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Abstract

In this paper we characterize Hermitian operators defined
on Hilbert space. Using this result we establish several new
characterizations to (Φ) class operators. Further, we apply
these results to investigate on the relation between this class
and other usual classes of operators. Some applications are
also given.

Keywords: Hermitian operator, Hyponormal operators, (Φ) class.

1 Introduction

Let H be a complex Hilbert space with inner product 〈, 〉 and let B(H) be the
algebra of all bounded operators acting on H. We denote by (Φ) the class of
operators satisfying the following equality

T ∗[T ∗, T ]T = [T ∗, T ], [T ∗, T ] = T ∗T − TT ∗.

This class was introduced by F. Ming[2].
It is clear that the class (Φ) contains the class of normal operators. For any

operators T ∈ B(H) set, as usual, |T | = (T ∗T )
1
2 and [T ∗, T ] = T ∗T − TT ∗ =

|T |2 − |T ∗|2 (the self commutant of T ), and consider the following standard
definitions: T is hyponormal if |T ∗|2 ≤ |T |2 (i.e., if [T ∗, T ] is nonnegative
or, equivalently, if ‖ T ∗x ‖≤‖ Tx ‖ for every x ∈ H), co-hyponormal, if T ∗ is
hyponormal, normal if T ∗T = TT ∗. For the related topics and basic properties
of class (Φ) operators, (see [1]).

Let T ∈ B(H), in the following we will denote the kernel, the range, the
spectrum, the convex hull of the spectrum and the numerical range of the op-
erator T by ker T, ran T, σ(T ), covσ(T ) and W (T ) respectively. The present
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paper is organized as follows. In Theorem 2.1 in section two we give a charac-
terization of hermitian operators. Hence, by using this result, in section three
we will give a characterization of the (Φ) class operators and we will investigate
on the relation between this class and other usual classes of operators. Some
applications are also given.

2 Preliminaries

In the next, we need to prove the following famous theorem concerning the
decomposition of Hermitian operators.

Theorem 2.1 If D ∈ B(H) is a self-adjoint operator and D = U |D| its
polar decomposition, then D = D+ ⊕D−, where D+ is a positif operator and
D− is a negative operator. Moreover, U is Hermitian, commutes with D and
verify U2 = I.

To prove theorem 2.1 we need to show the following proposition.

Proposition 2.2 Let D ∈ B(H) be a Hermitian operator. If H+ = {x ∈
H : (Dx, x) ≥ 0} and H− = {x ∈ H : (Dx, x) ≤ 0} are two subsets of H, then
H+ and H− are two closed linear subspaces of H.

The proof of the proposition follows from the following lemmas.

Lemma 2.3 Let D = U |D| be the polar decomposition of the Hermitian
operator D. If V and S are the restrictions of U and D on ran D respectively,
then V is a Hermitian isometry which commutes with S. Where ran D is the
closure of ran D.

Proof. Let H = ker D ⊕ ran D, since D is Hermitian, ker D reduces D
orthogonally and if x ∈ ker D, we get Dx = |D|U∗x = 0, therefore U∗x ∈
ker |U | = ker U . Thus

U∗(ker D) = U∗(ker U) ⊆ ker D.

We know also that ker U reduces orthogonally U . Thus U and D can be written
as follows:

U =

[
0 0
0 V

]
, D =

[
0 0
0 S

]
,

Hence, S has the polar decomposition

S = V |S|, (1)

where V is an isometry, i.e.,
V ∗V = IR, (2)
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where IR denote the identity on ran D. Since S is Hermitian, we get S2 =
V |S|2V ∗ = V S2V ∗. Thus S2V = V S2 and so V commutes with |S|. From the
relations (2.1), (2.2) and the commutativity, it follows that |S| = |S|V 2, since
|S| is injective, then

V 2 = IR. (3)

Now, from the injectivity of V ∗, (2.1) and (2.2), we get that V is a Hermitian
isometry which commutes with |S|, and hence commutes with S.

Lemma 2.4 let D = U |D| be the polar decomposition of the Hermitian
operator D and P = I − U∗U , then the following statements are satisfied

1. P is an orthogonal projection on ker D and Q = I − P is an orthogonal
projection on ran D;

2. Q(H+) = H+ ∩ ran D and Q(H−) = H− ∩ ran D.

Proof. On H = ker D ⊕ ran D, it is clear that P is an orthogonal projection
on ker D and so Q = I − P is an orthogonal projection on ran D. We first
remark that Q(H+) ⊆ ran D, Let x ∈ H+, if y = Qx, then y − x ∈ ker D and
so there exists z ∈ ker D such that y = x + z, consequently

(Dx, x) = (Dy, y) ≥ 0.

Hence y ∈ H+. Thus Q(H+) ⊆ H+ ∩ ran D. To prove the reverse inclusion,
let x ∈ H+ ∩ ran D, then x ∈ H+ and Qx = x, so x ∈ Q(H+). Hence
Q(H+) = H+ ∩ ran D. Analogously, we prove that Q(H−) = H− ∩ ran D.

Lemma 2.5 〈Dx, x〉 = 〈|D|x, x〉, for all x ∈ H+.

Proof. From lemma 2.2 , we obtain, for all x ∈ Q(H+) that

〈S(x + V x), (x + V x)〉 = 2[〈Sx, x〉+ 〈|S|x, x〉].

Hence by lemma 2.3, 〈S(x + V x), (x + V x)〉 ≥ 0. Thus, for all x ∈ Q(H+),
x+V x ∈ Q(H+). Since S and |S| are injective, then x+V x 6= 0, consequently
if x 6= 0, then V x = x for all x ∈ Q(H+).
Moreover, for all x ∈ H+, let x = z + Qz where z ∈ ker D, it follows that

〈Dx, x〉 = 〈DQx, Qx〉 = 〈SQx, Qx〉
= 〈|S|Qx, Qx〉
= 〈|D|x, x〉.

In the next, we give the proof of the Proposition 2.2.
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Proof. Let us prove that H+ is a linear subspace. We have for all x ∈ H+

and all λ ∈ C,
〈Dλx, x〉 = |λ|〈Dx, x〉.

Thus λx ∈ H+. For x, y ∈ H+, we obtain

〈D(x + y), (x + y)〉 = 〈Dx, x〉+ 2Re〈Dx, y〉+ 〈Dy, y〉.

We distinguish two cases:

1. If Re〈Dx, y〉 ≥ 0, then 〈D(x + y), (x + y)〉 ≥ 0. Thus x + y ∈ H+.

2. If Re〈Dx, y〉 ≤ 0. Apply lemma 2.4 and the Schwartz’s inequality, we
obtain

|Re〈Dx, y〉|2 ≤ |〈Dx, y〉|2 ≤ 〈|D|x, x)(|D|y, y〉, for all x, y ∈ H+, (4)

or

〈Dx, x〉〈Dy, y〉 ≤ 1

2

(
〈Dx, x〉2 + 〈Dy, y〉2

)
. (5)

Hence from 2.4 and 2.4, it follows that

|Re〈Dx, y〉| ≤ 1

2

(
〈Dx, x〉+ 〈Dy, y〉

)
. (6)

Thus
−2Re〈Dx, y〉 ≤ 〈Dx, x〉+ 〈Dy, y〉.

Consequently, x + y ∈ H+ and H+ is a linear subspace of H.

Analogously, we prove that H− is a linear subspace of H, (take (−D)). Now,
we have to prove that H+ and H− are closed for the topology of H, for this,
we have to show the following lemma:

Lemma 2.6 The function f : H → R defined by f(x) = 〈Dx, x〉 is strongly
continuous on H.

Proof. Note that, since D is bounded that

|f(x)| = |〈Dx, x〉| ≤‖ D ‖‖ x ‖2 for all x ∈ H. (7)

Hence f is strongly continued at x = 0, let {yn} be a sequence in H defined
by yn = xn − x, where {xn} is a sequence in H which converges strongly to x,
by simple computation, we obtain

|f(xn)−f(x)| = |f(yn)+2Re〈Dxn, x〉−f(x)| ≤ |f(yn)|+2|Re〈Dxn, x〉−f(x)|.
(8)
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By letting n →∞, 〈Dxn, x〉 converges to 〈Dx, x〉 = f(x), and so Re〈Dxn, x〉
converges to f(x). Thus by 2.7 and 2.8 it follows that f is strongly continuous
on H. Since H+ = f−1 ([0,∞)) and H− = f−1 ((−∞, 0]), by lemma 2.6, we
deduces that H+ and H− are closed linear subspaces in H.

In the next, we give the proof of the Theorem 2.1.
Proof. To establish that ran D = Q(H+) ⊕ Q(H−), we need to claim that
H+ ∩ H− = ker D. Let us suppose the contrary, then there exists a vector z
such that z ∈ H+ ∩ H− and z /∈ ker D. Set z = a + Qz, where a ∈ ker D and
Qz ∈ ran D. Since Qz 6= 0 and 〈Dz, z〉 = 0 for all z ∈ H+∩H−, the following
equalities

〈Dz, z〉 = 〈SQz, Qz〉 = 〈|S|Qz, Qz〉 =‖ |S|
1
2 Qz ‖= 0, z ∈ H+

implies that |S|Qz = 0 and so Qz = 0, this contradicts the assumptions. Hence
H+∩H− ⊆ ker D. The reverse inclusion is trivial. ThereforeH+∩H− = ker D.

Since 〈Dx, x〉 is real for all x ∈ H, then it is either positive or negative,
this implies that H = H+ ∪H− and so

Q(H) = ran D = Q(H+) ∪Q(H−).

The subspace Q(H) is generated by Q(H+) and Q(H+) and so

ran D = Q(H+) + Q(H−).

Now, from lemma 2.5 and the result above, it follows that Q(H+) ∩Q(H−) =

{0}. In the other hand, let z be a nonzero vector in ran D, if z ∈ (Q(H+))
⊥

and

z /∈ Q(H−), then 〈Dz, z〉 > 0 or equivalently z ∈ (Q(H+))
⊥ ∩ Q(H+) = {0},

this is absurd. Hence (Q(H+))
⊥ ⊆ Q(H−). Therefore ran U∗ = Q(H+) ⊕

Q(H−). Consequently, H can be represented as follows

H = ker D ⊕Q(H+)⊕Q(H−).

Since S is the restriction of D on ran D, we have Sx = |S|x for all x ∈ Q(H+).
Hence

〈S(Sx), Sx〉 = 〈S|S|x, |S|x〉 = 〈|S|Sx, |S|x〉 =‖ |S|
3
2 x ‖2 for all x ∈ Q(H+).

Thus, Q(H+) reduces orthogonally S, this restriction denoted by D+ is pos-
itive. Analogously, the restriction (−S) to Q(H−) denoted by D− is nega-
tive. Finally D can be represented with respect to the decomposition H =
ker D ⊕Q(H+)⊕Q(H−) as

D =

 0 0 0
0 D+ 0
0 0 D−

 ,

where D+ is a positive operator and D− is a negative operator. Hence the
proof is complete.
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Remark 2.7 If D is injective, then H+ ∩ H− = {0}, where Q(H+) = H+

and Q(H−) = H−.

3 Main Results

In this section we give a characterization of a subset of the (Φ) class operators
when we suppose that D = [T ∗, T ] is injective.

Proposition 3.1 If T ∈ Φ and D is injective, then T = A ⊕ B, where
A is hyponormal completely nonnormal and B is co-hyponormal completely
nonnormal.

Proof. First let us prove that H+ and H− are invariant for T . In fact, in view
of the remark 2.7 and the following equality

〈Dx, x〉 = 〈T ∗DTx, x〉 = 〈DTx, Tx〉 for all x ∈ H,

we obtain either Tx ∈ H+ if x ∈ H+ or Tx ∈ H− if x ∈ H−. In the next,
we show that the restriction A = T |H+ is hyponormal (resp. B = T |H− is co-
hyponormal). Let P be the orthogonal projection onH+, sinceH+ is reduisant
for T , then [A∗, A] = PT ∗TP −TPPT ∗ = P [T ∗, T ]P . Hence A is hyponormal
and B is co-hyponormal. In the next, we give an illustrative example for the
above result.
Example 1. Let {en : n ∈ Z2} be an orthonormal system of a complex
Hilbert space H and T be the bilateral shift with weights (γn)n∈Z where |γn| 6=
0 for all n ∈ Z and defined by Ten = γnen for all n ∈ Z, where Z denotes the
set of integers.

By direct computation, we obtain T ∗en = γn−1en−1 for all n ∈ Z, and

TT ∗x =
n=∞∑

n=−∞

|γn|2xnen, T ∗Tx =
n=∞∑

n=−∞

|γn−1|2xnen

Hence

[T ∗, T ]x =
n=∞∑

n=−∞

(|γn|2 − |γn−1|2)xnen, (9)

and

T ∗[T ∗, T ]Tx =
n=∞∑

n=−∞

(|γn+1|2 − |γn|2)(|γn|2)xnen, (10)

for all x =
n=∞∑

n=−∞

xn in H (i.e.,
n=∞∑

n=−∞

|xn|2 < ∞).
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Now T ∈ Φ is equivalent to

n=∞∑
n=−∞

[(|γn+1|2 − |γn|2)(|γn|2)− |γn|2 + |γn−1|2]xnen = 0, for all x ∈ H.

Hence

(|γn+1|2 − |γn|2)(|γn|2)− |γn|2 + |γn−1|2] = 0, for all n ∈ Z.

Or

|γn|2 = |γ0|2 +
k=n−1∑

k=1

(
1− |γk−1|2

|γk|2
)
, n ≥ 1 (11)

|γ−n|2 = |γ0|2 +
k=n−1∑

k=1

(
1− |γ−k−1|2

|γ−k|2
)
, n ≥ 1. (12)

We remark that if n is sufficiently large, then |γn| > 1 and so the sums 3.3
and 3.4 are finite, hence we can choose two sequences (|αn|)n∈Z and (|βn|)n∈Z)
such that (|αn|)n∈Z is increasing and (|βn|)n∈Z) is decreasing defined as follows

|α−1| =
1

2
, |α0| =

3

4
, |β−1| =

1

2
, |β0| =

1

3
,

The others terms are computed from relations 3.3 and 3.4. The operators A
and B are the bilateral shifts with weights (αn)n∈Z and (βn)n∈Z respectively.
From 3.2, it is easy to check that A is hyponormal in the (Φ) class, B is
co-hyponormal in the (Φ) class and D is injective.

Theorem 3.2 Let T ∈ Φ. If ker [T ∗, T ] is invariant by T ∗, then T =
N ⊕ A ⊕ B, where N is a normal operator, A is a pur hyponormal operator
and B is a pur co-hyponormal operator.

Proof. Let D = [T ∗, T ], we first remark that ker D is invariant by T , in fact,
if x ker D, then

〈DTx, Tx〉 = 〈T ∗DTx, x〉 = 〈Dx, x〉 = 0.

By applying theorem 2.1, ker D reduces orthogonally T , consequently we can
write T as T = N ⊕ L, where N = T |ker D is normal and L = T |ran U∗ is in Φ
and in which the commutator is injective. Therefore L = A⊕B by proposition
3.1. In the next, we will investigate on the relation between this class and other
usual classes of operators.

Theorem 3.3 If T ∈ Φ such that ker [T ∗, T ] is invariant by T ∗, then
r(T ) = ‖T‖.
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Proof. Since ker [T ∗, T ] is invariant by T ∗, then T = N ⊕ A⊕ B. In view of
[4, Lemma 1], ‖T‖ = max(‖N‖, ‖A‖, ‖B‖).

Also From [3], r(T ) = max(r(N), r(A), r(B)). Since σ(T ) = σ(N)∪σ(A)∪
σ(B), it follows that ‖T‖ = r(T ).

Definition 3.4 T ∈ B(H) is called (G1) class operator if

‖(T − zI‖−1 = [dist (z, σ(T ))]−1, for all z /∈ σ(T ).

This class includes normal, subnormal and hyponormal operators [5].

Theorem 3.5 If T ∈ Φ such that ker [T ∗, T ] is invariant by T ∗, then T ∈
G1.

To prove this theorem, we need the following lemma.

Lemma 3.6 The class (G1) operators contains the hyponormal operators
and their adjoints.

Proof. We known [6] that the hyponormal operators belongs to the class (G1),
we have to prove that (G1) contains also their adjoints. In fact, let B be a
co-hyponormal operator, then

‖(B∗ − λI)−1‖ = ‖(B − λI)−1‖ = [dist (λ, σ(B∗))]−1, for all λ /∈ σ(B∗).

Moreover, we have

dist (λ, σ(B∗)) = dist (λ, σ(B)) = inf
µ∈σ(B)

|λ− µ|

= inf
µ∈σ(B)

|λ− µ| = inf
µ∈σ(B)

|λ− µ|

= dist (λ, σ(B))

Hence, set ζ = λ, it follows

‖(B − ζI)−1‖ = [dist (ζ, σ(B))]−1, for all ζ /∈ σ(B).

This completes the proof. If T ∈ Φ such that ker D is invariant by T ∗, then by
theorem 3.2, T can be written as T = N ⊕A⊕B. From the previous lemma,
we have for all λ /∈ σ(T )

‖(N − λI)−1‖ = [dist (λ, σ(N))]−1

‖(A− λI)−1‖ = [dist (λ, σ(A))]−1

‖(B − λI)−1‖ = [dist (λ, σ(B))]−1.

Also
‖(T − λI)‖ = max(‖(N − λI)‖, ‖(A− λI)‖, ‖(B − λI)‖).
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Hence

‖(T − λI)−1‖ = max(‖(N − λI)−1‖, ‖(A− λI)−1‖, ‖(B − λI)−1‖).

Thus

dist (λ, σ(N)) = inf
µ∈σ(N)

|λ− µ| ≥ inf
µ∈σ(T )

|λ− µ| = dist (λ, σ(N)).

It follows that

‖(N − λI)−1‖ = [dist (λ, σ(N))]−1 ≤ [dist (λ, σ(T ))]−1. (13)

The inequality 3.5 is also verified by A and B, finally we deduces that

‖(T − λI)−1‖ ≤ [dist (λ, σ(T ))]−1, for all λ /∈ σ(T ).

Since the reverse inequality is trivially verified for all bounded operators, then
the proof is complete.

Corollary 3.7 If T ∈ Φ such that ker [T ∗, T ] is invariant by T ∗, then
covσ(T ) = W (T ).

Proof. In [5] it is shown that if T ∈ G1, then covσ(T ) = W (T ). Thus the
result follows from the theorem 3.6.

4 Open Problem

The following problems are open till now.

1. What the class Φ contains exactly,

2. Is T ∈ Φ with real spectrum self-adjoint.
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