Int. J. Open Problems Compt. Math., Vol. 2, No. 1, March 2009

Starlikeness and Convexity for Analytic Functions Concerned With Jack's Lemma

Hitoshi Shiraishi and Shigeyoshi Owa
Department of Mathematics, Kinki University, Osaka 577-8502, Japan
e-mail: 0733310104x@math.kindai.ac.jp, owa@math.kindai.ac.jp

Abstract

There are many results for sufficient conditions of functions $f(z)$ which are analytic in the open unit disc \mathbb{U} to be starlike and convex in \mathbb{U}. The object of the present paper is to derive some interesting sufficient conditions for $f(z)$ to be starlike of order α and convex of order α in \mathbb{U} concerned with Jack's lemma. Some examples for our results are also considered with the help of Mathematica 5.2.

Keywords: Analytic, univalent, starlike of order α, convex of order α.
2000 Mathematics Subject Classification: Primary 30C45.

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ that are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, so that $f(0)=f^{\prime}(0)-1=0$.

We denote by \mathcal{S} the subclass of \mathcal{A} consisting of univalent functions $f(z)$ in \mathbb{U}. Let $\mathcal{S}^{*}(\alpha)$ be the subclass of \mathcal{A} consisting of all functions $f(z)$ which satisfy

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some $0 \leqq \alpha<1$. A function $f(z) \in \mathcal{S}^{*}(\alpha)$ is sais to be starlike of order α in \mathbb{U}. We denote by $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$.
Also, let $\mathcal{K}(\alpha)$ denote the subclass of \mathcal{A} consisting of functions $f(z)$ which satisfy

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some $0 \leqq \alpha<1$. A function $f(z)$ in $\mathcal{K}(\alpha)$ is said to be convex of order α in \mathbb{U}. We say that $\mathcal{K}=\mathcal{K}(0)$. From the definitions for $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, we know
that $f(z) \in \mathcal{K}(\alpha)$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha)$.
Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. Then $f(z)$ is said to be subordinate to $g(z)$ if there exists an analytic function $w(z)$ in \mathbb{U} satisfying $w(0)=0$, $|w(z)|<1(z \in \mathbb{U})$ and $f(z)=g(w(z))$. We denote this subordination by

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) .
$$

The basic tool in proving our results is the following lemma due to Jack [1] (also, due to Miller and Mocanu [2]).

Lemma 1 Let $w(z)$ be analytic in \mathbb{U} with $w(0)=0$. Then if $|w(z)|$ attains its maximum value on the circle $|z|=r$ at a point $z_{0} \in \mathbb{U}$, then we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where $k \geqq 1$ is a real number.

2 Main results

Applying Lemma 1, we drive the following result.
Theorem 1 If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{\alpha+1}{2(\alpha-1)} \quad(z \in \mathbb{U})
$$

for some $\alpha(2 \leqq \alpha<3)$, or

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{5 \alpha-1}{2(\alpha+1)} \quad(z \in \mathbb{U})
$$

for some $\alpha(1<\alpha \leqq 2)$, then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

and

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{\alpha}{\alpha+1}\right|<\frac{\alpha}{\alpha+1} \quad(z \in \mathbb{U}) .
$$

This implies that $f(z) \in \mathcal{S}^{*}$ and $\int_{0}^{z} \frac{f(t)}{t} d t \in \mathcal{K}$.
Proof. Let us define the function $w(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha) .
$$

Clearly, $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. We want to prove that $|w(z)|<1$ in \mathbb{U}. Since

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)}-\frac{z w^{\prime}(z)}{1-w(z)}+\frac{z w^{\prime}(z)}{\alpha-w(z)}
$$

we see that

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha(1-w(z))}{\alpha-w(z)}-\frac{z w^{\prime}(z)}{1-w(z)}+\frac{z w^{\prime}(z)}{\alpha-w(z)}\right) \\
& <\frac{\alpha+1}{2(\alpha-1)} \quad(z \in \mathbb{U})
\end{aligned}
$$

for $2 \leqq \alpha<3$, and

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha(1-w(z))}{\alpha-w(z)}-\frac{z w^{\prime}(z)}{1-w(z)}+\frac{z w^{\prime}(z)}{\alpha-w(z)}\right) \\
& <\frac{5 \alpha-1}{2(\alpha+1)} \quad(z \in \mathbb{U})
\end{aligned}
$$

for $1<\alpha \leqq 2$. If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1,
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), k \geqq 1$. Thus we have

$$
\begin{aligned}
1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} & =\frac{\alpha\left(1-w\left(z_{0}\right)\right)}{\alpha-w\left(z_{0}\right)}-\frac{z_{0} w^{\prime}\left(z_{0}\right)}{1-w\left(z_{0}\right)}+\frac{z_{0} w^{\prime}\left(z_{0}\right)}{\alpha-w\left(z_{0}\right)} \\
& =\alpha+\alpha(1-\alpha+k) \frac{1}{\alpha-e^{i \theta}}-\frac{k}{1-e^{i \theta}} .
\end{aligned}
$$

If follows that

$$
\begin{aligned}
\operatorname{Re}\left(\frac{1}{\alpha-w\left(z_{0}\right)}\right) & =\operatorname{Re}\left(\frac{1}{\alpha-e^{i \theta}}\right) \\
& =\frac{1}{2 \alpha}+\frac{\alpha^{2}-1}{2 \alpha\left(1+\alpha^{2}-2 \cos \theta\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Re}\left(\frac{1}{1-w\left(z_{0}\right)}\right) & =\operatorname{Re}\left(\frac{1}{1-e^{i \theta}}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

Therefore, we have

$$
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)=\frac{1+\alpha}{2}+\frac{\left(\alpha^{2}-1\right)(1-\alpha+k)}{2\left(1+\alpha^{2}-2 \alpha \cos \theta\right)}
$$

This implies that, for $2 \leqq \alpha<3$,

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & \geqq \frac{1+\alpha}{2}+\frac{(\alpha+1)(1-\alpha+k)}{2(\alpha-1)} \\
& \geqq \frac{1+\alpha}{2}+\frac{(\alpha+1)(2-\alpha)}{2(\alpha-1)} \\
& =\frac{\alpha+1}{2(\alpha-1)}
\end{aligned}
$$

and, for $1<\alpha \leqq 2$,

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & \geqq \frac{1+\alpha}{2}+\frac{(\alpha-1)(1-\alpha+k)}{2(\alpha+1)} \\
& \geqq \frac{1+\alpha}{2}+\frac{(\alpha-1)(2-\alpha)}{2(\alpha+1)} \\
& =\frac{5 \alpha-1}{2(\alpha+1)} .
\end{aligned}
$$

This contradicts the condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$ for all $z \in \mathbb{U}$, that is, that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

Furthermore, since

$$
w(z)=\frac{\alpha\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)}{\frac{z f^{\prime}(z)}{f(z)}-\alpha} \quad(z \in \mathbb{U})
$$

and $|w(z)|<1(z \in \mathbb{U})$, we conclude that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{\alpha}{\alpha+1}\right|<\frac{\alpha}{\alpha+1} \quad(z \in \mathbb{U})
$$

which implies that $f(z) \in \mathcal{S}^{*}$. Furthermore, we see that $f(z) \in \mathcal{S}^{*}$ if and only if $\int_{0}^{z} \frac{f(t)}{t} d t \in \mathcal{K}$.

Thaking $\alpha=2$ in the theorem, we have following corollary due to R. Singh and S. Singh [3].

Corollary 1 If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{3}{2} \quad(z \in \mathbb{U})
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{2(1-z)}{2-z} \quad(z \in \mathbb{U})
$$

and

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{2}{3}\right|<\frac{3}{2} \quad(z \in \mathbb{U}) .
$$

With Theorem 1, we give the following example.
Example 1 For $2 \leqq \alpha<3$, weconsider the function $f(z)$ given by

$$
f(z)=\frac{\alpha-1}{2}\left(1-(1-z)^{\frac{2}{\alpha-1}}\right) \quad(z \in \mathbb{U})
$$

If follows that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{2 z(1-z)^{\frac{3-\alpha}{\alpha-1}}}{(\alpha-1)\left(1-(1-z)^{\frac{2}{\alpha-1}}\right)} \quad(z \in \mathbb{U})
$$

and

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha-1-2 z}{(\alpha-1)(1-z)}\right) \\
& =\operatorname{Re}\left(\frac{2}{\alpha-1}-\frac{3-\alpha}{(\alpha-1)(1-z)}\right) \\
& <\frac{\alpha+1}{2(\alpha-1)} \quad(z \in \mathbb{U}) .
\end{aligned}
$$

Therefore, the function $f(z)$ satisfies the condition in Theorem 1. If we define the function $w(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha)
$$

then we see that $w(z)$ is analytic in $\mathbb{U}, w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ with Mathematica 5.2. This implies that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

For $1<\alpha \leqq 2$, we consider

$$
f(z)=\frac{\alpha+1}{2(2 \alpha-1)}\left(1-(1-z)^{\frac{2(2 \alpha-1)}{\alpha+1}}\right) \quad(z \in \mathbb{U}) .
$$

Then we have that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{2(2 \alpha-1) z(1-z)^{\frac{3(\alpha-1)}{\alpha+1}}}{(\alpha+1)\left(1-(1-z)^{\frac{2(2 \alpha-1)}{\alpha+1}}\right)}
$$

and

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{\alpha+1-2(2 \alpha-1) z}{(\alpha+1)(1-z)}\right)<\frac{5 \alpha-1}{2(\alpha+1)} \quad(z \in \mathbb{U})
$$

Thus, the function $f(z)$ satisfies the condition in Theorem 1. Define the function $w(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha) .
$$

Then $w(z)$ is analytic in $\mathbb{U}, w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ with Mathematica 5.2. Therefour, we have that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

In particular, if we take $\alpha=2$ in this example, then $f(z)$ becomes

$$
f(z)=z-\frac{1}{2} z^{2} \in \mathcal{S}^{*}
$$

where \mathcal{S}^{*} denotes the class of all starlike function in \mathbb{U}.
Theorem 2 If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{\alpha+1}{2 \alpha(\alpha-1)} \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

for some $\alpha(\alpha \leqq-1)$, or

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{3 \alpha+1}{2 \alpha(\alpha+1)} \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

for some $\alpha(\alpha>1)$, then

$$
\frac{f(z)}{z f^{\prime}(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

and

$$
f(z) \in \mathcal{S}^{*}\left(\frac{\alpha+1}{2 \alpha}\right)
$$

This implies that $\int_{0}^{z} \frac{f(t)}{t} d t \in \mathcal{K}\left(\frac{\alpha+1}{2 \alpha}\right)$.
Proof. Let us define the function $w(z)$ by

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha) \tag{2.3}
\end{equation*}
$$

Then, we have that $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. We want to prove that $|w(z)|<1$ in \mathbb{U}. Differentiating (2.3) in both side logarithmically and simplifying, we obtain

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha-w(z)}{\alpha(1-w(z))}+\frac{z w^{\prime}(z)}{1-w(z)}-\frac{z w^{\prime}(z)}{\alpha-w(z)}
$$

and, hence

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha-w(z)}{\alpha(1-w(z))}+\frac{z w^{\prime}(z)}{1-w(z)}-\frac{z w^{\prime}(z)}{\alpha-w(z)}\right) \\
& >-\frac{\alpha+1}{2 \alpha(\alpha-1)} \quad(z \in \mathbb{U})
\end{aligned}
$$

for $\alpha \leqq-1$, or

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha-w(z)}{\alpha(1-w(z))}+\frac{z w^{\prime}(z)}{1-w(z)}-\frac{z w^{\prime}(z)}{\alpha-w(z)}\right) \\
& >\frac{3 \alpha+1}{2 \alpha(\alpha+1)} \quad(z \in \mathbb{U})
\end{aligned}
$$

for $\alpha>1$. If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1,
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), k \geqq 1$. Thus we have

$$
\begin{aligned}
1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} & =\frac{\alpha-w\left(z_{0}\right)}{\alpha\left(1-w\left(z_{0}\right)\right)}+\frac{z_{0} w^{\prime}\left(z_{0}\right)}{1-w\left(z_{0}\right)}-\frac{z_{0} w^{\prime}\left(z_{0}\right)}{\alpha-w\left(z_{0}\right)} \\
& =\frac{1}{\alpha}+\frac{\alpha-1}{\alpha\left(1-e^{i \theta}\right)}+\frac{k}{1-e^{i \theta}}-\frac{k \alpha}{\alpha-e^{i \theta}} .
\end{aligned}
$$

Therefore, we have

$$
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)=\frac{1}{2}+\frac{1}{2 \alpha}-\frac{k\left(\alpha^{2}-1\right)}{2\left(1+\alpha^{2}-2 \alpha \cos \theta\right)} .
$$

This implies that, for $\alpha \leqq-1$,

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & \leqq \frac{1}{2}+\frac{1}{2 \alpha}-\frac{k(\alpha+1)}{2(\alpha-1)} \\
& \leqq \frac{1}{2}+\frac{1}{2 \alpha}-\frac{\alpha+1}{2(\alpha-1)} \\
& =-\frac{\alpha+1}{2 \alpha(\alpha-1)} .
\end{aligned}
$$

and, for $\alpha>1$,

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & \leqq \frac{1}{2}+\frac{1}{2 \alpha}-\frac{k(\alpha-1)}{2(\alpha+1)} \\
& \leqq \frac{1}{2}+\frac{1}{2 \alpha}-\frac{\alpha-1}{2(\alpha+1)} \\
& =\frac{3 \alpha+1}{2 \alpha(\alpha+1)} .
\end{aligned}
$$

This contradicts the condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. This means that $|w(z)|<1$ for all $z \in \mathbb{U}$, this is, that

$$
\frac{f(z)}{z f^{\prime}(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

Furthermore, since

$$
w(z)=\frac{\alpha\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)}{1-\alpha \frac{z f^{\prime}(z)}{f(z)}} \quad(z \in \mathbb{U})
$$

and $|w(z)|<1(z \in \mathbb{U})$, we conclude that

$$
f(z) \in \mathcal{S}^{*}\left(\frac{\alpha+1}{2 \alpha}\right)
$$

Noting that $f(z) \in \mathcal{S}^{*}(\alpha)$ if and only if $\int_{0}^{z} \frac{f(t)}{t} d t \in \mathcal{K}(\alpha)$, we complete the proof of the theorem.

For Theorem 2, we give the following example.
Example 2 For $\alpha>1$, we take

$$
f(z)=\frac{\alpha(\alpha+1)}{-\alpha^{2}+2 \alpha+1}\left(1-(1-z)^{\frac{-\alpha^{2}+2 \alpha+1}{\alpha(\alpha+1)}}\right) \quad(z \in \mathbb{U}) .
$$

Then, $f(z)$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\left(-\alpha^{2}+2 \alpha+1\right) z}{\alpha(\alpha+1)(1-z)^{\frac{2 \alpha^{2}-\alpha-1}{\alpha(\alpha+1)}}\left(1-(1-z)^{\frac{-\alpha^{2}+2 \alpha+1}{\alpha(\alpha+1)}}\right)}
$$

and

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha(\alpha+1)+\left(\alpha^{2}-2 \alpha-1\right) z}{\alpha(\alpha+1)(1-z)}\right) \\
& >\frac{3 \alpha+1}{2 \alpha(\alpha+1)} \quad(z \in \mathbb{U}) .
\end{aligned}
$$

Therefore, $f(z)$ satisfies the condition of Theorem 2. Let us define the function $w(z)$ by

$$
\frac{f(z)}{z f^{\prime}(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha)
$$

Then $w(z)$ is analytic in $\mathbb{U}, w(0)=0$ and $|w(z)|<1 z \in \mathbb{U}$ with Mathematica 5.2. It follows that

$$
\frac{f(z)}{z f^{\prime}(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

Furthermore, for $\alpha \leqq-1$, we consider the following function

$$
f(z)=-\frac{\alpha(\alpha-1)}{\alpha^{2}+1}\left(1-(1-z)^{-\frac{\alpha^{2}+1}{\alpha(\alpha-1)}}\right) .
$$

Note that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{-\left(\alpha^{2}+1\right) z}{\alpha(\alpha-1)(1-z)^{\frac{2 \alpha^{2}-\alpha+1}{\alpha(\alpha-1)}}\left(1-(1-z)^{-\frac{\alpha^{2}+1}{\alpha(\alpha-1)}}\right)}
$$

and

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha(\alpha-1)+\left(\alpha^{2}+1\right) z}{\alpha(\alpha-1)(1-z)}\right) \\
& >\frac{\alpha+1}{2 \alpha(\alpha-1)} \quad(z \in \mathbb{U}) .
\end{aligned}
$$

This implies that $f(z)$ satisfies the condition of Theorem 2. Definning the function $w(z)$ by

$$
\frac{f(z)}{z f^{\prime}(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha)
$$

we see that $w(z)$ is analytic in $\mathbb{U}, w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ with Mathematica 5.2. Thus we have that

$$
\frac{f(z)}{z f^{\prime}(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

Making $\alpha=-1$ for $f(z)$, we have

$$
f(z)=\frac{z}{1-z} \in \mathcal{K} .
$$

3 Open Question

As we say in Example 1, we need to use Mathematica 5.2 to check that $|w(z)|<1(z \in \mathbb{U})$ for

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha)
$$

Because, it is not so easy to calculate the fact that $|w(z)|<1(z \in \mathbb{U})$ in this case. If $\alpha=2$ in Example 1, then we see that $|w(z)|=|z|<1$.

Also, in Example 2, we use Mathematica 5.2 to see that $|w(z)|<1(z \in \mathbb{U})$. If $\alpha=-1$ in Example 2, then we know that $|w(z)|=|z|<1$. Thus we have to leave our open questions to prove $|w(z)|<1(z \in \mathbb{U})$ without Mathematica 5.2. Can we prove that $|w(z)|<1$ for all $z \in \mathbb{U}$ without Mathematica 5.2 in Example 1 and Example 2?

References

[1] Jack I. S., Functions starlike and convex of order α, J.London Math. Soc. 3(1971), 469-474.
[2] Miller S. S. and Mocanu P. T., Second-order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289-305.
[3] Singh R. and Singh S., Some sufficient conditions for univalence and starlikeness, Coll. Math. 47(1982), 309-314.

