On The Φ Class Operators

A. Bachir ${ }^{1}$ and A. Segres ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, King Khalid University P.O.Box 9004, Abha, Saudi Arabia.
${ }^{2}$ Department of Economics, Mascara University, 29000, Algeria.

Abstract

In this paper we characterize Hermitian operators defined on Hilbert space. Using this result we establish several new characterizations to (Φ) class operators. Further, we apply these results to investigate on the relation between this class and other usual classes of operators. Some applications are also given.

Keywords: Hermitian operator, Hyponormal operators, (Φ) class.

1 Introduction

Let \mathcal{H} be a complex Hilbert space with inner product \langle,$\rangle and let B(\mathcal{H})$ be the algebra of all bounded operators acting on \mathcal{H}. We denote by (Φ) the class of operators satisfying the following equality

$$
T^{*}\left[T^{*}, T\right] T=\left[T^{*}, T\right], \quad\left[T^{*}, T\right]=T^{*} T-T T^{*} .
$$

This class was introduced by F. Ming[2].
It is clear that the class (Φ) contains the class of normal operators. For any operators $T \in B(\mathcal{H})$ set, as usual, $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and $\left[T^{*}, T\right]=T^{*} T-T T^{*}=$ $|T|^{2}-\left|T^{*}\right|^{2}$ (the self commutant of T), and consider the following standard definitions: T is hyponormal if $\left|T^{*}\right|^{2} \leq|T|^{2}$ (i.e., if $\left[T^{*}, T\right]$ is nonnegative or, equivalently, if $\left\|T^{*} x\right\| \leq\|T x\|$ for every $x \in \mathcal{H}$), co-hyponormal, if T^{*} is hyponormal, normal if $T^{*} T=T T^{*}$. For the related topics and basic properties of class (Φ) operators, (see [1]).

Let $T \in B(\mathcal{H})$, in the following we will denote the kernel, the range, the spectrum, the convex hull of the spectrum and the numerical range of the operator T by $\operatorname{ker} T$, $\operatorname{ran} T, \sigma(T), \operatorname{cov} \sigma(T)$ and $W(T)$ respectively. The present
paper is organized as follows. In Theorem 2.1 in section two we give a characterization of hermitian operators. Hence, by using this result, in section three we will give a characterization of the (Φ) class operators and we will investigate on the relation between this class and other usual classes of operators. Some applications are also given.

2 Preliminaries

In the next, we need to prove the following famous theorem concerning the decomposition of Hermitian operators.

Theorem 2.1 If $D \in B(\mathcal{H})$ is a self-adjoint operator and $D=U|D|$ its polar decomposition, then $D=D^{+} \oplus D^{-}$, where D^{+}is a positif operator and D^{-}is a negative operator. Moreover, U is Hermitian, commutes with D and verify $U^{2}=I$.

To prove theorem 2.1 we need to show the following proposition.
Proposition 2.2 Let $D \in B(\mathcal{H})$ be a Hermitian operator. If $\mathcal{H}^{+}=\{x \in$ $\mathcal{H}:(D x, x) \geq 0\}$ and $\mathcal{H}^{-}=\{x \in \mathcal{H}:(D x, x) \leq 0\}$ are two subsets of \mathcal{H}, then \mathcal{H}^{+}and \mathcal{H}^{-}are two closed linear subspaces of \mathcal{H}.

The proof of the proposition follows from the following lemmas.
Lemma 2.3 Let $D=U|D|$ be the polar decomposition of the Hermitian operator D. If V and S are the restrictions of U and D on ran D respectively, then V is a Hermitian isometry which commutes with S. Where $\overline{\operatorname{ran~} D}$ is the closure of ran D.

Proof. Let $\mathcal{H}=\operatorname{ker} D \oplus \overline{\operatorname{ran} D}$, since D is Hermitian, ker D reduces D orthogonally and if $x \in \operatorname{ker} D$, we get $D x=|D| U^{*} x=0$, therefore $U^{*} x \in$ $\operatorname{ker}|U|=\operatorname{ker} U$. Thus

$$
U^{*}(\operatorname{ker} D)=U^{*}(\operatorname{ker} U) \subseteq \operatorname{ker} D
$$

We know also that ker U reduces orthogonally U. Thus U and D can be written as follows:

$$
U=\left[\begin{array}{cc}
0 & 0 \\
0 & V
\end{array}\right], \quad D=\left[\begin{array}{cc}
0 & 0 \\
0 & S
\end{array}\right]
$$

Hence, S has the polar decomposition

$$
\begin{equation*}
S=V|S| \tag{1}
\end{equation*}
$$

where V is an isometry, i.e.,

$$
\begin{equation*}
V^{*} V=I_{R} \tag{2}
\end{equation*}
$$

where I_{R} denote the identity on $\overline{\operatorname{ran} D}$. Since S is Hermitian, we get $S^{2}=$ $V|S|^{2} V^{*}=V S^{2} V^{*}$. Thus $S^{2} V=V S^{2}$ and so V commutes with $|S|$. From the relations (2.1), (2.2) and the commutativity, it follows that $|S|=|S| V^{2}$, since $|S|$ is injective, then

$$
\begin{equation*}
V^{2}=I_{R} \tag{3}
\end{equation*}
$$

Now, from the injectivity of $V^{*},(2.1)$ and (2.2), we get that V is a Hermitian isometry which commutes with $|S|$, and hence commutes with S.

Lemma 2.4 let $D=U|D|$ be the polar decomposition of the Hermitian operator D and $P=I-U^{*} U$, then the following statements are satisfied

1. P is an orthogonal projection on $\operatorname{ker} D$ and $Q=I-P$ is an orthogonal projection on ran D;
2. $Q\left(\mathcal{H}^{+}\right)=\mathcal{H}^{+} \cap \overline{\text { ran } D}$ and $Q\left(\mathcal{H}^{-}\right)=\mathcal{H}^{-} \cap \overline{\text { ran } D}$.

Proof. On $\mathcal{H}=\operatorname{ker} D \oplus \overline{\operatorname{ran~} D}$, it is clear that P is an orthogonal projection on ker D and so $Q=I-P$ is an orthogonal projection on $\operatorname{ran} D$. We first remark that $Q\left(\mathcal{H}^{+}\right) \subseteq \overline{\operatorname{ran} D}$, Let $x \in \mathcal{H}^{+}$, if $y=Q x$, then $y-x \in \operatorname{ker} D$ and so there exists $z \in \operatorname{ker} D$ such that $y=x+z$, consequently

$$
(D x, x)=(D y, y) \geq 0 .
$$

Hence $y \in \mathcal{H}^{+}$. Thus $Q\left(\mathcal{H}^{+}\right) \subseteq \mathcal{H}^{+} \cap \overline{\operatorname{ran} D}$. To prove the reverse inclusion, let $x \in \mathcal{H}^{+} \cap \overline{\operatorname{ran} D}$, then $x \in \mathcal{H}^{+}$and $Q x=x$, so $x \in Q\left(\mathcal{H}^{+}\right)$. Hence $Q\left(\mathcal{H}^{+}\right)=\mathcal{H}^{+} \cap \overline{\operatorname{ran} D}$. Analogously, we prove that $Q\left(\mathcal{H}^{-}\right)=\mathcal{H}^{-} \cap \overline{\operatorname{ran} D}$.

Lemma $2.5\langle D x, x\rangle=\langle | D|x, x\rangle$, for all $x \in \mathcal{H}^{+}$.
Proof. From lemma 2.2, we obtain, for all $x \in Q\left(\mathcal{H}^{+}\right)$that

$$
\langle S(x+V x),(x+V x)\rangle=2[\langle S x, x\rangle+\langle | S|x, x\rangle] .
$$

Hence by lemma 2.3, $\langle S(x+V x),(x+V x)\rangle \geq 0$. Thus, for all $x \in Q\left(\mathcal{H}^{+}\right)$, $x+V x \in Q\left(\mathcal{H}^{+}\right)$. Since S and $|S|$ are injective, then $x+V x \neq 0$, consequently if $x \neq 0$, then $V x=x$ for all $x \in Q\left(\mathcal{H}^{+}\right)$.
Moreover, for all $x \in \mathcal{H}^{+}$, let $x=z+Q z$ where $z \in \operatorname{ker} D$, it follows that

$$
\begin{aligned}
\langle D x, x\rangle=\langle D Q x, Q x\rangle & =\langle S Q x, Q x\rangle \\
& =\langle | S|Q x, Q x\rangle \\
& =\langle | D|x, x\rangle .
\end{aligned}
$$

In the next, we give the proof of the Proposition 2.2.

Proof. Let us prove that \mathcal{H}^{+}is a linear subspace. We have for all $x \in \mathcal{H}^{+}$ and all $\lambda \in \mathbb{C}$,

$$
\langle D \lambda x, x\rangle=|\lambda|\langle D x, x\rangle
$$

Thus $\lambda x \in \mathcal{H}^{+}$. For $x, y \in \mathcal{H}^{+}$, we obtain

$$
\langle D(x+y),(x+y)\rangle=\langle D x, x\rangle+2 \operatorname{Re}\langle D x, y\rangle+\langle D y, y\rangle
$$

We distinguish two cases:

1. If $\operatorname{Re}\langle D x, y\rangle \geq 0$, then $\langle D(x+y),(x+y)\rangle \geq 0$. Thus $x+y \in \mathcal{H}^{+}$.
2. If $R e\langle D x, y\rangle \leq 0$. Apply lemma 2.4 and the Schwartz's inequality, we obtain

$$
\begin{equation*}
\left.|\operatorname{Re}\langle D x, y\rangle|^{2} \leq|\langle D x, y\rangle|^{2} \leq\langle | D \mid x, x\right)(|D| y, y\rangle, \text { for all } x, y \in \mathcal{H}^{+} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\langle D x, x\rangle\langle D y, y\rangle \leq \frac{1}{2}\left(\langle D x, x\rangle^{2}+\langle D y, y\rangle^{2}\right) \tag{5}
\end{equation*}
$$

Hence from 2.4 and 2.4, it follows that

$$
\begin{equation*}
|R e\langle D x, y\rangle| \leq \frac{1}{2}(\langle D x, x\rangle+\langle D y, y\rangle) \tag{6}
\end{equation*}
$$

Thus

$$
-2 \operatorname{Re}\langle D x, y\rangle \leq\langle D x, x\rangle+\langle D y, y\rangle
$$

Consequently, $x+y \in \mathcal{H}^{+}$and \mathcal{H}^{+}is a linear subspace of \mathcal{H}.
Analogously, we prove that \mathcal{H}^{-}is a linear subspace of \mathcal{H}, (take $(-D)$). Now, we have to prove that \mathcal{H}^{+}and \mathcal{H}^{-}are closed for the topology of \mathcal{H}, for this, we have to show the following lemma:

Lemma 2.6 The function $f: \mathcal{H} \rightarrow \mathbb{R}$ defined by $f(x)=\langle D x, x\rangle$ is strongly continuous on \mathcal{H}.

Proof. Note that, since D is bounded that

$$
\begin{equation*}
|f(x)|=|\langle D x, x\rangle| \leq\|D\|\|x\|^{2} \text { for all } x \in \mathcal{H} \tag{7}
\end{equation*}
$$

Hence f is strongly continued at $x=0$, let $\left\{y_{n}\right\}$ be a sequence in \mathcal{H} defined by $y_{n}=x_{n}-x$, where $\left\{x_{n}\right\}$ is a sequence in \mathcal{H} which converges strongly to x, by simple computation, we obtain
$\left|f\left(x_{n}\right)-f(x)\right|=\left|f\left(y_{n}\right)+2 R e\left\langle D x_{n}, x\right\rangle-f(x)\right| \leq\left|f\left(y_{n}\right)\right|+2\left|R e\left\langle D x_{n}, x\right\rangle-f(x)\right|$.

By letting $n \rightarrow \infty,\left\langle D x_{n}, x\right\rangle$ converges to $\langle D x, x\rangle=f(x)$, and so $\operatorname{Re}\left\langle D x_{n}, x\right\rangle$ converges to $f(x)$. Thus by 2.7 and 2.8 it follows that f is strongly continuous on \mathcal{H}. Since $\mathcal{H}^{+}=f^{-1}([0, \infty))$ and $\mathcal{H}^{-}=f^{-1}((-\infty, 0])$, by lemma 2.6, we deduces that \mathcal{H}^{+}and \mathcal{H}^{-}are closed linear subspaces in \mathcal{H}.

In the next, we give the proof of the Theorem 2.1.
Proof. To establish that $\overline{\text { ran } D}=Q\left(\mathcal{H}^{+}\right) \oplus Q\left(\mathcal{H}^{-}\right)$, we need to claim that $\mathcal{H}^{+} \cap \mathcal{H}^{-}=\operatorname{ker} D$. Let us suppose the contrary, then there exists a vector z such that $z \in \mathcal{H}^{+} \cap \mathcal{H}^{-}$and $z \notin \operatorname{ker} D$. Set $z=a+Q z$, where $a \in \operatorname{ker} D$ and $Q z \in \operatorname{ran} D$. Since $Q z \neq 0$ and $\langle D z, z\rangle=0$ for all $z \in \mathcal{H}^{+} \cap \mathcal{H}^{-}$, the following equalities

$$
\langle D z, z\rangle=\langle S Q z, Q z\rangle=\langle | S|Q z, Q z\rangle=\left\||S|^{\frac{1}{2}} Q z\right\|=0, z \in \mathcal{H}^{+}
$$

implies that $|S| Q z=0$ and so $Q z=0$, this contradicts the assumptions. Hence $\mathcal{H}^{+} \cap \mathcal{H}^{-} \subseteq \operatorname{ker} D$. The reverse inclusion is trivial. Therefore $\mathcal{H}^{+} \cap \mathcal{H}^{-}=\operatorname{ker} D$.

Since $\langle D x, x\rangle$ is real for all $x \in \mathcal{H}$, then it is either positive or negative, this implies that $\mathcal{H}=\mathcal{H}^{+} \cup \mathcal{H}^{-}$and so

$$
Q(\mathcal{H})=\overline{\operatorname{ran} D}=Q\left(\mathcal{H}^{+}\right) \cup Q\left(\mathcal{H}^{-}\right) .
$$

The subspace $Q(\mathcal{H})$ is generated by $Q\left(\mathcal{H}^{+}\right)$and $Q\left(\mathcal{H}^{+}\right)$and so

$$
\overline{\operatorname{ran} D}=Q\left(\mathcal{H}^{+}\right)+Q\left(\mathcal{H}^{-}\right) .
$$

Now, from lemma 2.5 and the result above, it follows that $Q\left(\mathcal{H}^{+}\right) \cap Q\left(\mathcal{H}^{-}\right)=$ $\{0\}$. In the other hand, let z be a nonzero vector in $\overline{\operatorname{ran~} D}$, if $z \in\left(Q\left(\mathcal{H}^{+}\right)\right)^{\perp}$ and $z \notin Q\left(\mathcal{H}^{-}\right)$, then $\langle D z, z\rangle>0$ or equivalently $z \in\left(Q\left(\mathcal{H}^{+}\right)\right)^{\perp} \cap Q\left(\mathcal{H}^{+}\right)=\{0\}$, this is absurd. Hence $\left(Q\left(\mathcal{H}^{+}\right)\right)^{\perp} \subseteq Q\left(\mathcal{H}^{-}\right)$. Therefore $\overline{\operatorname{ran} U^{*}}=Q\left(\mathcal{H}^{+}\right) \oplus$ $Q\left(\mathcal{H}^{-}\right)$. Consequently, \mathcal{H} can be represented as follows

$$
\mathcal{H}=\operatorname{ker} D \oplus Q\left(\mathcal{H}^{+}\right) \oplus Q\left(\mathcal{H}^{-}\right) .
$$

Since S is the restriction of D on $\operatorname{ran} D$, we have $S x=|S| x$ for all $x \in Q\left(\mathcal{H}^{+}\right)$. Hence

$$
\langle S(S x), S x\rangle=\langle S| S|x,|S| x\rangle=\langle | S|S x,|S| x\rangle=\left\||S|^{\frac{3}{2}} x\right\|^{2} \quad \text { for all } x \in Q\left(\mathcal{H}^{+}\right) .
$$

Thus, $Q\left(\mathcal{H}^{+}\right)$reduces orthogonally S, this restriction denoted by D^{+}is positive. Analogously, the restriction $(-S)$ to $Q\left(\mathcal{H}^{-}\right)$denoted by D^{-}is negative. Finally D can be represented with respect to the decomposition $\mathcal{H}=$ ker $D \oplus Q\left(\mathcal{H}^{+}\right) \oplus Q\left(\mathcal{H}^{-}\right)$as

$$
D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & D^{+} & 0 \\
0 & 0 & D^{-}
\end{array}\right),
$$

where D^{+}is a positive operator and D^{-}is a negative operator. Hence the proof is complete.

Remark 2.7 If D is injective, then $\mathcal{H}^{+} \cap \mathcal{H}^{-}=\{0\}$, where $Q\left(\mathcal{H}^{+}\right)=\mathcal{H}^{+}$ and $Q\left(\mathcal{H}^{-}\right)=\mathcal{H}^{-}$.

3 Main Results

In this section we give a characterization of a subset of the (Φ) class operators when we suppose that $D=\left[T^{*}, T\right]$ is injective.

Proposition 3.1 If $T \in \Phi$ and D is injective, then $T=A \oplus B$, where A is hyponormal completely nonnormal and B is co-hyponormal completely nonnormal.

Proof. First let us prove that \mathcal{H}^{+}and \mathcal{H}^{-}are invariant for T. In fact, in view of the remark 2.7 and the following equality

$$
\langle D x, x\rangle=\left\langle T^{*} D T x, x\right\rangle=\langle D T x, T x\rangle \text { for all } x \in \mathcal{H},
$$

we obtain either $T x \in \mathcal{H}^{+}$if $x \in \mathcal{H}^{+}$or $T x \in \mathcal{H}^{-}$if $x \in \mathcal{H}^{-}$. In the next, we show that the restriction $A=\left.T\right|_{\mathcal{H}^{+}}$is hyponormal (resp. $B=\left.T\right|_{\mathcal{H}^{-}}$is cohyponormal). Let P be the orthogonal projection on \mathcal{H}^{+}, since \mathcal{H}^{+}is reduisant for T, then $\left[A^{*}, A\right]=P T^{*} T P-T P P T^{*}=P\left[T^{*}, T\right] P$. Hence A is hyponormal and B is co-hyponormal. In the next, we give an illustrative example for the above result.
Example 1. Let $\left\{e_{n}: n \in \mathbb{Z}^{2}\right\}$ be an orthonormal system of a complex Hilbert space \mathcal{H} and T be the bilateral shift with weights $\left(\gamma_{n}\right)_{n \in \mathbb{Z}}$ where $\left|\gamma_{n}\right| \neq$ 0 for all $n \in \mathbb{Z}$ and defined by $T e_{n}=\gamma_{n} e_{n}$ for all $n \in \mathbb{Z}$, where \mathbb{Z} denotes the set of integers.

By direct computation, we obtain $T^{*} e_{n}=\overline{\gamma_{n-1}} e_{n-1}$ for all $n \in \mathbb{Z}$, and

$$
T T^{*} x=\sum_{n=-\infty}^{n=\infty}\left|\gamma_{n}\right|^{2} x_{n} e_{n}, \quad T^{*} T x=\sum_{n=-\infty}^{n=\infty}\left|\gamma_{n-1}\right|^{2} x_{n} e_{n}
$$

Hence

$$
\begin{equation*}
\left[T^{*}, T\right] x=\sum_{n=-\infty}^{n=\infty}\left(\left|\gamma_{n}\right|^{2}-\left|\gamma_{n-1}\right|^{2}\right) x_{n} e_{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{*}\left[T^{*}, T\right] T x=\sum_{n=-\infty}^{n=\infty}\left(\left|\gamma_{n+1}\right|^{2}-\left|\gamma_{n}\right|^{2}\right)\left(\left|\gamma_{n}\right|^{2}\right) x_{n} e_{n} \tag{10}
\end{equation*}
$$

for all $x=\sum_{n=-\infty}^{n=\infty} x_{n}$ in \mathcal{H} (i.e., $\sum_{n=-\infty}^{n=\infty}\left|x_{n}\right|^{2}<\infty$).

Now $T \in \Phi$ is equivalent to

$$
\sum_{n=-\infty}^{n=\infty}\left[\left(\left|\gamma_{n+1}\right|^{2}-\left|\gamma_{n}\right|^{2}\right)\left(\left|\gamma_{n}\right|^{2}\right)-\left|\gamma_{n}\right|^{2}+\left|\gamma_{n-1}\right|^{2}\right] x_{n} e_{n}=0, \text { for all } x \in \mathcal{H}
$$

Hence

$$
\left.\left(\left|\gamma_{n+1}\right|^{2}-\left|\gamma_{n}\right|^{2}\right)\left(\left|\gamma_{n}\right|^{2}\right)-\left|\gamma_{n}\right|^{2}+\left|\gamma_{n-1}\right|^{2}\right]=0, \text { for all } n \in \mathbb{Z}
$$

Or

$$
\begin{align*}
\left|\gamma_{n}\right|^{2} & =\left|\gamma_{0}\right|^{2}+\sum_{k=1}^{k=n-1}\left(1-\frac{\left|\gamma_{k-1}\right|^{2}}{\left|\gamma_{k}\right|^{2}}\right), n \geq 1 \tag{11}\\
\left|\gamma_{-n}\right|^{2} & =\left|\gamma_{0}\right|^{2}+\sum_{k=1}^{k=n-1}\left(1-\frac{\left|\gamma_{-k-1}\right|^{2}}{\left|\gamma_{-k}\right|^{2}}\right), n \geq 1 \tag{12}
\end{align*}
$$

We remark that if n is sufficiently large, then $\left|\gamma_{n}\right|>1$ and so the sums 3.3 and 3.4 are finite, hence we can choose two sequences $\left(\left|\alpha_{n}\right|\right)_{n \in \mathbb{Z}}$ and $\left.\left(\left|\beta_{n}\right|\right)_{n \in \mathbb{Z}}\right)$ such that $\left(\left|\alpha_{n}\right|\right)_{n \in \mathbb{Z}}$ is increasing and $\left.\left(\left|\beta_{n}\right|\right)_{n \in \mathbb{Z}}\right)$ is decreasing defined as follows

$$
\left|\alpha_{-1}\right|=\frac{1}{2},\left|\alpha_{0}\right|=\frac{3}{4},\left|\beta_{-1}\right|=\frac{1}{2},\left|\beta_{0}\right|=\frac{1}{3},
$$

The others terms are computed from relations 3.3 and 3.4. The operators A and B are the bilateral shifts with weights $\left(\alpha_{n}\right)_{n \in \mathbb{Z}}$ and $\left(\beta_{n}\right)_{n \in \mathbb{Z}}$ respectively. From 3.2, it is easy to check that A is hyponormal in the (Φ) class, B is co-hyponormal in the (Φ) class and D is injective.

Theorem 3.2 Let $T \in \Phi$. If $\operatorname{ker}\left[T^{*}, T\right]$ is invariant by T^{*}, then $T=$ $N \oplus A \oplus B$, where N is a normal operator, A is a pur hyponormal operator and B is a pur co-hyponormal operator.

Proof. Let $D=\left[T^{*}, T\right]$, we first remark that ker D is invariant by T, in fact, if x ker D, then

$$
\langle D T x, T x\rangle=\left\langle T^{*} D T x, x\right\rangle=\langle D x, x\rangle=0 .
$$

By applying theorem 2.1, ker D reduces orthogonally T, consequently we can write T as $T=N \oplus L$, where $N=\left.T\right|_{\text {ker } D}$ is normal and $L=\left.T\right|_{\overline{\text { ran } U^{*}}}$ is in Φ and in which the commutator is injective. Therefore $L=A \oplus B$ by proposition 3.1. In the next, we will investigate on the relation between this class and other usual classes of operators.

Theorem 3.3 If $T \in \Phi$ such that ker $\left[T^{*}, T\right]$ is invariant by T^{*}, then $r(T)=\|T\|$.

Proof. Since ker $\left[T^{*}, T\right]$ is invariant by T^{*}, then $T=N \oplus A \oplus B$. In view of [4, Lemma 1], $\|T\|=\max (\|N\|,\|A\|,\|B\|)$.

Also From [3], $r(T)=\max (r(N), r(A), r(B))$. Since $\sigma(T)=\sigma(N) \cup \sigma(A) \cup$ $\sigma(B)$, it follows that $\|T\|=r(T)$.

Definition 3.4 $T \in B(\mathcal{H})$ is called $\left(G_{1}\right)$ class operator if

$$
\|\left(T-z I \|^{-1}=[\operatorname{dist}(z, \sigma(T))]^{-1}, \text { for all } z \notin \sigma(T)\right.
$$

This class includes normal, subnormal and hyponormal operators [5].
Theorem 3.5 If $T \in \Phi$ such that $\operatorname{ker}\left[T^{*}, T\right]$ is invariant by T^{*}, then $T \in$ G_{1}.

To prove this theorem, we need the following lemma.
Lemma 3.6 The class $\left(G_{1}\right)$ operators contains the hyponormal operators and their adjoints.

Proof. We known [6] that the hyponormal operators belongs to the class $\left(G_{1}\right)$, we have to prove that $\left(G_{1}\right)$ contains also their adjoints. In fact, let B be a co-hyponormal operator, then

$$
\left\|\left(B^{*}-\lambda I\right)^{-1}\right\|=\left\|(B-\bar{\lambda} I)^{-1}\right\|=\left[\operatorname{dist}\left(\lambda, \sigma\left(B^{*}\right)\right)\right]^{-1}, \text { for all } \lambda \notin \sigma\left(B^{*}\right)
$$

Moreover, we have

$$
\begin{aligned}
\operatorname{dist}\left(\lambda, \sigma\left(B^{*}\right)\right) & =\operatorname{dist}(\lambda, \overline{\sigma(B)})=\inf _{\mu \in \overline{\sigma(B)}}|\lambda-\mu| \\
& =\inf _{\bar{\mu} \in \sigma(B)}|\lambda-\mu|=\inf _{\mu \in \sigma(B)}|\bar{\lambda}-\mu| \\
& =\operatorname{dist}(\bar{\lambda}, \sigma(B))
\end{aligned}
$$

Hence, set $\zeta=\bar{\lambda}$, it follows

$$
\left\|(B-\zeta I)^{-1}\right\|=[\operatorname{dist}(\zeta, \sigma(B))]^{-1}, \text { for all } \zeta \notin \sigma(B)
$$

This completes the proof. If $T \in \Phi$ such that ker D is invariant by T^{*}, then by theorem 3.2, T can be written as $T=N \oplus A \oplus B$. From the previous lemma, we have for all $\lambda \notin \sigma(T)$

$$
\begin{aligned}
\left\|(N-\lambda I)^{-1}\right\| & =[\operatorname{dist}(\lambda, \sigma(N))]^{-1} \\
\left\|(A-\lambda I)^{-1}\right\| & =[\operatorname{dist}(\lambda, \sigma(A))]^{-1} \\
\left\|(B-\lambda I)^{-1}\right\| & =[\operatorname{dist}(\lambda, \sigma(B))]^{-1}
\end{aligned}
$$

Also

$$
\|(T-\lambda I)\|=\max (\|(N-\lambda I)\|,\|(A-\lambda I)\|,\|(B-\lambda I)\|)
$$

Hence

$$
\left\|(T-\lambda I)^{-1}\right\|=\max \left(\left\|(N-\lambda I)^{-1}\right\|,\left\|(A-\lambda I)^{-1}\right\|,\left\|(B-\lambda I)^{-1}\right\|\right) .
$$

Thus

$$
\operatorname{dist}(\lambda, \sigma(N))=\inf _{\mu \in \sigma(N)}|\lambda-\mu| \geq \inf _{\mu \in \sigma(T)}|\lambda-\mu|=\operatorname{dist}(\lambda, \sigma(N))
$$

It follows that

$$
\begin{equation*}
\left\|(N-\lambda I)^{-1}\right\|=[\operatorname{dist}(\lambda, \sigma(N))]^{-1} \leq[\operatorname{dist}(\lambda, \sigma(T))]^{-1} \tag{13}
\end{equation*}
$$

The inequality 3.5 is also verified by A and B, finally we deduces that

$$
\left\|(T-\lambda I)^{-1}\right\| \leq[\operatorname{dist}(\lambda, \sigma(T))]^{-1}, \text { for all } \lambda \notin \sigma(T)
$$

Since the reverse inequality is trivially verified for all bounded operators, then the proof is complete.

Corollary 3.7 If $T \in \Phi$ such that $\operatorname{ker}\left[T^{*}, T\right]$ is invariant by T^{*}, then $\operatorname{cov} \sigma(T)=\overline{W(T)}$.
Proof. In [5] it is shown that if $T \in G_{1}$, then $\operatorname{cov} \sigma(T)=\overline{W(T)}$. Thus the result follows from the theorem 3.6.

4 Open Problem

The following problems are open till now.

1. What the class Φ contains exactly,
2. Is $T \in \Phi$ with real spectrum self-adjoint.

ACKNOWLEDGEMENTS. The authors wishes to thank the anonymous referees for their helpful comments which improved the paper.

References

[1] A. Bachir, "Some properties of (Φ) class operators", International Journal of Mathematics and Statistics, Vol. 4, (2009), pp. 63-68
[2] F. Ming, "On Class $\Phi "$, J. Fudan University, vol. 24, No.1(1985), pp. 73-78.
[3] P.R. Halmos, "A Hilbert problem book", 2nd edition, Springer, New York, (1982).
[4] F. kittaneh, "Inequalities for the Schatten p-norm III", Commun. Math. Phys. 104(1986), pp. 307-310.
[5] G.H. Orland, "On a class of operators", Proc. Amer. Math. Soc., 15(1964), pp. 75-79.
[6] J.G. Stampfli, "Hyponormal operators and spectral density", Trans. Amer. Math. Soc., 117(1965), pp. 469-476.

