

dt
=

N−1∑
j=0

(φk+ 1
2
, εLφj+ 1

2
)ûj+ 1

2
+ (φk+ 1

2
, φk+ 1

2
)f(ûk+ 1

2
)

⇐⇒ h
dûj+ 1

2

dt
= hf(ûk+ 1

2
) +

N−1∑
j=0

(φk+ 1
2
, εLφj+ 1

2
)ûj+ 1

2

⇒ duh

dt
= εAuh + f(uh) (6)

where, for j 6= k, the elements of A are

aj,k =
1

h
(φk+ 1

2
,Lφj+ 1

2
) =

1

h

∫ xk+1

xk

(∫ 1

0

J(x− y)
(
φj+ 1

2
(y)− φj+ 1

2
(x)

)
dy

)
dx

=
1

h

∫ xk+1

xk

∫ xj+1

xj

J(x− y)dydx if j 6= k
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and when j = k

ak,k =
1

h

∫ xk+1

xk

(∫ 1

0

J(x− y)
(
φk+ 1

2
(y)− φk+ 1

2
(x)

)
dy

)
dx

=
1

h

∫ xk+1

xk

∫ xk+1

xk

J(x− y)dydx− 1

h

∫ xk+1

xk

∫ 1

0

J(x− y)dydx.

Using the midpoint approximation for the integrals we get

aj,k = hJ
(
xk+ 1

2
− xj+ 1

2

)
, j 6= k, and

ak,k ≈ h2

h
J(xk+ 1

2
− xk+ 1

2
)− h2

h

N−1∑

k=0

J(xk+ 1
2
− xj+ 1

2
) = −h

N−1∑

k=0,j 6=k

J(xk+ 1
2
− xj+ 1

2
).

2.1 Numerical results

Here we present some experimental results obtained from the approximation

(6) using Matlab built in function ode15s. There is a parameter ε ≥ 0 mul-

tiplied with the coefficient matrix A in (6). That can result a stiff differential

equation for larger values of ε. It is well known that explicit solvers converge

slowly for the problems with stiffness [11, 13]. ode15s is designed to solve a

system of differential equations using implicit solvers and it converges faster

than explicit solvers for problems with stiffness, for more details please see

[2, 11, 19]. We set RelTol = 10−12, AbsTol = 10−15 to solve the system of

differential equations inside the Matlab ode15s solver. It is to mention that

we set the tolerance inside the framework of Matlab so that we get accurate

solution in time with machine precision that one can see from exact solution.

This choice is made to experiment the accuracy of spatial approximation (6).

We approximate the solution with kernel function J(x) =
√

100
π

e−100x2
and

f(u) = u − u3. The initial condition is u(x, 0) = sin(8πx2). In Figure 2 we

plot u(x, t) at various choice of t with parameter ε = 0.48, and N = 128 space

elements. Then we plot the equilibrium solutions of (6) for several values of ε in

Figure 3 again using N = 128 space elements. Now it is almost obvious to ask

how accurate such a piecewise constant approximation is. To investigate that

numerically, we begin by estimating the approximation error in solutions of

(6). Here we show the computational error and computational time taken for

solving (6) using the Matlab built in function ode15s with RelTol = 10−12,
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Figure 2: We plot the approximate solution at different times for fixed ε = 0.48,

u0 = sin(8πx2) and 128 space elements. Here we use the Matlab built in

function ode15s with RelTol = 10−12, AbsTol = 10−15.

AbsTol = 10−15 to solve the system of differential equations. Here we compute

the error of the approximate solutions. The solutions approximated using N

space elements are defined by uN(·, t). In Figure 4 we plot the discrete L2 norm

of the approximation error ‖uN(·, t) − uN
2
(·, t)‖ against N for each N = 2i

where i = 1, 2, ..., 9. We record the CPU time for each computation. From the

right subplot of Figure 4 we observe that the rate of convergence of piecewise

constant approximation in space appears to be O(h). From the left subplot of

Figure 4 we observe that computational cost is high with the set up we used

to solve the problem. We will look at ways to speed up the calculation in

Section 3.

3 The full discrete problem and computational

issues

We show in the results of Section 2.1 that calculations for this problem can be

expensive. As we choose Matlab implicit solver ode15s in earlier section, here
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Figure 3: Here we show the effect of ε on the approximate solution at t = 100

with 128 space elements, and u0 = sin(8πx2). Theses are close to equilibrium

solutions. Here we use the Matlab built in function ode15s with RelTol =

10−12, AbsTol = 10−15.

we start with implicit Euler method to solve (6) in time followed by Newton’s

method for the resulting nonlinear system of equations. We try and examine

couple of techniques to solve the system of linear system equations that arises

in each Newton iteration with the aim of speed the computation up.

Applying the implicit Euler approximation to the ODEs (6) gives the ap-

proximation

un+1
h − ε∆tAun+1

h −∆tf(un+1
h )− un

h = 0 (7)

which is a nonlinear system of equations for uN+1
h with given uN

h , constants

∆t, ε and matrix A. To solve (7) for uN+1
h let us consider

F (un+1
h ) ≡ un+1

h − ε∆tAun+1
h −∆tf(un+1

h )− un
h = 0. (8)

It is very important to solve (8) efficiently to cut the computational cost. One

efficient way to solve the problem is to use Newton’s method. We examine

various direct, iterative and approximate techniques to solve the system of

linear equations that arise in each Newton’s iteration step.
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Figure 4: In these subplots we show estimated error, and computational time

for the space discretisation used to approximate the problem. Here we use the

Matlab built in function ode15s with RelTol = 10−12, AbsTol = 10−15.

Newton’s Method for Nonlinear Systems of Equations

Newton’s method is one of the most common and popular methods to solve a

system of nonlinear equations. Here we consider

F (v) = 0. (9)

We use the Jacobian matrix J (v) = ∂F (v)
∂v

. To avoid the computation of the

inverse of the Jacobian matrix, the method can be divided into the steps in

the following algorithm.

Algorithm 1. Newton’s method to solve nonlinear system of equations

To solve the system of nonlinear equations (9) approximately with tolerance

TOL:

Step 1: start with an initial data v0, set dv = 0, number of iterations N .

Step 2: Calculate dv such that J (vk)dv = F (vk) and then update vk+1 =

vk − dv, for k ≤ N and check the convergence of solutions.

The main problem in the implementation of Newton’s method discussed

above for our problem is to solve the resulting system of linear equations at

each step. To avoid using the full Jacobian matrix, we investigate several
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approximate techniques to solve the system with desired accuracy and observe

the efficiency of the techniques.

For large system of equations, most work is done solving the linear system

of equations defined in Step 2 of the Newton’s Algorithm 1. An efficient way

to solve the system can speed up computation. We examine several linear sys-

tem solving techniques to get the best approach to solve the system of linear

equation arises in each Newton iteration. This is usually done by evaluating

and LU factorizing the Jacobian matrix J (vk) and performing back substi-

tution for dv. However, when J (vk) is very large it is natural to consider

alternatives such as iterative methods to speed up the computation.

We have done some experiments to solve the linear system in the Step

2 of the Newton iteration. We also approximate the Jacobian matrix J (vk)

using continuous Fourier transform and (2, 2) pade approximation to get a

computation time efficient method. Then with that approximate Jacobian we

solve the linear system using LU factorization. We compared this result with

various other solvers like direct method, LU factorization, several iterative

techniques which are discussed, in detail, in [3, 17] and references there in. We

start with approximating the Jacobian of (9) and then compare results with

various other linear solvers.

3.1 Jacobian approximation

Here we use Fourier transforms and pade approximation to find a approximate

Jacobian. Here we consider the infinite domain problem to perform Fourier

transform to get a time dependent differential equation. Then we use Pade

approximation [17] followed by the implicit Euler method in time to get an

approximate Jacobian. Before the main discussion let us introduce definition

of Fourier transform and its inverse. If u ∈ L2(R), then the Continuous Fourier

Transform (CFT) of u(x) in space can be defined as

û(ξ) =
1√
2π

∫ ∞

−∞
u(x)e−ixξdx ≡ (Fu)(ξ). (10)

If u, û ∈ L2(R), then the inverse Fourier transform is defined as

u(x) =
1√
2π

∫ ∞

−∞
û(ξ)eixξdξ ≡ (

F−1û
)
(x).
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Considering Ω = R and applying Fourier transform on (1) we have

ût = εq(ξ)û(ξ, t) + f̂(u) (11)

where q(ξ) =
√

2π
(
Ĵ(ξ)− Ĵ(0)

)
. Now if we consider J(x) =

√
ν
π

exp (−νx2),

then Ĵ(ξ) − Ĵ(0) = exp(− ξ2

4ν
) − Ĵ(0) ≈ −2ξ2

8ν+ξ2 using (2, 2) pade approxima-

tion [17] where ξ is small. Now −ξ2 ≡ CFT
(

∂2

∂x2

)
. Now using the above

approximation to q(ξ) we can approximate (11) as

ût =
−2εξ2

8ν + ξ2
û(ξ, t) + f̂(u)

⇔ (8ν + ξ2)ût = −2εξ2û(ξ, t) + (8ν + ξ2)f̂(u)

⇔ (8ν − ∂2

∂x2
)ut = 2ε

∂2

∂x2
u(x, t) + (8ν − ∂2

∂x2
)f(u) (12)

We can approximation (12) using second order central difference in space and

implicit Euler’s in time as

(8νI − T )(un+1 − un) = 2ε∆tTun+1 + ∆t(8ν − T )f(un+1) (13)

where I in an identity matrix and T is a triangular matrix as T = 1
h2 (1,−2, 1)

with some boundary conditions imposed on it. We compare (7) and (13) to

approximate

A ≈ 2(8νI − T )−1T ⇒ Au ≈ 2(8νI − T )−1(Tu).

Also we have Jacobian of (7) as

J = I−ε∆tA−∆tfu(u) ≈ (8νI−T )−1 [(8νI − T )− ε∆t2T −∆t(8νI − T )fu(u)]

considering A ≈ 2(8νI − T )−1T. Using the approximate Jacobian we replace

J dy = −F (u) by

[(8νI − T )− ε∆t2T −∆t(8νI − T )fu(u)] dy = (8νI − T )F (u)

where F (u) is defined in (8). We consider the following restriction:

•
u̇|x=0 =

∫ 1

0

J(0− y)(u(y, t)− u(0, t))dy + f(u)|x=0 and

u̇|x=1 =

∫ 1

0

J(1− y)(u(y, t)− u(1, t))dy + f(u)|x=1.
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3.2 Choice of Iterative methods to solve linear system

of equations

Here for simplicity we consider the linear system in Step 2 of the Algorithm 1

of the form

J dy = b (14)

where J = T1 + D, T1 is a toeplitz matrix, D is a diagonal matrix with

D = d
du

f(u), b = −F (v). To solve the system of linear equations (14) let us

consider the following two cases with different choices of T1 and D

• if ρ(T−1
1 D) < 1, we can approximate the solution of the above linear

system J dy = (T1 + D)dy = b, where T1 and D defined above and u, b

are column vectors, as

T1dyk+1 = b−Ddyk with k = 0, 1, 2, 3, · · · .

• if ρ(D−1T1) < 1, we can approximate the solution of the above linear

system J u = (T1 + D)u = b, where T1 and D defined above and dy, b

are column vectors, as

Ddyk+1 = b− T1dyk with k = 0, 1, 2, 3, · · · .

Now here is some choices of D and T1. Let us consider the initial choice as

T1 = T10 , with zeros on the diagonal and a diagonal matrix D = D0, then let

us consider D = D0 + aI, T1 = T10 − aI for any a ∈ R.

3.2.1 Motivation for the choice of the Iterations

To solve the initial value problem (IVP) (6) with initial condition u(t0) = u0

using backward Euler’s method, in each step we get a system of nonlinear

equations. To solve the nonlinear system we use the Newton’s method. In

each step of the Newton’s method we need to solve a system of linear equation

of the form J u = b where

J = I −∆tεA−∆t
d

du
f(u)

Now we have d
du

f(u) = 1 − 3u2. On the steady state u → ±1. So we have
d
du

f(u) ≈ −2. Then also we have

εA = ε(T10 −D0) = ε(T10 − I)
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as for the periodic domain D0 = qI and q → 1 on the equilibrium position. So

we have

J = I −∆tε(T10 − I) + 2∆tI = (I + 2∆t + ∆tε)I −∆tεT10 = D + T1,

where D = (I + 2∆t + ∆tε)I and T1 = −∆tεT10 . Thus the spectral radius of

ρ(D−1T1) =
∆tε

1 + 2∆t + ∆tε
ρ(T10) ⇒ ρ(D−1T1) <

∆tε

1 + 2∆t + ∆tε
< 1.

And hence the successive approximations Ddys+1 = b−T1dys converges to the

solution of J dy = b, which is actually the Jacobi iteration of (D − T )dy = b.

To solve the linear system (14) with several iterative techniques the matri-

ces

1. TJ = D−1(L + U) is used for Jacobi iteration with xs = TJxs−1 + C;

where C = D−1b.

2. TGS = (D−L)−1U is used for Gauss-Seidel iteration with xs = TGSxs−1+

C; where C = (D − L)−1b.

3. TSOR = (D − aL)−1[(1 − a)D + aU ] is used for SOR iteration with any

real a, where xk = TSOR.xk−1 + C; where C = a(D − aL)−1b. It is to

be noted that with 0 < a < 1 this technique is called under-relaxation

methods whereas with 1 < a, it is called over-relaxation methods.

3.3 Linear algebra implementation

Here we discuss the results obtained from various linear system solvers intro-

duced in Section 3. In most cases, the system size for the calculation is N = 28,

and tolerance as tol= 10−12 and u0 = sin(10πx2). Figure 5 show total cpu time

and total number of Newton iteration taken to reach steady states of the ODE

(6) for all the techniques discussed above. It is a clear evidence of dominance

of the approximate Jacobian technique discussed in Section 3.1 compared to

others used here to solve (6). Here we also observe that Jacobi iteration tech-

nique also work well and it works faster for a very big time stepping(∆t = 1)

as well. We also notice that though fewer Newton iterations are taken by a di-

rect and LU solver, the CPU time is less for the iterative techniques as well as

approximate Jacobian version of computation, and hence they give the faster
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Figure 5: These figures compare CPU time and total number of Newton iter-

ation taken by each method with different choice of ∆t shown in the x-axis.

Here in all the cases u0 = sin(10πx2), ε = 0.48 and Tol = 10−10. Here in the

Legend dir stands for direct solver, LU for LU factorization, jaco for Jaco-

bian iteration, GS for Gauss saidel, SOR for relaxation with a = 1.012 in (we

tried a = .98 that gives same speed up) and fft-app J1 stands for approximate

Jacobian version of computation.

computation. Here we consider the time interval [0, 100] in all computation

as from Figures 2 - 3 we observe that when h is sufficiently small u(x, 100)

reaches the steady state.

4 Fourier Spectral Approximation:

Here we solve the time dependent problem (1) by Fourier spectral method on

Ω = [−π, π]. This study is motivated from [10, page 131] and [19, page 110].

Specially we follow the steps taken by Trefethen [19, page 110] where he used

a Fourier spectral method for the KdV equation

ut + uux + uxxx = 0

on [−π, π]. He used the fourth order Runge-Kutta method for time discreti-

sation. We use and modify his code to fit in our problem. Applying the
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continuous Fourier transformation discussed in the Section 3.1 to (1) where

Ω = R we get

ût(ξ) = ε
√

2π
(
Ĵ(ξ)− Ĵ(0)

)
û(ξ) + f̂(u) (15)

where the term
√

2π
(
Ĵ(ξ)− Ĵ(0)

)
is defined in (11). Let us consider Û(ξ, t) =

exp(−εµt)û(ξ, t) where µ =
√

2π
(
Ĵ(ξ)− Ĵ(0)

)
. Then

Ût = exp(−εµt) (ût − εµû) . (16)

So using (16) in (15) we get

Ût = (exp(−εµt)f̂(u) = (exp(−εµt)F
(
f

(
F−1û

))

⇒ Ût − (exp(−εµt)F
(
f

(
F−1

(
exp(−εµt)Û

)))
= 0 (17)

where F denote the Fourier transform operator defined by (10). In Fourier

space we can discretize the problem (17) in time and we use the fourth order

Runge-Kutta method for that purpose. The resulting solution can be trans-

ferred to the real domain using inverse Fourier transform. For computation

we use Matlab function FFT and IFFT to compute Fourier transform and

inverse Fourier transform of functions in [−π, π] which is appropriate since we

are not interested in the effect of boundary conditions here. The computational

costs and computational complexity of FFT and IFFT are well presented in

[17, 19]. The following Figure 6 shows the result with u(x, 0) = 1
2
exp(−|x|)

and ε = 0.48.

5 Conclusions and restrictions

Several numerical approximation schemes to solve the nonlocal model of phase

transitions has been addressed. This study was to perform numerical approxi-

mations and implemen- tations to get a computationally efficient technique to

solve (1). We considered piecewise constant basis functions for spatial approx-

imation followed by implicit time solver. Then we experimented various linear

algebra tools to get a time efficient technique. We also use Fourier spectral

method in space followed by fourth order Runge-Kutta method in time. In our

study we notice that experimented spatial approximation is of O(h) accurate

computationally, but use of a general ordinary differential equation solver is
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Figure 6: This figure shows solution using Fourier spectral approximation in

space and RK4 in time with u(x, 0) = 1
2
exp(−|x|) and ε = 0.48.

costly in terms of computer time. Performing several linear algebra tools we no-

tice that an implicit solver coupled with Jacobian approximation for Newton’s

method as well as Jacobian iteration for linear system inside each Newton’s

iteration outperformed all other solvers presented in this article. There was a

problem of getting appropriate initial function for the approximate Jacobian

computation. We noticed that computational time depends the choice of ini-

tial function used for the Jacobian approximation. In this study we noticed

that Fourier spectral method can be proposed but not very efficient due to

the nonlinear part. Also there is a restriction on kernel function and initial

function for the Fourier spectral method, needed to be Fourier integrable.
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