Starlikeness and Convexity for Analytic Functions Concerned With Jack's Lemma

Hitoshi Shiraishi and Shigeyoshi Owa

Department of Mathematics, Kinki University, Osaka 577-8502, Japan e-mail: 0733310104x@math.kindai.ac.jp, owa@math.kindai.ac.jp

Abstract

There are many results for sufficient conditions of functions f(z) which are analytic in the open unit disc \mathbb{U} to be starlike and convex in \mathbb{U} . The object of the present paper is to derive some interesting sufficient conditions for f(z) to be starlike of order α and convex of order α in \mathbb{U} concerned with Jack's lemma. Some examples for our results are also considered with the help of Mathematica 5.2.

Keywords: Analytic, univalent, starlike of order α , convex of order α .

2000 Mathematics Subject Classification: Primary 30C45.

1 Introduction

Let \mathcal{A} denote the class of functions f(z) that are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, so that f(0) = f'(0) - 1 = 0.

We denote by S the subclass of A consisting of univalent functions f(z) in U. Let $S^*(\alpha)$ be the subclass of A consisting of all functions f(z) which satisfy

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some $0 \le \alpha < 1$. A function $f(z) \in \mathcal{S}^*(\alpha)$ is sais to be starlike of order α in \mathbb{U} . We denote by $\mathcal{S}^* = \mathcal{S}^*(0)$.

Also, let $\mathcal{K}(\alpha)$ denote the subclass of \mathcal{A} consisting of functions f(z) which satisfy

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some $0 \le \alpha < 1$. A function f(z) in $\mathcal{K}(\alpha)$ is said to be convex of order α in \mathbb{U} . We say that $\mathcal{K} = \mathcal{K}(0)$. From the definitions for $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$, we know

that $f(z) \in \mathcal{K}(\alpha)$ if and only if $zf'(z) \in \mathcal{S}^*(\alpha)$.

Let f(z) and g(z) be analytic in \mathbb{U} . Then f(z) is said to be subordinate to g(z) if there exists an analytic function w(z) in \mathbb{U} satisfying w(0) = 0, |w(z)| < 1 $(z \in \mathbb{U})$ and f(z) = g(w(z)). We denote this subordination by

$$f(z) \prec g(z) \qquad (z \in \mathbb{U}).$$

The basic tool in proving our results is the following lemma due to Jack [1] (also, due to Miller and Mocanu [2]).

Lemma 1 Let w(z) be analytic in \mathbb{U} with w(0) = 0. Then if |w(z)| attains its maximum value on the circle |z| = r at a point $z_0 \in \mathbb{U}$, then we have $z_0w'(z_0) = kw(z_0)$, where $k \ge 1$ is a real number.

2 Main results

Applying Lemma 1, we drive the following result.

Theorem 1 If $f(z) \in A$ satisfies

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) < \frac{\alpha+1}{2(\alpha-1)} \qquad (z \in \mathbb{U})$$

for some α (2 $\leq \alpha < 3$), or

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) < \frac{5\alpha - 1}{2(\alpha + 1)} \qquad (z \in \mathbb{U})$$

for some α (1 < $\alpha \leq 2$), then

$$\frac{zf'(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U})$$

and

$$\left| \frac{zf'(z)}{f(z)} - \frac{\alpha}{\alpha + 1} \right| < \frac{\alpha}{\alpha + 1} \qquad (z \in \mathbb{U}).$$

This implies that $f(z) \in \mathcal{S}^*$ and $\int_0^z \frac{f(t)}{t} dt \in \mathcal{K}$.

Proof. Let us define the function w(z) by

$$\frac{zf'(z)}{f(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha).$$

Clearly, w(z) is analytic in \mathbb{U} and w(0) = 0. We want to prove that |w(z)| < 1 in \mathbb{U} . Since

$$1 + \frac{zf''(z)}{f'(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} - \frac{zw'(z)}{1 - w(z)} + \frac{zw'(z)}{\alpha - w(z)},$$

we see that

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha(1 - w(z))}{\alpha - w(z)} - \frac{zw'(z)}{1 - w(z)} + \frac{zw'(z)}{\alpha - w(z)}\right)$$

$$< \frac{\alpha + 1}{2(\alpha - 1)} \qquad (z \in \mathbb{U})$$

for $2 \leq \alpha < 3$, and

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha(1 - w(z))}{\alpha - w(z)} - \frac{zw'(z)}{1 - w(z)} + \frac{zw'(z)}{\alpha - w(z)}\right)$$

$$< \frac{5\alpha - 1}{2(\alpha + 1)} \qquad (z \in \mathbb{U})$$

for $1 < \alpha \leq 2$. If there exists a point $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1,$$

then Lemma 1 gives us that $w(z_0) = e^{i\theta}$ and $z_0 w'(z_0) = k w(z_0)$, $k \ge 1$. Thus we have

$$1 + \frac{z_0 f''(z_0)}{f'(z_0)} = \frac{\alpha (1 - w(z_0))}{\alpha - w(z_0)} - \frac{z_0 w'(z_0)}{1 - w(z_0)} + \frac{z_0 w'(z_0)}{\alpha - w(z_0)}$$
$$= \alpha + \alpha (1 - \alpha + k) \frac{1}{\alpha - e^{i\theta}} - \frac{k}{1 - e^{i\theta}}.$$

If follows that

$$\operatorname{Re}\left(\frac{1}{\alpha - w(z_0)}\right) = \operatorname{Re}\left(\frac{1}{\alpha - e^{i\theta}}\right)$$
$$= \frac{1}{2\alpha} + \frac{\alpha^2 - 1}{2\alpha(1 + \alpha^2 - 2\cos\theta)}$$

and

$$\operatorname{Re}\left(\frac{1}{1 - w(z_0)}\right) = \operatorname{Re}\left(\frac{1}{1 - e^{i\theta}}\right)$$
$$= \frac{1}{2}.$$

Therefore, we have

$$\operatorname{Re}\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) = \frac{1+\alpha}{2} + \frac{(\alpha^2 - 1)(1-\alpha + k)}{2(1+\alpha^2 - 2\alpha\cos\theta)}.$$

This implies that, for $2 \le \alpha < 3$,

$$\operatorname{Re}\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) \geq \frac{1+\alpha}{2} + \frac{(\alpha+1)(1-\alpha+k)}{2(\alpha-1)}$$
$$\geq \frac{1+\alpha}{2} + \frac{(\alpha+1)(2-\alpha)}{2(\alpha-1)}$$
$$= \frac{\alpha+1}{2(\alpha-1)}$$

and, for $1 < \alpha \leq 2$,

$$\operatorname{Re}\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) \geq \frac{1+\alpha}{2} + \frac{(\alpha-1)(1-\alpha+k)}{2(\alpha+1)}$$
$$\geq \frac{1+\alpha}{2} + \frac{(\alpha-1)(2-\alpha)}{2(\alpha+1)}$$
$$= \frac{5\alpha-1}{2(\alpha+1)}.$$

This contradicts the condition in the theorem. Therefore, there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$ for all $z \in \mathbb{U}$, that is, that

$$\frac{zf'(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U}).$$

Furthermore, since

$$w(z) = \frac{\alpha \left(\frac{zf'(z)}{f(z)} - 1\right)}{\frac{zf'(z)}{f(z)} - \alpha} \qquad (z \in \mathbb{U})$$

and |w(z)| < 1 $(z \in \mathbb{U})$, we conclude that

$$\left| \frac{zf'(z)}{f(z)} - \frac{\alpha}{\alpha + 1} \right| < \frac{\alpha}{\alpha + 1} \qquad (z \in \mathbb{U}),$$

which implies that $f(z) \in \mathcal{S}^*$. Furthermore, we see that $f(z) \in \mathcal{S}^*$ if and only if $\int_0^z \frac{f(t)}{t} dt \in \mathcal{K}$.

Thaking $\alpha=2$ in the theorem, we have following corollary due to R. Singh and S. Singh [3].

Corollary 1 If $f(z) \in A$ satisfies

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) < \frac{3}{2} \qquad (z \in \mathbb{U}),$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{2(1-z)}{2-z} \qquad (z \in \mathbb{U})$$

and

$$\left| \frac{zf'(z)}{f(z)} - \frac{2}{3} \right| < \frac{3}{2} \qquad (z \in \mathbb{U}).$$

With Theorem 1, we give the following example.

Example 1 For $2 \le \alpha < 3$, we consider the function f(z) given by

$$f(z) = \frac{\alpha - 1}{2} \left(1 - (1 - z)^{\frac{2}{\alpha - 1}} \right)$$
 $(z \in \mathbb{U}).$

If follows that

$$\frac{zf'(z)}{f(z)} = \frac{2z(1-z)^{\frac{3-\alpha}{\alpha-1}}}{(\alpha-1)\left(1-(1-z)^{\frac{2}{\alpha-1}}\right)} \qquad (z \in \mathbb{U})$$

and

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha - 1 - 2z}{(\alpha - 1)(1 - z)}\right)$$
$$= \operatorname{Re}\left(\frac{2}{\alpha - 1} - \frac{3 - \alpha}{(\alpha - 1)(1 - z)}\right)$$
$$< \frac{\alpha + 1}{2(\alpha - 1)} \qquad (z \in \mathbb{U}).$$

Therefore, the function f(z) satisfies the condition in Theorem 1. If we define the function w(z) by

$$\frac{zf'(z)}{f(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha),$$

then we see that w(z) is analytic in \mathbb{U} , w(0) = 0 and |w(z)| < 1 $(z \in \mathbb{U})$ with Mathematica 5.2. This implies that

$$\frac{zf'(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U}).$$

For $1 < \alpha \leq 2$, we consider

$$f(z) = \frac{\alpha+1}{2(2\alpha-1)} \left(1-(1-z)^{\frac{2(2\alpha-1)}{\alpha+1}}\right) \qquad (z \in \mathbb{U}).$$

Then we have that

$$\frac{zf'(z)}{f(z)} = \frac{2(2\alpha - 1)z(1-z)^{\frac{3(\alpha - 1)}{\alpha + 1}}}{(\alpha + 1)\left(1 - (1-z)^{\frac{2(2\alpha - 1)}{\alpha + 1}}\right)}$$

and

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha + 1 - 2(2\alpha - 1)z}{(\alpha + 1)(1 - z)}\right) < \frac{5\alpha - 1}{2(\alpha + 1)} \qquad (z \in \mathbb{U}).$$

Thus, the function f(z) satisfies the condition in Theorem 1. Define the function w(z) by

$$\frac{zf'(z)}{f(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha).$$

Then w(z) is analytic in \mathbb{U} , w(0) = 0 and |w(z)| < 1 $(z \in \mathbb{U})$ with Mathematica 5.2. Therefour, we have that

$$\frac{zf'(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U}).$$

In particular, if we take $\alpha = 2$ in this example, then f(z) becomes

$$f(z) = z - \frac{1}{2}z^2 \in \mathcal{S}^*,$$

where \mathcal{S}^* denotes the class of all starlike function in \mathbb{U} .

Theorem 2 If $f(z) \in A$ satisfies

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > -\frac{\alpha + 1}{2\alpha(\alpha - 1)} \qquad (z \in \mathbb{U})$$
(2.1)

for some α ($\alpha \leq -1$), or

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \frac{3\alpha + 1}{2\alpha(\alpha + 1)} \qquad (z \in \mathbb{U})$$
(2.2)

for some α ($\alpha > 1$), then

$$\frac{f(z)}{zf'(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U})$$

and

$$f(z) \in \mathcal{S}^* \left(\frac{\alpha + 1}{2\alpha} \right)$$
.

This implies that $\int_0^z \frac{f(t)}{t} dt \in \mathcal{K}\left(\frac{\alpha+1}{2\alpha}\right)$.

Proof. Let us define the function w(z) by

$$\frac{f(z)}{zf'(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha). \tag{2.3}$$

Then, we have that w(z) is analytic in \mathbb{U} and w(0) = 0. We want to prove that |w(z)| < 1 in \mathbb{U} . Differentiating (2.3) in both side logarithmically and simplifying, we obtain

$$1 + \frac{zf''(z)}{f'(z)} = \frac{\alpha - w(z)}{\alpha(1 - w(z))} + \frac{zw'(z)}{1 - w(z)} - \frac{zw'(z)}{\alpha - w(z)},$$

and, hence

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha - w(z)}{\alpha(1 - w(z))} + \frac{zw'(z)}{1 - w(z)} - \frac{zw'(z)}{\alpha - w(z)}\right)$$

$$> -\frac{\alpha + 1}{2\alpha(\alpha - 1)} \quad (z \in \mathbb{U})$$

for $\alpha \leq -1$, or

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha - w(z)}{\alpha(1 - w(z))} + \frac{zw'(z)}{1 - w(z)} - \frac{zw'(z)}{\alpha - w(z)}\right)$$

$$> \frac{3\alpha + 1}{2\alpha(\alpha + 1)} \qquad (z \in \mathbb{U})$$

for $\alpha > 1$. If there exists a point $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1,$$

then Lemma 1 gives us that $w(z_0) = e^{i\theta}$ and $z_0 w'(z_0) = k w(z_0)$, $k \ge 1$. Thus we have

$$1 + \frac{z_0 f''(z_0)}{f'(z_0)} = \frac{\alpha - w(z_0)}{\alpha (1 - w(z_0))} + \frac{z_0 w'(z_0)}{1 - w(z_0)} - \frac{z_0 w'(z_0)}{\alpha - w(z_0)}$$
$$= \frac{1}{\alpha} + \frac{\alpha - 1}{\alpha (1 - e^{i\theta})} + \frac{k}{1 - e^{i\theta}} - \frac{k\alpha}{\alpha - e^{i\theta}}.$$

Therefore, we have

$$\operatorname{Re}\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) = \frac{1}{2} + \frac{1}{2\alpha} - \frac{k(\alpha^2 - 1)}{2(1 + \alpha^2 - 2\alpha\cos\theta)}.$$

This implies that, for $\alpha \leq -1$,

$$\operatorname{Re}\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) \leq \frac{1}{2} + \frac{1}{2\alpha} - \frac{k(\alpha+1)}{2(\alpha-1)}$$
$$\leq \frac{1}{2} + \frac{1}{2\alpha} - \frac{\alpha+1}{2(\alpha-1)}$$
$$= -\frac{\alpha+1}{2\alpha(\alpha-1)}.$$

and, for $\alpha > 1$,

$$\operatorname{Re}\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) \leq \frac{1}{2} + \frac{1}{2\alpha} - \frac{k(\alpha - 1)}{2(\alpha + 1)}$$
$$\leq \frac{1}{2} + \frac{1}{2\alpha} - \frac{\alpha - 1}{2(\alpha + 1)}$$
$$= \frac{3\alpha + 1}{2\alpha(\alpha + 1)}.$$

This contradicts the condition in the theorem. Therefore, there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. This means that |w(z)| < 1 for all $z \in \mathbb{U}$, this is, that

$$\frac{f(z)}{zf'(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U}).$$

Furthermore, since

$$w(z) = \frac{\alpha \left(1 - \frac{zf'(z)}{f(z)}\right)}{1 - \alpha \frac{zf'(z)}{f(z)}} \qquad (z \in \mathbb{U})$$

and |w(z)| < 1 $(z \in \mathbb{U})$, we conclude that

$$f(z) \in \mathcal{S}^* \left(\frac{\alpha + 1}{2\alpha} \right).$$

Noting that $f(z) \in \mathcal{S}^*(\alpha)$ if and only if $\int_0^z \frac{f(t)}{t} dt \in \mathcal{K}(\alpha)$, we complete the proof of the theorem.

For Theorem 2, we give the following example.

Example 2 For $\alpha > 1$, we take

$$f(z) = \frac{\alpha(\alpha+1)}{-\alpha^2 + 2\alpha + 1} \left(1 - (1-z)^{\frac{-\alpha^2 + 2\alpha + 1}{\alpha(\alpha+1)}} \right) \qquad (z \in \mathbb{U}).$$

Then, f(z) satisfies

$$\frac{zf'(z)}{f(z)} = \frac{(-\alpha^2 + 2\alpha + 1)z}{\alpha(\alpha + 1)(1 - z)^{\frac{2\alpha^2 - \alpha - 1}{\alpha(\alpha + 1)}} \left(1 - (1 - z)^{\frac{-\alpha^2 + 2\alpha + 1}{\alpha(\alpha + 1)}}\right)}$$

and

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha(\alpha+1) + (\alpha^2 - 2\alpha - 1)z}{\alpha(\alpha+1)(1-z)}\right) > \frac{3\alpha + 1}{2\alpha(\alpha+1)} \quad (z \in \mathbb{U}).$$

Therefore, f(z) satisfies the condition of Theorem 2. Let us define the function w(z) by

$$\frac{f(z)}{zf'(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha).$$

Then w(z) is analytic in \mathbb{U} , w(0)=0 and |w(z)|<1 $z\in\mathbb{U}$ with Mathematica 5.2. It follows that

$$\frac{f(z)}{zf'(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U}).$$

Furthermore, for $\alpha \leq -1$, we consider the following function

$$f(z) = -\frac{\alpha(\alpha - 1)}{\alpha^2 + 1} \left(1 - (1 - z)^{-\frac{\alpha^2 + 1}{\alpha(\alpha - 1)}} \right).$$

Note that

$$\frac{zf'(z)}{f(z)} = \frac{-(\alpha^2 + 1)z}{\alpha(\alpha - 1)(1 - z)^{\frac{2\alpha^2 - \alpha + 1}{\alpha(\alpha - 1)}} \left(1 - (1 - z)^{-\frac{\alpha^2 + 1}{\alpha(\alpha - 1)}}\right)}$$

and

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(\frac{\alpha(\alpha - 1) + (\alpha^2 + 1)z}{\alpha(\alpha - 1)(1 - z)}\right)$$
$$> \frac{\alpha + 1}{2\alpha(\alpha - 1)} \quad (z \in \mathbb{U}).$$

This implies that f(z) satisfies the condition of Theorem 2. Definning the function w(z) by

$$\frac{f(z)}{zf'(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha),$$

we see that w(z) is analytic in \mathbb{U} , w(0)=0 and |w(z)|<1 $(z\in\mathbb{U})$ with Mathematica 5.2. Thus we have that

$$\frac{f(z)}{zf'(z)} \prec \frac{\alpha(1-z)}{\alpha-z}$$
 $(z \in \mathbb{U}).$

Making $\alpha = -1$ for f(z), we have

$$f(z) = \frac{z}{1-z} \in \mathcal{K}.$$

3 Open Question

As we say in Example 1, we need to use Mathematica 5.2 to check that $|w(z)| < 1 \ (z \in \mathbb{U})$ for

$$\frac{zf'(z)}{f(z)} = \frac{\alpha(1 - w(z))}{\alpha - w(z)} \qquad (w(z) \neq \alpha).$$

Because, it is not so easy to calculate the fact that |w(z)| < 1 $(z \in \mathbb{U})$ in this case. If $\alpha = 2$ in Example 1, then we see that |w(z)| = |z| < 1.

Also, in Example 2, we use Mathematica 5.2 to see that |w(z)| < 1 ($z \in \mathbb{U}$). If $\alpha = -1$ in Example 2, then we know that |w(z)| = |z| < 1. Thus we have to leave our open questions to prove |w(z)| < 1 ($z \in \mathbb{U}$) without Mathematica 5.2. Can we prove that |w(z)| < 1 for all $z \in \mathbb{U}$ without Mathematica 5.2 in Example 1 and Example 2?

References

- [1] Jack I. S., Functions starlike and convex of order α , J.London Math. Soc. $\mathbf{3}(1971)$, 469-474.
- [2] Miller S. S. and Mocanu P. T., Second-order differential inequalities in the complex plane, *J. Math. Anal. Appl.* **65**(1978), 289-305.
- [3] Singh R. and Singh S., Some sufficient conditions for univalence and star-likeness, *Coll. Math.* **47**(1982), 309-314.